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Interaction-free measurement schemes with ideal Mach-Zehnder interferometers promised to distinguish
absorptive samples with lower average absorption than simple transmission schemes. We show that this is only
true for an ensemble of two kinds of samples, where one kind is highly absorptive and the other is highly
transmissive. As soon as a third kind of sample with intermediate transmission is introduced, but no phase shift
is permitted, the cost of information gain in terms of absorbed particles in the samples is higher in the
interferometric scheme. We also investigate the general case of samples with a continuous range of transmis-
sionand phase shift values, such that an interferometer’s ability to measure both sample characteristics can be
exploited. With an interferometer the number of principally distinguishable samples increases linearly with the
number of probe particles, but with a simple transmission setup it increases as the square root. When wishing
to distinguish twice as many samples from a continuous sample distribution with an interferometric scheme,
the number of absorbed particles per sample only doubles, but it quadruples with a simple transmission
scheme.

PACS numbd(s): 03.65.Bz, 03.6%a

[. INTRODUCTION at possible application§5—7]. Several experiments have
demonstrated the feasibility of the schef8e9].

Interaction-free measurement was put forward by Elitzur The possibility of interaction-free measurement leads to
and Vaidman as a probe for the presence of a perfectly alihe question whether this method could provide information
sorbing sample in one path of a Mach-Zehnder type interferabout samples of arbitrary absorption with less interaction
ometer, without the probe particle being absorbed in thehan conventional transmission techniques. The purpose of
sample[1]. Their idea can be seen as an inversion of thethis paper is therefore the comparison of a conventional
common conclusion corresponding to complementd2ly  scheme, in which absorption is determined by a simple trans-
Instead of considering the availability of path information asmission measurement, with an interferometric scheme,
the cause for the absence of interference one may equallyhich gives absorption and phase information. For the inter-
well consider the absence of interference as an indication foierometric scheme we chose an ideal Mach-Zehnder interfer-
the availability of path information. In such a way the obser-ometer. While nonsymmetric interferometers or multiloop
vation of noninterference can be used to detect the presenasterferometers may be superior in particular regimes of ab-
of a path measurement device, i.e., the absorber. Whereasrption and phase measurement, the Mach-Zehnder interfer-
without the absorber all particles will be observed in theometer exhibits technological simplicity anlobth output
same output, there will be counts in the other output as welbeams can be fully modulated. We would expect this feature
if the detector is inserted. Therefore the observation of @o be statistically advantageous for obtaining information
particle in the latter output is a clear indication of the pres-from general samples.
ence of the absorber. This leads to the conclusion that the The sample will be treated as classical, because we are
particle that proves the presence of the detector never canaly interested in how many particles are absorbed in it,
into contact with it and therefore did not interact with it. The thereby depositing possibly harmful amounts of energy.
phenomenon may properly be called interaction-free meaAlso, we will neglect scattering into momentum states other
surement. Since then, several theoretical papers have aiméthn the original momentum, because scattering could be
at clarifying the paradoxical aspect of the propdSad], and  treated as additional absorption. Therefore, the tieterac-

tion is here equivalent t@bsorption Thusinteraction-free
will mean that the particle was not absorbed, but a branch of

*Electronic address: krenn@ati.ac.at, its wave function may have passed through the sample and
http://www.ati.ac.atsummweb/welcome.html picked up a phase shift.

"Electronic address: summhammer@ati.ac.at, For comparing the performance of the two schemes we
http://www.ati.ac.atsummweb/welcome.html will employ Bayesian inference. We shall establish the con-

*Electronic address: svozil@tph.tuwien.ac.at, ditional probability that the sample is identified correctly and
http://tph.tuwien.ac.atgvozil then sum over a constant prior distribution of samples to
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Sample: a I
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FIG. 1. Particles emitted by the sourBgass through a sample
with transmission probability- and are registered by detectDr )
For a given number of particledN) emitted by the source, an ex-
perimenter may infer the transmission probability of the sample
from the number of particles registeredn UDZ

II sample: /T, e"
D

1

obtain the average probability of correctly identifying a  FIG. 2. A particle emitted from sourcgimpinges on the Mach-
sample. We shall require that this probability exceed a cerZehnder interferometer where it can follow path | or path Il. The
tain minimum for both methods. The method requiring fewerParticle can be detected B, or in D,, or be absorbed in the
absorbed particles in the samples to obtain the informatio§amPple.

will be judged superior.
Jueg P beam splitters are {2 andi/\/2, respectively. The sample

in pathl has transmission probability and induces a phase

Il. TWO KINDS OF SAMPLES b g . .
shift ¢. The probabilities for detection of the particlesin

A. Black and white samples orinD, are
First we assume that we have only fully absorbihtack) 147 \/;
and fully transparenfwhite) samples, i.e., we have a trans- p;= + ——Ccosep, 3)
mission probability ofr;=0 or of 7,=1. The question we 4 2
want to answer is in which of the two schemes fewer par-
ticles are absorbed in the samples, on average, if we demand 147 _ VT 4
that both methods achieve a certain minimum average prob- Po=—4— = 5 Cose. @

ability of correct identification of the samples. There is a
very practical relevance to this question, as today’s scanninghe probability that the particle is absorbed in the sample is
methods with x rays, be it in medicine or in materials testing, 1—

use the simple transmission method to obtain the desired Pa=1—p;—P,= T
information. If the interferometric methods turn out to re- 2

quire fewer absorbed particles in the sample—as is suggested

by the interaction-free measurement scheme—this Woulclf\ white sample is characterized by-1 ande=0. It always

lead to less radiation damage. The standard scheme of eler(‘,:"—SUItS in the particle hittin@,. A black sample has=0

tron holography is one such interferometric method, to whicHnd blocks path I in the interferometer. There is a probability
our findings will be directly applicablgL0,11] of 3 that the particle is absorbed in the sample. The prob-
Let us assume further that we know when a particle ha&Pility that it hits detectoD, is + and the same is true for
been sent from the source. This is possible, in principle. IP2- Therefore, if we send one particle, and it is detected in
this manner we get rid of the source fluctuations, which usuP 1 We cannot decide whether the sample is black or white.
ally reduce the amount of information obtainable about the/V/€ must send several particles to obtain sufficient confi-
sample from a given number of detected particles. As a furdénce about the transmission property of the sample. Then
ther assumption throughout this paper, we will neglect back?Ve ¢an devise the following measurement procedure. Send
ground noise in the detectors, and we will assume detectoRrticles until a particle is either detected eitherDa or
of an efficiency of 100%. does not arrive at a detector, Whlch means it is absorbed in
For the simple transmission caééig. 1), we need only f[he sampl_e. But send at rr_loNt particles per samp_le. The
one particle. If the particle arrives at the detector, we conlinterpretation of the result is as follows. If all particles are
clude that the sample is white, and if it does not, we condetected aD; we conclude the sample is white, otherwise
clude that the sample is black. The probability of correctWe conclude it is black. The probability of correct interpre-
interpretation of each kind of sample is 1, such that this ig@tion of a white sample is 1, because with a white sample

also true for the average probability of correct interpretationthe particle will always go t@,. The probability of misin-
ie. terpreting the sample as white, while it is in fact black, is

equal to the probability that with a black sample we get all
Cr=1. (1) particles intoD;. This is ¢)N, such that the probability of
- : SEPERNY
When testing a large number of samples, where black anfCrrect interpretation of a black sample is-13)". There-

white samples occur equally often, the average number dere the average _probability of correct interpretation of the
particles absorbed per sample is samples with the interferometer is

®)

A= () Ci=1-3(»)N. (6)

N

Now, consider the ideal Mach-Zehnder interferometer inlf we wish to haveC,;=0.99 we can confine ourselves to
Fig. 2. The transmission and reflection amplitudes at thesending at mosN=3 particles per sample. We must now
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establish how many particles will get absorbed in thesample. If allN particles are detected D,, we interpret this
samples, on average. With a black sample, the probabilityo be due to the white sample. Obviously, the probability of
that the first particle is absorbed in the sample}isThe correctly recognizing a white sample is 1, as before. The
probability that the second patrticle is absorbed is equal to thprobability of correctly recognizing the gray sample is the
probability that the first particle goes B;, such that the test complement of the probability of not recognizing it correctly.
will not be stopped, times the probability that the secondThe latter is given by the probability that despite a gray
particle is absorbed in the sample. Thigis 3. If the second sample in the interferometer all particles are detected in
particle also goes t®; a third particle has to be sent, etc. Dy, which is[p,(7,)]V. Hence, the average probability of
These considerations yield for the total probability that acorrect interpretation of samples with the interferometer is
particle is absorbed in the black sample, when sending at

1+ 7+ 2\/7_1) N

mostN particles per sample, 1
P per samp Ci=H1+1-[py(r) M =1- 5| —
) ©
0 \4) "

> (7)

j=

N

1
2
where we have made use of E@). For the case of the
In a test of a large number of samples, where black and whitgimple transmission setup we will again do the tests with
samples occur equally often, the average number of absorbeghly one particle per sample. Since we are interested only in
particles per sample will therefore be 7,~0 andr,=1, a sufficient probability of correct interpre-
N_1 , N , tation is achieved already with one particle: If the particle is
1 1 1)) 1\ absorbed in the sample, we infer that the sample is gray,
A=5]0+5 2 (—) =E(—). t) ise we infer it is whi | i
2 275 \4 = \4 otherwise we infer it is white. We will therefore always rec
ognize a white sample correctly, but will sometimes misin-
In our experiment we need to send at miist 3 particles, so  terpret a gray sample as white. The average probability of
that we getA, =0.328. Nevertheless, with the interferometric correct interpretation of the samples with the simple trans-
setup the number of correctly identified samplesnsaller ~ Mmission setup is thus
than with the transmission setup, because we h@ye
<Cs. In order to get the same performance with the inter- Tl
ferometer,C,—1, we have to increase the number of par- Cr=3(1-m+1)=1- > (10
ticles sent through it tti— . Of course this will also affect
the number of particles absorbed on average, which will in- ) )
crease téA, = 1. With the interferometric scheme the number If We wish to haveC=0.99, we can only permit €
of absorbed particles per tested sample is thus smaller than i70-02. Let us setr;=0.02. How many particles must we
the simple transmission scheme. So the interferometri€end into the interferometer, such that we get at least the
method is superior here. Its advantage can even be increasé@me probability of correct interpretation as with the trans-
With the improved version of interaction-free measuremenfnission setup, i.eC,;=0.99? We findN=4.
as proposed by Kwiagt al. [8], ohe can u|t|mate|y test for Itis interesting to note that now it is very pOSSible that the
black and white samples without ever absorbing a particle ifverage probability of correct interpretation of the sample
a Samp|e_ This would require an infinite number of interfer-can bdarger with the interferometer than with the transmis-
ometer loops. But in this study we will limit ourselves to Sion setup, i.eC,>Cy, as is indeed the case for the present
one-loop interferometers. example, whereas with black and white samples we found
that we always hav€,<C [Egs.(1) and(6)].
What will be the average number of particles absorbed in

the samples with these testing procedures? For the transmis-
Now we replace the black sample by a dark-gray one tGjon setup we have

investigate the transition from the ideal interaction-free case

to a more realistic situation. Our gray samples will be very 1
dark, i.e., their transmission will be very low=<0r;<1. The Ar=3[(1-7)+(1—7)]=
white samples well have perfect transmissieys 1, and no 2
phase shift. It is also necessary to fix the phase shift of the

gray samples. We will set it tp, =0, because this leads to a with our values of 7;=0.02 and 7,=1 we obtain At
smaller difference in the probabilities of the outcomes be-=0.49. For the interferometer we must add up the probabili-
tween gray and white samples in the interferometer than ifies of those cases where, with the gray sample in place, the
we had any other value af;. Therefore, setting;=0 con- final test particle is absorbed in the sample. When sending up
stitutes the most stringent test of the performance of the into N particles, the total probability of this happening is ob-

B. Gray and white samples

1

(11)

terferometer. tained in a straightforward manner as
Samples will be measured in the same way as before. For
a given sample in the interferometer we send at mbptr- N—1
ticles. As soon as one particle is absorbed in the sample or 11 j
. 5(1—7 7). 12
detected inD, we stop the test and say we have a gray 2( ) j§=:0 [Pa(y)] (12
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Since no particle will be absorbed in the white sample, thewith a gray sample all particles go to detecds, which is
average number of particles absorbed in the samples with the

interferometric setup is 1+ 7+ 2\/T—z> N (14
N—1 4
A=3(1-m) ]2::0 [Pa(7)]'. (13 The average probability of correct interpretation of a sample
therefore results in
With the chosen values of;=0.02 andN=4 we obtain N N
A,=0.359. Therefore, the interferometer leads to a lower av- c :4 —1+(1+ \/7'_2) (15)
erage absorption than the transmission setup when we want ! 22N+1 '

to distinguish dark gray and white samples, just as with the

black and white samples we investigated in the previous secFhe average number of absorbed particles per tested black

tion. When we take a closer look at the numbers we see thaample is given by Eq7). The average number of absorbed

we have a smooth transition of the average number of abparticles per tested gray sample is the sum of the probabili-

sorbed particles from the case of black and white samples ties that the firsf — 1 particles went into detect@, and the

the case of gray and white samples. But we also note that, 3¢ particle was absorbed in the gray sample, such that the

soon as the black sample becomes slightly transparent, thest was stopped and the sample was mistakenly called a

difference in the average number of absorbed particles peslack sample. With the use of Eq®)—(5) this sum is

sample between the interferometric and the transmission

setup becomes smaller. This suggests that the advantage of ,

the interferometric method in terms of lower average absorp- Pa(72) 2 [pa(72)]". (16)

tion will be lost when lighter shades of gray are used. Indeed, =0

we will see that the cases of black and white samples and of,e average number of absorbed particles for all samples

gray and white samples are narrow domains in which thgnan becomes

interferometer performs better than the transmission setup,

and that in the general case of several different transmission 1[N=t

values of samples the reverse is true. A :Z[ 20
=

N-1

1 i N—-1

]
Z) t-m) 2

1+7'2+2\/T—2>j
4

C. Black and gray samples (17)

Now we permit black ¢;=0) and light gray (<, The corresponding expressions for the transmission setup are
<1) samples. With a gray sample in path | of the interfer-
ometer(Fig. 2) we can no longer expect that all particles sent Ci= 1+
through the interferometer will be arriving BX;. Some par- 2
ticles will be absorbed by the sample and some will arrive at
D,. Therefore the observation of a particleDs is no longer "
a unique indication for a black sample in path | of the inter-
ferometer, as it was with black and white samples. Neverthe- Ar=1— E_ (19)
less, one expects a continuous transition from the case of 2
black and white samples. In particular, the replacement of i ) )
the white sample £,=1) by a nearly white one f,~1) Looking at numenqal examples we notice that the_re is on_Iy_ a
should conserve the advantage of interaction-free measur¥€ry narrow domain for the gray sample, for a given mini-
ment. mum of the average probability of correct interpretation of
As before, the phase shift induced by the gray sample wilfh® samples with the interferometric method. For instance,
be assumed ag,=0. Other phase shifts would, in fact, re- €t us again deman@,=0.99. We must then send at most
duce the statistical difference between the outcomes with!=4 particles, but can lower the transmission of the gray
black and gray samples. Thus we are giving the interferomsample only tor,=0.992. The average number of particles
eter a little advantage here. The method of testing a sampRPsorbed in the sample is thép=0.340. With the transmis-
with the interferometer will also be the same as before. Weion setup it would bé\r=0.504. The average absorption is
sendN partides per Samp|e. AS soon as a partide is absorbewerefore still lower with the interferometer, and we benefit
in the Samp'e or detected IBZ we say we have a black from the ”interaCtion-fl’egleffeCt.” HOW.eVer, we QJSO find
sample and stop the test. If &ll particles go toD; we say that the average probability of correct interpretation of the
we have a gray sample. However, what is new here, in cons@mples ishigher with the transmission setup, because we
trast to the cases of black and white and of gray and whit&ave Cy=0.996, whereas we only havg =0.990. Let us
samples, is that we will now make mistakes of interpretatiors€€, Whether we can have equal probability of correct inter-

(18

with both kinds of samples. pretation of the samples for the two methods. We have
The probability of correct interpretation of a black sample

i Lr1—(HN il i (1+\r)MN—4N7y—1

is, as before;z[1—(z)"]. The probability of correct inter- C,—Cq= 2 2~ (20)

pretation of the gray sample is equal to the probability that 22N+1
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This expression is negative for<Or,<1. It is zero forr, First we look at the interferometric scheme. Using Egs.
=0 for all values ofN>0 andN—o. If the gray sample (3)—(5) we note that detectod; can fire with any of the
becomes white, i.eq,=1, it evaluates to 0 in the limit of three samples, and that detecs can fire with samples 1
N— oo, which corresponds to what we found for the case ofand 2. Clearly, each sample must be tested with several par-
black and white samples. This means that for gray sampleticles to obtain a statistically significant result. It is now very
condition (20) is never fulfilled and with the interpretation cumbersome to check through all the possibilities of what
rules we adopted the average probability of correctly identi-one can conclude after each additionally detected particle, as
fying a sample islwaysgreater with the transmission setup. we did in the previous sections. Therefore, we will analyze
It is worthwhile to try to reverse this situation by chang- the more practical method of sending a definite number of
ing the experimental procedure and the interpretation rulegarticles,N, into the interferometer and then draw a conclu-
We make use of the fact that, beginning from a certain valusion. We will try to keepN as low as possible. And we will
of N, the outcome of gettingl—1 particles atD; and one interpret an observed result as due to that sample for which
particle absorbed in the sample is more likely for the grayone expects the highest probability for the particular result.
sample than for the black sample. We could therefore estalThis is equivalent to a ranking according to likelihood as
lish the following new rules. Send at moist particles per used in the next sectionFor samplei the probability of
sample. If allN particles are detected &, or if N—1 are  gettingN; particles in detectoD, N, particles in detector
detected inD; and one is absorbed in the sample, then in-D,, andN;=N—N;— N, particles absorbed in the sample is
terpret this as a gray sample. As soon as one particle igiven by the trinomial expression
detected irD,, or as soon as a second particle is absorbed in
the sample, stop the test of the sample and interpret it as a  Prok(N;,Ny|N,7;)
black sample.

Lk . . . N!
If condition (20) is reformulated using these new interpre- _ : NN N, N,
tation rules one will indeed find values of such that the N1!N2!N3! LPa(m) TP P2(7) 7 Pa((7i)]
average probability of correct identification of a sample with (21)

the interferometer is equal to or larger than with the trans-

mission setup. However, such an improvement has its price \ve must also fix the minimum probability of correct
in terms of increased absorption, because after absorption entification of a sample. We will require that, for each kind
one particle we cannot now terminate the test and concludgs sample, this probability shall exceed a certain vadyg, .

that a black sample is in path | of the interferometer. Ratheryhis is a small change to the cases with just two kinds of
we have to send further particles. Calculating all possibilitiessamme& where we had required tieerageprobability of

of outcomes and their respective numbers of absorbed pagyrrect identification to exceed a certain minimum. However,
ticles, it can be shown that the average number of absorb&f the general case to be discussed in the next section, equal
particles per sample increases to 10/9, when black samplegatistical distinguishability of samples will be the important
are tested. When testing blaeid gray samples ,~1),  criterion. This amounts to requiring equal probability of cor-
5/9 particles are absorbed per sample, on average. This jgct identification for all samples, such that it is useful to
significantly more than we had found for all cases of tWOjntroduce this criterion already now. Let us demadgl;,
different kinds of samples using our original experimental_ g gg. Then, using Eq(21), a little numerical analysis
procedure a|_1d interpretat!on rules. Anq i§ is also more tharhows that we must send up o= 19 particles per sample,
we had obtained for the simple transmission setup,(E8.  anq that we must have a transmission of the gray sample of
We therefore come to the surprising conclusion tifatye . _q 555 (with other values ofr, even more particles may
require the probability of correct interpretation of the o necessarylf each kind of sample occurs equally often,

samples with the interferometer to beé least equako that  {he average number of particles absorbed per sample is
with the transmission setup, the transmission setufess

absorption consuming than the interferometer in distinguish- NS 1o
ing black from nearly white samples. A, =3 > 5 ! —4.576. (22)
=1

lll. BLACK, WHITE, AND GRAY SAMPLES This represents a significant jump compared to the findings

In this section we permit three different kinds of samples,n the previous section, where we had just two kinds of
which have transmission probabilities for the particlerof ~Samples, which were essentially black and white.
=0, 0<7,<1, andrz=1. The exact transmission of sample The situation is similarly worsened when we go to the
2 (gray samplewill be chosen such that the average numberSimple transm|55|_on sgtup. In order to bt_'-: able to conclude
of particles absorbed in the interferometric testing scheméhat the sample is neither black nor white, we must send
will become minimal. As before, the phase shift induced byParticles until both kinds of outcomes have happened. With
the samples will be assumed to be 0. Whether this choicEe gray sample in the beam, the probability that all particles
ensures the most stringent test of the interferometer's cap&'® _absorbed in the sample or that all particles are transmitted
bility to distinguish the samples depends on the exact valué$ given by
of 75. At worst, it gives the interferometer an advantage rela- N N
tive to the transmission setup. W=r+(1-1)" (23
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Since we want +W>C,,,, and we setC,;,=0.99, we  where 7,,,=N;/N, which is where the likelihood function
must haveN=9 for our value ofr,. We takeN=9. The reaches its maximum. ABl becomes large, the likelihood
average number of particles absorbed per sample is hefanction approaches the Gaussian

given by

N( Tmax— 7')2

- 27Tmad 1= Tmax ] @)

E L(T|N,N1)~exp[
Ar=7 > (1—17,)=4.335, (24)
=t Clearly, the true value of need not ber, ... As in any
probabilistic process, for a specific experimental redult
This is lessthan with the interferometric setup. In fact, the the true value ofr can be determined On|y to within a con-
simple transmission setup could perform even better, if, infidence(or uncertainty interval. For this we must decide on
stead of always sending 9 particles, we stop as soon as boghconfidence level. We could, for instance, accept all those
outcomes have happened, because we can then be confidggfues ofr as quite likely whose likelihood is above 0.01.

that we are faced with the gray sample. Hence, the advantaggith Eq. (27) this gives a confidence interval whose full
of the interferometric setup, which is due to itgeraction-  width w is given by

free measurement capabilitis definitely lost as soon as we
permit gray samples in addition t@lmos} black and(al- —

. . . . 27Tmad 1= Tmay)
mosb white ones. It should be mentioned that, withulti- w= \/
loop interferometers such as if8], the interferometric N
method is still superior to the simple transmission method,
even with the three kinds of samples discussed here. For @cept forN; very close to O or very close #, where the
white sample the particle would end up in one detector, for dVidth has to be determined from the exact likelihood func-
black sample in the other, and for a gray sample it would bdion (26). The center of the confidence interval is at
absorbed in the sampléThis suggests that a multiloop ar- = Tmax- By means of Eq(25) it can then be shown that an
rangement withmany output beams might permit distin- €Xperimenter's conclusmr_lzT‘ne true value ofr_ is within
guishing various shades of gray with just a single test par7max™W/2," has a probability of being correct in excess of
ticle. We will look at this in a future paperThe results of ~0.99 for any possible-.
this section do not, however, imply that the ideal Mach- In fact, Eq.(28) can immediately be used to count how
Zehnder interferometer is always worse than the simplénany different samples we can distinguish when we d¢nd
transmission setup, as soon as more than two kinds darticles per sample. We plot the likelihood function for
samples are to be distinguished. We shall see this in the nestax= 0.5; then we find those neighboring ones that intersect
section, where we include the phase shift a Samp|e |mpr|rﬂ: where it drops to 0.01. Then we find the outer neighbors of

on the particle’s wave function and permit continuous valueghe neighbors by the same criterion, etc. This has been done
of phase shift and transmissi¢h2]. in Fig. 3 for N=100, N=200, andN=300. It can be seen

that the number of distinguishable samplég(N), turns out

to be Z1(100)~5, Z1(200)~7, Z+(300)~9. This suggests
IV. CONTINUOUS RANGE OF SAMPLES that Z+(N) increases with/N.

First we look at the simple transmission setup of Fig. 1. If Z7(N) can also be calculated analytically as pointed out
we sencN particles, and the sample has a transmission prob2y Wootters[13]. The calculation is a continuous formula-
ability of r, the probability of getting\, particles into the 10N of the considerations just presented. The number of con-

detector is given by the binomial expression fidence intervals passed when going with,, from 0 to 1 is
given by the integral

In(100), (29)

PFOHN1|N,T)= TNl(l_T)N_Nl- (25 1 d7max .

- T
T 0 W(7max)  \/81n(100)
However, we are interested in the reverse question: Given

that we senN particles and receiveN; in the detector, what proving thatZ;(N) does indeed increase with the square root

) o S of N and showing good agreement with Fig. 3.
is the likelihood that the sample has transmissief The . : - .
likelihood function is by definition proportional to E¢R5), Now we will apply the same considerations to the inter-

) ) . ! . ferometric setup. The unknown sample is characterized by
the proportionality factor being arbitraf§4]. Because one is transmission probability and phase shifts. In analogy to
most often interested in the likelihood of one value of P o b . g9y

relative to the most likely value of, one normalizes the Egs. (25) and (26) we obtain the likelihood forr and ¢,

likelinood function such that its maximum is 1. Thus we given thatN particles were sent into the interferometer, of
have ' which N; were detected iD; andN, in D, respectively:

N, (29)

Ny N2 N3

Pa(7)
S3

p2( 7, ()D)
S,

pl( T, QD)
S

T)Nl( (1_7') )NN1, (26) L(T,¢|N1,N2,N3)=

L(T|N,N1):(T (1= Tmay

(30

m
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FIG. 3. Likelihood functions for the distinguishable results of a
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N=200: Q=m/2

N=150 o=n/2

91;1 T=I0 ‘C=-"l

simple transmission experiment, where a sample is tested with ei- F|G. 4. Likelihood in steps of grag0 = black, 1= white) as a

therN=100 orN=200 orN=300 particles.

As in Eqg.(21) we have again defined;=N—N;—N,. The
probabilitiesp;, p,, andps are as in Eqs(3)—(5). The nor-
malization parameters; (i=1,2,3), are given by

Si=— . (31)

Noting that the likelihood attains its maximum of 1 when
p;=s; for all i, the most likely values ofr and ¢ can be
derived as

2N,
Tmax= 1= W (32

and

Ni—N;
=alcCo ———=
Pmax —2N3N—N2

To eliminate the ambiguity ob,,.x, We shall only be inter-
ested in the intervdl0,m].

The likelihood function(30) can again be used to count
how many different samples can be distinguishedll ipar-

. (33

function of 7 and ¢ when testing with the Mach-Zehnder interfer-
ometer of Fig. 2. Each region demarcates the confidence area de-
duced from an experimental result. The number of distinguishable
samples increases linearly with the numbepf test particles per
sample. Plots are fdl=2100N= 150, andN = 200.

for 7ax=0.5 ande,,= /2. Then we keptp,, 4, COnstant
and determined those two neighboring likelihood functions
whose ., Was such that they intersected the original like-
lihood function where it had a value of 0.01. Then further
neighbors along the axis were determined in the same fash-
ion, until the limits were reached. After this, the same pro-
cedure was applied to each of the likelihood functions found
so far, but keeping,.x constant and varying,,x. In this
manner the polar plane af and ¢ was filled with regions,
each representing a confidence area. Although this is a crude
way of counting how many kinds of different samples are
distinguishable by the interferometric method, it still gives a
good idea of the general dependence on the number of par-
ticles sent into the interferometer per sample. From Fig. 4 we
deduce Z,(100)~10, Z,(150)~17.5, and Z,(200)~23.5.
(Regions cut atp=0 or ate= 7 were counted as 1/2This
suggests a linear increase whith

We can verify this by performing an analytic count. Let
us first look at how many different phase shifts we can dis-

ticles are sent into the interferometer per sample. This hatnguish for samples of the same transmission probability

been done graphically in Fig. 4 in the following way. We
assumed a certaiN and started with the likelihood function

For the interferometric setup shown in Fig. 2 the probability
that a particle is detected either@t or atD, is given by
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1+ 7 such that we obtain
P12=P1tP2=—— (34
Ae [(1+7)(1—17) 42
The total number of particles in these detectors will therefore T N ' )
be around
Inserting this into Eq(39) and substitutingk= 1 — 7 yields
N
M:Np12:E(1+T) (35) N 1 X2 X2
Z(N)= \/—I—f arcsin;- + 1—x2—arcsin2—
The number of statistically distinguishable results for a given 4y21In(100 /o
7 andN is therefore obtained by evaluating how many out- . 0.42
comes at detectol®; andD, we can consider as different: —v1l-x deIn(lOO) N. (43
U(r)= PLmax dp, (36) A comparison of the values &, for the values oN as used
PLmin 212 In(lOO)Apl' in Fig. 4 shows reasonably good agreement. But what is

important about this result is that the number of statistically
Here, we have again assumed that a result is distinguishabtiistinguishable samples does indeed incrdassarly with
from a neighboring one if the two respective likelihood func-the number of particles sent into the interferometer.
tions overlap only up to those points where both have It is now also useful to obtain the average number of
dropped to 0.01. In this manner the analytic result will beabsorbed particles per sample. For this, we must fix a distri-
directly comparable to what we found graphically in Fig. 4. bution of sample characteristics, ) of the ensemble to be
The standard deviation gb, is Ap;, and it is obtainable tested. Let us assume that, when blindly picking a sample
from the binomial distribution, which governs the statisticsfrom our ensemble, all values af and ¢ will be equally
of the counts inD; versus those iM,. It is given by likely, where we restrictp to the interval[0,7]. Thus, we
have a constard priori probability density of sample char-

[P1(1—p1) teristics,
Ap1= 1 - 1. (37) acteristics

2
Evaluating the integrai36) yields f(r.e)=—, (44)
_ IN(+7) f1-7 since we must have
U(7)= —————| arcsi —— + /7
4/In(100) 2

T (1
J J f(7,0)rdrdep=1. (45
o Jo

. (38

—arcsir{ ! 5 T \/;)
In the simple transmission setup a test withparticles of a
Now we have to consider how many different values-@ire ~ sample with transmissiom will lead to a mean number of
statistically distinguishable. Hence, we must weight eactabsorbed particles dfi(1— 7), independent of the sample’s
identifiable interval onr with its respective number of dis- phase shifip. The average number of particles absorbed per
tinguishable phase shifts,(7), and sum over them. Then we sample when testing the whole ensembile is thus
obtain the total number of statistically distinguishable

T (1 N
samples as AT(N)=J j f(T,<p)N(l—7')7'd7'd<p=§. (46)
0Jo
1 u
Z|(N)=f dr———— i (39 Testing the whol ble of les al its us to
0 2.2 In(lOO)Ar esting € wnole ensemple or samples also permi u

class them int@;(N) distinguishable groups. A useful num-
whereA 7 is the standard deviation of the inferred valuerof ber of merit is then the average number of particles absorbed
from the binomial probability distribution of the particles per sample, per distinguishable group of samples. This is
absorbed versus the particles detected in eltheor D,. We

have (N)= A1(N) _ V8 In(lOO)\/N @
r
Ar= ‘ dpio APz, (40) The quantityS;(N) can be understood as the absorption cost

_ o B per sample that we must pay for a desired amount of infor-
whereAp, is the standard deviation of the probability,  mation about the ensemble. It increases with the square root

[Eq. (34)], given by of the number of probe particles sent per sample, which
means that additional information about the samples be-

App= /plz(l_plz) (41) comes ever more costly, the more information we already

12 N ' have about the samples. It is worth noting that this conclu-
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sion is independent of the particular formfdfr,¢), as long  in 25% of the cases. Much more interesting is the result for
as it is smooth, because a changef 6f, ) would change cases in which either the black sample is no longer perfectly
only the numerical constant i&(N), but not its functional black but dark gray or the white sample is no longer per-
dependence oN. fectly white but light gray. These cases represent transitions
For the interferometric setup we can form the analogousrom the ideal interaction-free measurement to general situ-
qguantities. When sendinly particles, the mean number of ztions.
absorbed particles in the sample is now only half as large as \yith white and gray samples we have found tAatmay
in the simple transmission setuf\/2)(1—7), and is again  pe smaller thamA; if the gray sample is dark enough. It
independent ofp. The average number of particles absorbedseems plausible that in this case many-loop interferometers
per sample when testing the whole ensemble is thus also jugbuld perform even better. Similarly, if we want to distin-
half, guish a black sample from a nearly white one, we also find
thatA, is smaller tham;. However, there is only a narrow
A(N)= E (48) range by Wh_ich the nea_rly white sample may deviate fr_om a
6 perfectly white sample in order to ensure less absorption in
the interferometric separation of black and nearly white
Our number of merit, the number of particles absorbed pegsamples than in a test with a simple transmission setup. And

sample, per distinguishable group of samples is thus the confidence of correct identification with the interferom-
AN) eter is in this casalwayssmaller than in the transmission

S(N)= i ~0.401n(100). (49) ;etup, such th_at the mte_rfero_m_eters superlo_rl_ty rests on be-
Z,(N) ing content with a certain minimum probability of correct

identification of the samples. It is not clear yet if many-loop
This is a constant! It means that additional information abouinterferometers may lead to an improvement here, but we
the samples doesot become more expensive the more in- will focus on that in a future publication.
formation we already have about our ensemble. If we wish to The interferometer’s stand becomes worse as soon as we
double the number of experimentally resolved samplewish to distinguish samples from an ensemble of black, gray,
groups, we just have to pay twice the “absorption prize” perand white samples, where the gray and the white sample both
sample, and not the fourfold price, as would be the case witproduce no phase shifor one of multiples of 2r), but
the simple transmission setup. Again, the fact t8ais a  where we choose the transmission of the gray sample such
constant is independent of the particular form of the ensemthat it leads to the least absorption over the whole ensemble
ble’s sample distributiorfi( 7,¢), as long as it is smooth, but in the interferometric test, rather than in the test with the
the particular value 0§, does, of course, depend 66r, ¢). simple transmission setup. For a given confidence probabil-

ity of correct identification of the samples, the average num-

V. DISCUSSION ber (_)f particles absorbeo! ina sa_mple turns out tt_]igberin
the interferometer than in the simple transmission setup. In
Interaction-free measurement as a method to obtain inforfact, as long as only absorptivity is used to characterize
mation about samples not otherwise accessible is certainly asamples, the interferometer tends to perform worse, the more
intriguing possibility [15]. Applications could range from samples we wish to be able to distinguistie are therefore
learning about fragile atomic or molecular states to material$ed to conclude that interaction-free identification of samples
testing and x-ray interferometry in medicine. For this pur-is a peculiar property of an interferometer, which comes to
pose we compared the performance of a Mach-Zehnder irthe fore only in the limiting situation where just two different
terferometer(Fig. 2) and a simple beam transmission setupkinds of samples with very different absorption are to be
as devices for identifying samples with varying absorptivity. distinguished.
Of course, the restriction to a single-loop interferometer ex- However, when samples are characterized by the two con-
cludes the advantages of many-loop interferometers as préinuous parameters that they can influence in a test particle’s
posed by Kwiatet al. [8] but, nevertheless, it gives an idea forward-going wave function, namely, amplitude and phase
whether the performance of an interferometer can be exshift, the interferometer is the proper tool. Since a particle
pected to be superior. may end up in one of the two detectors or in the sample, one
Interaction-free measurement in its original fofij can  measures a trinomial probability distribution. Such a distri-

be considered as a method of distinguishing black and whiteution is fully described by the number of trials and two
samples. In a real experimental situation we will have toparameters. Because of this, the number of principally dis-
send a certain number of particles through the interferometeinguishable samples increasésearly with the number of
in order to identify the sample with a certain confidence.test particles per sample. The number of particles absorbed in
Repeating the experiment many times we get an averag® sample also increases in direct proportion with the number
number of particles absorbed per identified samp¢).(  of test particles. As a consequence, if we have an ensemble
This number is then compared to the corresponding numbesf samples whose absorption and phase shift values are ho-
in the transmission setugA¢). For black and white samples mogeneously distributed, the average number of particles
we have seen tha, is always smaller thad;. Of course, that must necessarily be absorbed per distinguishable sample
this is not surprising, since we know that with the interfer-turns out to be a constant. Doubling the number of test par-
ometer the black sample is identified without any absorptiorticles per sample permits grouping the samples into twice as
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many distinct categories, but the average number of absorbedot of the number of test particles per sample. Here we have
particles per category is always the same. We have a situa situation where the “absorption prize” for additional in-
tion where the “absorption prize” for additional information formation becomes increasingly higher the more we already
is a fixed value, independent of how much we already knowknow about the samples.

In contrast, the simple transmission setup measures a bi-
nomial distribution, for which the number of distinguishable
samples increases only with the square root of the number of ACKNOWLEDGMENTS
test particles. But the number of absorbed particles in a
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