next up previous contents
Next: The Individual Up: The Genetic Algorithm Previous: The Genetic Algorithm   Contents

Chromosome Strings

A Chromosome String is a fixed length string of a genetic alphabet ${\bf A}$.


\begin{displaymath}S=(d_0,d_1, \ldots d_n), \qquad S \in {\bf A}^n, \qquad d_i \in {\bf A} \end{displaymath}

The function $\mbox{\rm len}$ returns the length of a string, the operator $\oplus$ concatenates two strings.


\begin{displaymath}S=(d_0,d_1, \ldots d_n) \Longrightarrow \mbox{\rm len}S = n \end{displaymath}


\begin{displaymath}A=(a_1,a_2, \ldots a_n), \, B=(b_1,b_2, \ldots b_m) \Longrightarrow
A \oplus B = (a_1,a_2, \ldots a_n,b_1,b_2, \ldots b_m) \end{displaymath}

If $A=\{0,1\}$ then the Hamming distance $H$ between two string of the same length is define as


\begin{displaymath}H(A,B) = \sum_{i=1}^n \vert A_i-B_i\vert \quad \mbox{with} \quad \mbox{\rm len}A=\mbox{\rm len}B=n \end{displaymath}

From now on, we will assume that the genetic alphabet is always $\{0,1\}$.




(c) Bernhard Ömer - oemer@tph.tuwien.ac.at - http://tph.tuwien.ac.at/~oemer/