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Constructive Mathematics and Quantum Physics†

Douglas Bridges1 and Karl Svozil2
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We discuss some aspects of quantum logic within Bishop’s constructive
mathematics. In particular, we present a set of axioms that abstracts the
constructive properties of the lattices of subspaces and projections on a Hilbert
space.

1. INTRODUCTION

Our discussion takes place in the context of Bishop’s constructive mathe-
matics (BISH; [3, 4]), in which “existence” is interpreted strictly as “con-
structibility.”3 One distinctive feature of BISH, compared with other varieties
of constructive mathematics is that its results and proofs can be interpreted
mutatis mutandis within classical (that is, traditional) mathematics, recursive
mathematics ([1, 18]), Weihrauch’s TTE ([23, 24]), or any reasonable model
of computable analysis [25]. Moreover, the logic used in constructive mathe-
matics facilitates distinctions of meaning that are often obscured by classi-
cal logic.

In practice, as Richman has pointed out, BISH appears to be equivalent
to mathematics with intuitionistic logic, a logic originally abstracted by Heyt-
ing [15] from the practice of Brouwer’s intuitionistic mathematics [12, 22].
As one would expect, certain classical logical principles—most notably, the
Law of Excluded Middle (LEM),
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1 Department of Mathematics and Statistics, University of Canterbury, Private Bag 4800,
Christchurch, New Zealand; e-mail: d.bridges@math.canterbury.ac.nz.

2 Institut für Theoretische Physik, Technische Universität, Vienna, Austria; e-mail:
svozil@tph.tuwien.ac.at.

3 Here, “constructibility” is an informal term, often translated as “computability.” It does not
refer to the set theorists’ notion of the constructible universe.

503
0020-7748/00/0300-0503$18.00/0 q 2000 Plenum Publishing Corporation



504 Bridges and Svozil

P ~ ¬P

fail to hold in that logic. For more information about intuitionistic logic and
the models that prove the nonderivability of such nonconstructive laws as
LEM, see refs. 12, 16, and 9.

Now, in constructive mathematics we must distinguish between the
notion of a closed linear subset S of a Hilbert space H and that of a subspace
of H: for S to be a subspace, we require that it be located, in the sense that
the distance

r(x, S) 5 inf{|x 2 s|: s P S}

exist for each x P H; then, and only then, the projection of H on S exists
(3, pp. 366–368). If a is any real number, then the closure of Ca 5 {az: z P
C} is a closed linear subset of the one-dimensional Hilbert space C, and is
located if and only if we can decide that either a 5 0 or a Þ 0; but there
is no procedure for making this decision for arbitrary real numbers a (9,
Chapter 1).

In this paper, continuing the work begun in ref. 5, we discuss some
aspects of the foundations of quantum mechanics within BISH. In particular,
we present axioms designed to capture the distinction between, on one hand,
the set 6 of all closed linear subsets of a Hilbert space H, and on the other,
the set + of located elements of S. We do so partly because the problem of
capturing that distinction axiomatically is interesting in its own right, but also
because we hope that such investigations will stimulate interest in constructive
foundations for quantum mechanics (in the classical version of which the
lattice of subspaces, or, equivalently, of projections, in a Hilbert space corres-
ponds to “yes–no” propositions).

We assume familiarity with the basic notions of constructive mathemat-
ics, as found in the early chapters of refs. 2–4 and 9. It should be possible
to appreciate the axiomatic system without knowing constructive Hilbert
space theory, which is needed only for the motivating examples and for the
material on inequality of subspaces in the Appendix to the paper.

If U and V are closed linear subsets of a Hilbert space H, then, as in
classical mathematics, we define:

• U # V to mean that U , V
• U ∧ V to be U ù V
• U ∨ V to be the smallest closed linear subset of H containing U ø

V (which is the same as the algebraic sum U 1 V )

So U ∧ V and U ∨ V are just the inf and sup of U and V relative to the
partial order #. If U and V are located, with corresponding projections PU

and PV , then we define PU # PV to mean that U # V, and we define PU ∧
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PV and PU ∨ PV to be, respectively, the inf and sup of PU , PV when these
objects exist (which, as the following example will show, they may not).

2. QUANTUM LATTICES

We begin with a Brouwerian example4 that will help clarify the distinc-
tion between the constructive and classical theory of Hilbert space. Let u be
a real number, H the Hilbert space R2, U the one-dimensional, and therefore
closed and located, linear subset R(1,0) of H, and V the one-dimensional
subspace R(cos u, sin u) of H. We have the following results:

If U ` V is located, then (u 5 0 ~ u Þ 0).

If U ~ V is located, then (u 5 0 ~ u Þ 0).

We omit the simple details of the proofs. Since we cannot prove construc-
tively that

∀u P R (u 5 0 ~ u Þ 0)

(see Chapter 1 of ref. 9), we cannot hope to prove that U ∧ V or U ∨ V is
located for every pair U, V of subspaces of H. So, although we can always
form the inf and sup of two closed linear subsets U, V of a Hilbert space,
even when those subsets are located, we cannot guarantee that the inf and
sup of their projections exist in the partially ordered set of projections.

Now suppose also that ¬ (u 5 0). Then U ∧ V 5 {0}, and the follow-
ing hold:

If U ~ V is located, then u Þ 0.

If (U ` V )' 5 U ' ~ V ', then u Þ 0.

If (U ~ V )'' 5 U ~ V, then u Þ 0.

(U ~ V )' 5 {0}, but if U ~ V 5 H, then u Þ 0.

Note that u Þ 0 means, roughly, that we can insert a rational number between
u and 0. Clearly, u Þ 0 implies ¬ (u Þ 0); but the converse,

∀u P R (¬(u 5 0) ⇒ u Þ 0)

is equivalent to Markov’s Principle:

4 See Chapter 2 of ref. 9 for general information about Brouwerian examples.
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If (an) is a binary sequence such that ¬ ∀n (an 5 0), then ∃n (an 5 1)

This is a form of unbounded search which is false in the intuitionistic model
of constructive mathematics and is not a part of Bishop’s constructive mathe-
matics. Thus,we cannot hope to prove any of the following propositions in
BISH, even for one-dimensional subspaces U and V:

(U ` V )' 5 U ' ~ V '

(U ~ V )'' 5 U ~ V

((U ~ V )' 5 {0}) ⇒ (U ~ V 5 H )

Bearing all this in mind, we now turn to our axiomatic system. A
quantum lattice (6, +, #, 8) consists of

• A nonempty partially ordered set (6, #)
• A unary operation x ° x8 of orthocomplementation on 6
• A nonempty subset + of 6

satisfying the following sets of axioms.

S0 x ∧ y and x ∨ y exist in 6 relative to #.
S1 There exist elements 0, 1 of 6 such that ∀x P 6 (0 # x # 1).
S2 x # y ⇒ y8 # x8.
S3 x # x9, where x9 5 (x8)8.
S4 x ∧ x8 5 0.
L1 x P + ⇒ x8 P +.
L2 (x P + ∧ y P + ∧ x # y8) ⇒ x ∨ y P +.
L3 (x P + ∧ y P 6 ∧ x # y) ⇒ ( y 5 x ∨ (x8 ∧ y)).

The classical counterpart of S2 would have ⇒ replaced by ⇔, and that
of S3 would have # replaced by 5. Our Brouwerian example shows that
we cannot make these replacements in our constructive axiom system. Note
that, in view of result 7 established below (which does not use Axiom L3),
it follows from the hypotheses of L3 that x8 ∧ y P +; since x8 ∧ y # x8, we
then see from L2 that (x8 ∧ y) ∨ x P +.

Axiom L3 is a version of the well-known orthomodular law. An immedi-
ate consequence of L3 is the proposition

(x P + ∧ y P 6 ∧ x # y ∧ x8 ∧ y 5 0) ⇒ x 5 y (1)

which enables us to draw elements of 6 into +; in fact, if the other axioms
hold, then (1) is equivalent to L3 (see later).

Of course, our axioms are satisfied by the standard model, in which 6
is the set of closed linear subsets of a Hilbert space H, + the set of located
elements of 6, U 8 the orthogonal complement of U P 6, and we take the
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usual interpretations of #, ∧, ∨. For example, to verify L3 in that model, let
U be a subspace of our Hilbert space H, with corresponding projection PU ,
and let V be a closed linear subset of H that contains U. Then for each v P
V we have

v 5 PUv 1 (v 2 PUv)

where PUv P U, v 2 PUv P U', and, as U , V, v 2 PUv P V. So V , U 1
(U' ù V ) and therefore

V 5 U 1 (U' ù V ) 5 U ∨ (U' ∧ V )

Note that we cannot hope to derive Axiom L3 from the other axioms
for 6 and +: for, taking + 5 6 5 L(H ), where H is a separable Hilbert
space, we can satisfy all the axioms except L3.

We now derive a number of elementary consequences of our axioms.
Although the proofs of some of these results closely resemble their classical
counterparts, we include them for the sake of the completeness of our
exposition.

(i) 0 5 18
For 18 # 1, so 0 5 (1 ∧ 18) 5 18.

(ii) 08 5 1
We have 18 5 0 and 1 # 19 (by S3); so 1 # 08 and therefore
1 5 08.

(iii) (x9)8 5 x8
For, by S3 and S2, we have x8 # (x8)9 5 (x9)8 # x8.

(iv) x8 ∧ y8 5 (x ∨ y)8
By S2 and S3,

(z # x8 and z # y8) ⇒ (x # x9 # z8 and y # y9 # z8)

⇒ (x # z8 and y # z8)

⇒ x ∨ y # z8

⇒ z9 # (x ∨ y)8

⇒ z # (x ∨ y)8

Hence x8 ∧ y8# (x ∨ y)8. On the other hand, we have x # x ∨ y,
so (x ∨ y)8 # x8. Likewise, (x ∨ y)8 # y8. Hence (x ∨ y)8 # x8 ∧ y8.

(v) x8 ∨ y8 # (x ∧ y)8
From S3 and (iv) we have

x ∧ y # x9 ∧ y9 5 (x8 ∨ y8)8
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so, by S3 and S2,

x8 ∨ y8 # (x8 ∨ y8)9 # (x ∧ y)8

Since none of the results (i)–(v) depends on axiom L3, we can now
prove that statement (1), together with all the axioms except L3, implies L3
(and is therefore equivalent to it). To do so, assume (1) and that x P +, y P
6, and x # y. Let z 5 x ∨ ( y ∧ x8). Then

y ∧ z8 5 y ∧ (x ∨ ( y ∧ x8))8

5 y ∧ (x8 ∧ ( y ∧ x8)8) by (v)

5 ( y ∧ x8) ∧ ( y ∧ x8)8

5 0.

Also, as x # y and y ∧ x8 # y, we have z # y. It follows from (1) that z 5 y.

(vi) x P + ⇒ x 5 x9
Take y 5 x9 in L3.

(vii) (x P +, y P +, x # y) ⇒ x8 ∧ y P +
We have x P +, y8 P +, and x # y9 (by L1 and S3); so x ∨
y8 P +, by L2, and therefore (x ∨ y8)8 P +, by L1. But (x ∨ y8)8
5 x8 ∧ y9 [by (iv)], which equals x8 ∧ y, by the preceding result.

(viii) (x P + ∧ y P + ∧ x # y8) ⇒ ( y 5 x8 ∧ (x ∨ y))
Since y8 P + (by L1), we see from (vii) that x8 ∧ y8 P +, and
from the orthomodular law that y8 5 x ∨ (x8 ∧ y8). Also, L2
shows that x ∨ y P +; so (x ∨ y)9 5 x ∨ y, by (vi). Hence,
noting (iv) and (vi), we have

x8 ∧ (x ∨ y) 5 x8 ∧ (x ∨ y)9

5 x8 ∧ (x8 ∧ y8)8

5 (x ∨ (x8 ∧ y8))8 5 y9 5y

(ix) 1 P +
Choose a P +. Then a8 P + (by L1) and a 5 a9 [by (vi)]; so,
by L2, a8 ∨ a P +. Since a # 1, the orthomodular law gives

1 5 (a8 ∧ 1) ∨ a 5 a8 ∨ a

(x) (x P + ∧ y P + ∧ x8 5 y8) ⇒ x 5 y
Since x9 5 y9, the result follows from (vi).
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The Brouwerian example at the start of this section shows that we cannot
expect to prove that

(x P + ∧ y P 6 ∧ x8 5 y8) ⇒ x 5 y

3. STATES

In this section we comment briefly on constructive axioms for the states
of a quantum lattice. This work should be compared with that in ref. 5, which
was based on the notion of an event-state system.

Let (6, +, #, 8) be a quantum lattice. We say that elements x, y of 6
are orthogonal if x # y8 or, equivalently, y # x8. By a state of + we mean
a mapping s: + → [0, 1] with the following properties:

• x # y ⇒ s(x) # s( y).
• Strong countable additivity: If (xn) is a sequence of pairwise orthogo-

nal elements of + such that (`
n51 s(xn) converges to a sum ,1, then for each

« . 0 there exists x such that (a) x # x8n for each n and (b) s(x) 1 (`
n51

s(xn) . 1 2 «.

As is shown in ref. 5, strong countable additivity implies countable
additivity: if (xn) is a sequence of pairwise orthogonal elements of + such
that ∨`

n51 xn exists and (`
n51 s(xn) converges, then s (∨`

n51 xn) 5 (`
n51 s(xn).

In particular, we then have5

x # y8 ⇒ s(x ∨ y) 5 s(x) 1 s( y) (2)

and, by induction, finite additivity: if x1, . . . , xn are pairwise orthogonal
elements of +, then s(x1 ∨ . . . ∨ xn) 5 s(x1) 1 . . . 1 s(xn).

It is shown in ref. 5 that (when subspaces are identified with their
corresponding projections) the positive linear functionals on the Banach space
L(H ) of bounded operators on a Hilbert space H are states of the standard
model of a quantum lattice. It is also shown there, (2.8), that although strong
countable additivity holds in this model, we cannot expect to remove ε
from that condition—in other words, to replace the conclusion of the strong
countable additivity property by the stronger statement s(x) 1 (`

n51 s(xn) 5 1.
By a measure on the projections of a Hilbert space H we mean a mapping

m that assigns to each projection P a nonnegative real number m(P) with the
property that if (Pn) is a sequence of pairwise orthogonal projections whose
sum (`

n51 Pn exists, then m((`
n51 Pn) 5 (`

n51 m(Pn). Perhaps the most famous
theorem in the foundations of quantum mechanics is the following:

5 Note that the axiom ES3 used in ref. 5 to derive this statement does not hold in the standard
model, even classically!
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Gleason’s Theorem [13]. If m is a measure on the projections of a
separable complex Hilbert space of dimension $3, then there exists a trace
class operator6 A on H such that m(P) 5 Trace(PA) for each projection P.

Hellman [14] has given a Brouwerian example claiming to show that
Gleason’s Theorem is essentially nonconstructive; but his example actually
shows that a certain result classically equivalent to Gleason’s Theorem is
essentially nonconstructive. In fact, Gleason’s Theorem can be proved con-
structively [19]. It follows that, provided the dimension of H is at least 3,
the states of L(H ) are precisely the measures on the projections of H.

We now make some simple deductions about states on a general quantum
lattice (6, +, #, 8).

(i) s(x) 1 s(x8) 5 s(1)
If x P +, then x ∨ x8 5 1. As x # x9, it follows from (2) that

s(x) 1 s(x8) 5 s(x ∨ x8) 5 s(1)

(ii) s(1) 5 1, s(0) 5 0
We have

s(1) 1 s(0) 5 s(1) 1 S(18) 5 s(1)

so s(0) 5 0. Now suppose that s(1) , 1. Then s(1) 1 s(0) , 1,
so there exists z P + such that z # 18 ∧ 08 5 0 and s(1)1(0) 1
s(1). But then z 5 0, so s(1) . s(1), a contradiction. Thus, s(1) $
1 and therefore s(1) 5 1.

(iii) x8 5 0 ⇒ s(x) 5 1
For then

s(x) 5 s(x) 1 s(0) 5 s(x) 1 s (x8) 5 s(1)

We call a binary relation Þ on a set X an inequality if it has the
following properties:

x Þ y ⇒ y Þ x

x Þ y ⇒ ∀z (x Þ z or y Þ z)

x Þ y ⇒ ¬ (x 5 y)

We say that x, y are unequal if x Þ y. The standard inequality on the real
line R is given by x Þ y if and only if .x 2 y. . 0; this inequality is tight,
in the sense that

6 Constructive properties of trace class operators are derived in refs. 6, 10, and 11.
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¬(x Þ y) ⇒ x 5 y

A function f between sets with inequalities is said to be strongly exten-
sional if

f(x) Þ f( y) ⇒ x Þ y

Since strong extensionality is a highly desirable constructive property, it is
natural for us to want states to have it. But this requires a good notion of
inequality on 6 or +, something that was inadvertently passed over in the
formulation of axiom ES1 in ref. 5.

In fact, there is a natural tight inequality relation Þ on the set + of
(closed, located) subspaces of H: we set U Þ V if and only if there exists
x P H such that PUx Þ PVx. (There is no circularity here: an inequality x Þ
y between elements of H simply means |x 2 y| . 0.) Some conditions
equivalent to the inequality of subspaces are given in the Appendix.

We now have a simple result about the strong extensionality of states
on L(H ).

Two subspaces U, V of a separable Hilbert space H are unequal if and
only if there exists a state s such that s(U ) Þ s(V ).

If U Þ V, assume without loss of generality that there exists x P U with
|(I 2 PV)x| 5 r (x, V ) . 0, and define s(P) 5 ^Px, x& for each projection
P. Then s(PU) 5 |x|2, but

s(PV) 5 |PVx|2 , |PVx|2 1 |(I 2 PV) x|2 5 |x|2

Conversely, suppose there exists a state s such that s(U ) Þ s(V ). By
Gleason’s Theorem, there is a positive trace class operator A P L(H ) such
that Trace(AP) . 0. Then there exists a sequence (jn) in H such that
(`

n51 |jn|
2 5 1 and (`

n51 ^(PU 2 PV) jn , jn& . 0. Choose N such that ^(PU 2
PV) jN , jN& Þ 0. Then PUjN Þ PVjN , so U Þ V. QED

4. FURTHER PHYSICAL OBSERVATIONS

The foregoing material illustrates some of the subtleties that need to be
taken care of when the elementary theory of quantum logic is recast in a
constructive mold. For another illustration, we examine the topic of
degeneracy.

Consider an observable corresponding to a self-adjoint operator A with
a spectral decomposition

A 5 aPa 1 bPb

where Pa, Pb are orthogonal projections associated with the classically distinct
eigenvalues a, b, respectively. It may be impossible to distinguish construc-
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tively between the two measured outcomes a and b; in other words, a and
b may be so close to each other that we are unable to tell whether the result
of a measurement corresponding to A is equal to a or equal to b. In that
case we cannot decide in which of two orthogonal subspaces the physical
system is after the measurement of A.

A physical realization of this situation is not as remote as it may appear.
Indeed, any unitary self-adjoint operator on a finite-dimensional Hilbert space
has a realization in terms of beam splitters or generalized Mach-Zehnder
interferometers [20].

Another example of the constructive degeneracy problem is the measure-
ment, by Stern–Gerlach devices [17, 21], of the spin states of a spin-one-
half particle such as an electron. Here the associated projection operators in
two-dimensional Hilbert space are

E6 (u, f) 5
1
2 1 1 6 cos u 6e2if sin u

6e2if sin u 1 7 cos u 2
with the usual polar coordinates u P [0, p] and f P [0, 2p]. If we prepare
unpolarised systems whose density matrix

r 5
1
2 11 0

0 12
is proportional to the identity matrix, take measurements along the (0, 0, 1)
axis such that

Pa 5 E +(0, 0) 5 11 0
0 02

and

Pb 5 E 2(0, 0) 5 10 0
0 12

and assume that the beam splitting in the Stern–Gerlach device is too small
to be measurable by any operation, procedure, or method which can be given
an algorithmic meaning, then it will be impossible to decide between a and
b, and hence between the two orthogonal states into which the system is
projected after the measurement.

One might argue that in principle any splitting of the spin up and spin
down states, however small, can be counteracted by letting the respective
beams travel arbitrarily long distances. But there may not exist any computable
lower bound on the distance and time one should choose for the electron to
travel in order that the spin states get physically separated.
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Whether or not constructive mathematics turns out to be of serious
import for physicists (we believe that it will), there are clearly some very
interesting constructive mathematical and philosophical problems waiting to
be examined. We hope that these notes, along with papers like refs. 14, 7,
and 8, will stimulate some debate and activity in this subject.
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APPENDIX. ON THE INEQUALITY OF SUBSPACES

In this Appendix we establish, constructively, a number of criteria for
the inequality of two subspaces of a Hilbert space. We first prove a lemma
that ought to be stated somewhere.

Let H be a Hilbert space, and P the projection of H on a subspace S.
Then for each x P H and each s P S,

|x 2 s|2 $ 12|Px 2 s|2 1 |x 2 Px|2

Proof. The argument is an adaptation of the well-known one used to
establish the existence and uniqueness of the projection of x on S (4, pp.
366–367). We have

|s 2 Px|2 5 2|s 2 x|2 1 2|Px 2 x |2 2 4|12(s 1 Px) 2 x|2

# 2|s 2 x|2 1 2|Px 2 x |2 2 4|Px 2 x|2

5 2|s 2 x|2 2 2|Px 2 x|2

from which the desired result follows. QED

The following are equivalent conditions on subspaces U, V of a Hilbert
space H.

(i) U Þ V.
(ii) Either there exists j P V' such that PUj Þ 0, or else there exists

j P U' such that PVj Þ 0.
(iii) Either there exists j P U such that PVj Þ j, or else there exists

j P V such that PUj Þ j.
(iv) Either there exists j P U such that r(j, V ) . 0, or else there

exists j P V such that r(j, U ) . 0.
(v) U' Þ V'.

Proof. We first prove that (i) implies (iv). Assuming (i), choose j such
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that PUj Þ PVj. Either (I 2 PV) PUj Þ 0 or PVPUj Þ PVj. In the first case,
PUj P U and r(PUj, V ) . 0. In the second, using Lemma 1, we obtain |j 2
PVj| , |j 2 PV PUj|. Either |(I 2 PV) PUj| Þ 0 and we are in our first case
again, or else, as we may assume,

|(I 2 PV) PUj| , |j 2 PVPUj| 2 |j 2 PVj|

Then

r(j, U ) 5 |j 2 PUj|

$ |j 2 PVPUj| 2 |(I 2 PV)PUj|

. |j 2 PVj|

so r(PVj, U ) . 0. Thus (i) implies (iv).
It is clear that (iii) is equivalent to (iv) and implies (i), and that (ii)

implies (i). To complete a proof that statements (i)–(iv) are equivalent, it
suffices to show that (iv) implies (ii). Suppose, for example, that there exists
h P U such that r(h, V ) . 0. Then

j 5 h 2 PVh Þ 0

and j P V'. Also,

|PVh|2 5 |h|2 2 |h 2 PVh|2 , |h|2

so

|PUPVh| # |PVh| , |h|

and therefore PUh 5 h Þ PU PVh. Hence

PUj 5 PU (h 2 PVh) Þ 0 5 PVj

and so (iv) implies (ii).
To complete the proof, it suffices to show that (iii) and (v) are equivalent.

To this end, suppose, for example, that there exists j P U with PVj Þ j.
Then (I 2 PU) j 5 0 Þ (I 2 PV)j, so U' Þ V'. Hence (iii) implies (v).
Since U'' 5 U and V'' 5 V, we see that (iii) is equivalent to (v). QED
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