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Binary quantum random number 
generator based on value indefinite 
observables
Cristian S. Calude 1 & Karl Svozil 2*

All quantum random number generators based on measuring value indefinite observables are at 
least three-dimensional because the Kochen–Specker Theorem and the Located Kochen–Specker 
Theorem are false in dimension two. In this article, we construct quantum random number generators 
based on measuring a three-dimensional value indefinite observable that generates binary quantum 
random outputs with the same randomness qualities as the ternary ones: the outputs are maximally 
unpredictable.
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In 1946, J. von Neumann developed a pseudo-random generator (PRNG) with the following algorithm: “start 
with an initial random seed value, square it, and slice out the middle digits.” A sequence obtained by repeatedly 
using this method exhibits some statistical properties of randomness. While the seeds completely determine 
PRNGs, hundreds of billions of pseudo-random numbers are used daily to encrypt electronic network data. 
Their pitfalls have been discovered in the Internet era. An example is the discovery in 2012 of a weakness in the 
encryption system  RSA1; the flaw was traced to the numbers a PRNG has  produced2.

New types of random generators have been developed to remedy these flaws, specifically quantum random 
number generators (QRNGs). In the last decade, QRNGs proliferated because higher quality randomness is 
required in many areas, from cryptography, statistics, and information science to medicine and physics.

QRNGs are considered to be “better than PRNGs” because they are based on the “fundamental unpredict-
ability of well-chosen and controlled quantum processes”3, a weak assertion, particularly because it is well-known 
that the notion of “true randomness” interpreted as “lack of correlations” or “maximal randomness” is math-
ematically  vacuous4. Can we construct QRNGs “provably better” than PRNGs? There are two types of QRNGs 
“theoretically certified”: by the Bell  inequalities5–7 and by the Located Kochen–Specker  Theorem8,9, a form of 
the Kochen–Specker Theorem,  see10–12 for detailed reviews.

To date, only the second type of QRNGs has been mathematically proven to be better than any  PRNG8,13,14. 
These QRNGs are three-dimensional: Since two-dimensional analogs of the Kochen–Specker Theorem as well 
as the Located Kochen–Specker Theorem are false, the generated sequences must be at least  ternary15. Therefore, 
to obtain sequences of quantum random bits with the same quality of randomness, we need to apply a “three-to-
two” symbol conversion algorithm that preserves the level of randomness. In this article, we pursue an alternative 
physical conversion: We construct quantum random generators based on measuring a three-dimensional value 
indefinite observable, and operationally—with physical means—generate binary quantum random outputs with 
the same quality of randomness as the ternary ones. Such outputs are maximally  unpredictable16. Although the 
results are presented in C3 , they can easily be generalized to Cn with n > 3.

Nomenclature and definitions
By n, we denote a positive integer. We denote by C the set of complex numbers and employ the standard quantum 
mechanical bra-ket notation. In this context, (unit) vectors in the Hilbert space Cn are represented as |·� . Our 
focus will be on one-dimensional projection observables. We denote by Eψ the operator Eψ = |ψ��ψ |/|�ψ |ψ�| 
projecting the Hilbert space Cn onto the linear subspace spanned by |ψ�.
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In the following, we formalize hidden variables and the concept of value definiteness as  in9. Fix n > 1 . Con-
sider O ⊆ {Eψ | |ψ� ∈ C

n} , a nonempty set of one-dimensional projection observables on the Hilbert space Cn . A 
set C ⊂ O is a context of O if C has n elements (that is, |C| = n ), and for all Eψ ,Eφ ∈ C with Eψ  = Eφ , �ψ |φ� = 0.

Since distinct one-dimensional projection observables commute if and only if they project onto mutually 
orthogonal linear subspaces, a context C of O is a maximal set of compatible one-dimensional projection observa-
bles on Cn . Due to the correspondence (up to a phase-shift) between unit vectors and one-dimensional projection 
observables, a context is uniquely defined by an orthonormal basis of Cn.

A function is partial if it may be undefined for some values; a function defined everywhere is called total. 
The square root operation on the real numbers is partial because negative real numbers do not have real square 
roots. Partial functions were introduced in computability theory in  1930s17 to model non-halting computations; 
they were used in quantum physics  in8.

A value assignment function (on O ) is a partial two-valued function v : O → {0, 1} , assigning values to some 
(possibly all) observables in O . While we could allow v to be a function of both the observable E and the context 
C containing E, enabling contextual value assignments for the sake of compactness, we define v as a noncontextual 
value assignment function; this property is also called contextual independence.

An observable E ∈ O is value definite (under v) if v(E) is defined; otherwise, it is value indefinite (under v). 
Similarly, a context O is value definite (under v) if every observable E ∈ O is value definite.

Assuming contextual independence, if v(E) = 1 , the measurement of E in every context containing E must 
yield the outcome 1. More generally, every value (in)definite observable E in one context must also value (in)
definite in all other contexts containing E. This unique value, 0, 1, or undefined, depends on a particular state 
preparation and a specific collection of observables and contexts, which can be compactly represented by a 
 hypergraph18,19 (for more details, see later Sect. 4).

Let O be a set of one-dimensional projection observables on Cn , and let v : O → {0, 1} be a value assignment 
function. Then, v is admissible if the following two conditions hold for every context C of O : 

(a) Exclusivity: If there exists an E ∈ C with v(E) = 1 , then v(E′) = 0 , for all E′ ∈ C \ {E}.
(b) Completeness: If there exists an E ∈ C with v(E′) = 0 , for all E′ ∈ C \ {E} , then v(E) = 1.

Admissibility is a weaker requirement than the usual assumption of the existence of a two-valued state—a total 
value assignment—because fewer than n− 1 elements in a context on Cn may be assigned the value 0, and no 
element is assigned the value 1. If the value assignment is partial, then the observables corresponding to these 
remaining elements are value indefinite.

For example, in C3 , consider a context that has no element with either value 0 or 1 (and thus the value assign-
ments of all three elements are undefined) and another context that has only a single element that is assigned 
the value 0, and the other two undefined.

However, if the value assignment on a particular set O of one-dimensional projection observables on Cn is 
total, then admissibility coincides with the standard definition of two-valued state(s).

Admissibility permits undefined values, and thus value indefiniteness of an observable E if both outcomes 
(0 and 1) of a measurement of E are incompatible with the definite values of other observables sharing a context 
with E. An explicit construction of such a configuration has been presented  in9.

If v(E) = 1 , the measurement of every observable in every context C containing E must yield the outcome 1 
for E. Consequently, to avoid contradiction, the outcomes of measurements for all the other observables in the 
context must be 0, and vice versa. On the other hand, if v(E) = 0 , then the measurements of the other observables 
in C could yield the values 1 and 0 (as long as only one yields 1).

Three-dimensional QRNGs
This section introduces the physical principles and assumptions on which the notion of being “better than any 
PRNG”  operates8,13,14. We then proceed to an explicit example based on a configuration of observables that real-
izes a QRNG according to these principles.

Principles of three-dimensional QRNGs
In the  articles8,9,20, the following protocol was used to construct a class of 3-dimensional QRNGs:

repeatedly locate a value indefinite observable in C3 , measure it and record the output.

The Kochen–Specker  Theorem10 guarantees only the existence of value indefinite observables, so the above pro-
tocol cannot use it. In contrast, the located version of the  theorem8,20 allows the construction of value indefinite 
observables, which can then be measured. In detail, consider a quantum system described by the state |ψ� in a 
Hilbert space Cn , n ≥ 3 and choose a value indefinite observable (quantum state) |φ� that is neither orthogonal 
nor parallel to |ψ� ( 0 < |�ψ ||φ�| < 1 ). If the following three conditions are satisfied: 

1. admissibility, as defined in Sect. 2,
2. non-contextuality, the outcome obtained by measuring a value definite observable does not depend on other 

compatible observables which may be measured alongside it, and
3. Eigenstate principle, if a quantum system is prepared in the state |ψ� , then the projection observable Pψ is 

value definite,
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then the projection observable Pφ is value indefinite.
Furthermore,  in14, it was proved that given every probability distribution (p1, p2, p3) ( 

∑

i pi = 1 and 
0 ≤ pi < 1 ), a value indefinite quantum state can be constructed which, by a universal measurement, produces 
the outcomes with probabilities pi.

The universal measurement is described by the unitary operator given by the unitary  matrix14: This is obtained 
in terms of the spin-1 operator in the x-direction Sx , and its associated unit eigenvectors (through its spectral 
decomposition).

The quantum state (modular phase factors)

is value  indefinite14, Theorem 4.1. and the result of the measurement of |ψ� on Ux with respect to the Cartesian 
standard basis produces the outcome i ∈ {0, 1, 2} with probability pi.

In fact, every unitary operator is universal with respect to the value indefinite quantum state |ψ� . This is easy 
to see for the identity matrix, the most elementary case. As every arbitrary unitary operator U can be written in 
terms of two orthonormal bases, {|f1�, |f2�, |f3�} and the Cartesian standard basis {|e1�, |e2�, |e3�} , as

we have by (2):

If we measure the value indefinite |ψ� by U in terms of the orthonormal basis {|f1�, |f2�, |f3�}
we get the outcome i ∈ {0, 1, 2} with probability pi . If we measure the output of U in terms of the Cartesian 

standard basis {|e1�, |e2�, |e3�} , then the input state has to be pre-processed: U−1|ψ� = U†|ψ� , where † stands 
for the Hermitian adjoint.

Finally, using the main result  in21, running the above quantum protocol indefinitely, we always obtain a 
maximally unpredictable ternary sequence.

The first 3-dimensional  QRNG8 was constructed by (a) choosing the quantum state |a� =
(

0, 1, 0
)T—which 

is value definite with respect to any context containing the observable |a��a| = diag
(

1, 0, 0
)

 because |a� is not in 
the context formed by the row vectors of Ux , (b) choosing a quantum state that is neither orthogonal nor parallel 
to it and (c) applying the measurement (1). The probabilities of the outputs 0, 1, and 2 generated by this quantum 
random generator are 12 , 0 and 12 , respectively, so theoretically, every sequence generated by this protocol is binary.

Does the probability 0 output endanger the applicability of the Kochen–Specker Theorem (see also the prin-
ciple of three and higher-dimensionality of  QRNGs15)? The experimental  analysis22, based on the experiments 
reported  in23, suggested that the answer to the question posed  in24, is negative. A very small number of outputs 
2 have been obtained.

We can now provide a theoretical negative answer using the universal measurement (1) to value indefinite 
quantum states.

By changing the input quantum state |a� =
(

0, 1, 0
)T to |a� =

(

1, 0, 0
)T and using the measurement (1) we 

obtain ternary quantum random numbers 0,1,2 generated with with probabilities 1/2, 1/4, 1/4, respectively, 
hence “genuine” ternary sequences.

As many current applications require random binary sequences,  in14, the computable alphabetic morphism 
ϕ : {0, 1, 2} → {0, 1}

A slightly modified version of this alphabetic morphism was used to transform ternary sequences into binary 
ones and preserve their maximal unpredictability for the probability distributions 14 ,

1
2 ,

1
4 and 12 ,

1
2 , respectively; 

 see25 and Sect. 7  in13. Can we “quantize” the algorithmic post-processing (4)?
Quantum mechanically, this alphabetic morphism corresponds to a post-processing of the output of Ux|a� . In 

general, by post-processing of a unitary transformation A we mean the unitary transformation B = U ′A , where 
U ′ is a suitable unitary transformation. Physically, this corresponds to the serial composition of beam splitters, 
first applying A and then U ′.

The post-processing of (4) results in the ‘merging’ of a state with three nonzero components (or coordinates 
with respect to a particular basis, here the Cartesian standard basis) into a state with two nonzero components. 
The merging is justified only if the corresponding input ports belong to the same context. In other words, the 
corresponding observables have mutually exclusive outcomes—a condition satisfied by a beam splitter realizing 
Ux . The schema is presented in Figure 1. Thereby, the unitary matrix is

(1)Ux =
1

2





1
√
2 1√

2 0 −
√
2

1 −
√
2 1



 .

(2)|ψ� =
(√

p1,
√
p2,

√
p3
)T

,

U = |f1��e1| + |f2��e2| + |f3��e3|,

(3)|ψ� =
√
p1|e1� +

√
p2|e2� +

√
p3|e3�.

(4)ϕ(x) =

{

1, if x = 0,
0, if x = 1,
0, if x = 2,
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corresponds to the alphabetic morphism ϕ . Then, the combined transformation is

This unitary matrix U ′Ux corresponds to a beam splitter configuration that first allows a state |a� to be 
‘expanded’ by a unitary matrix Ux with three nonzero components. Simultaneously, given |a� , the output state 
Ux|a� is a value-indefinite observable ‘merged’ or ‘folded’ by the unitary matrix U ′ , representing a serially con-
catenated beam splitter that transforms this state into one with two nonzero components of equal probability 
amplitudes. On input |a� the unitary transformation U ′Ux generates a ternary output with the probability distri-
bution 

(

1
2 ,

1
2 , 0

)

 , which corresponds to the binary output with the probability distribution 
(

1
2 ,

1
2

)

.
How can we realize this transformation in terms of unitary equivalence? Two transformations, A and B, 

are unitarily equivalent if there exists a unitary matrix V such that B = V†AV  , where V† means the Hermitian 
adjoint, or conjugate transpose, of V. If V is real-valued then V† = VT is just the transpose VT of V.

From Specht’s  Theorem26,27, two unitary matrices are unitary equivalent if their eigenvalues coincide. In our 
case, both Ux in (1) as well as U ′Ux in (5) have one eigenvalue −1 , and a double eigenvalue 1. More explicitly, 
the matrix

satisfies the equality VTUxV = U ′Ux : this proves that the matrix Ux defined in (1) is unitarily equivalent to the 
matrix combination U ′Ux in (6).

Configuration of observables realizing the principles of three-dimensional QRNGs
For the sake of an example, take a configuration of observables enumerated  in28, Table I presented in Fig.  4, as 
v(a) = 1 , in the context {b, 2, 3} , the observable 2 is value definite with v(2) = 0 , whereas both observables b and 
3 are value indefinite. Therefore, not all elements of C \ {E} need to be value indefinite: Indeed, in the context 
{b, 2, 3} , the observable b is value indefinite. But from the two remaining elements in {b, 2, 3} \ {b} = {2, 3} , 2 is 
value definite with v(2) = 0 , and 3 is value indefinite.

For the sake of an example, we shall use a hypergraph introduced  in9 and split it into segments serving as 
true-implies-false (TIFS) and true-implies-true (TITS)  gadgets28.

The hypergraph corresponding to the TIFS gadget in Fig. 2 illustrates the orthogonality relations among 
vector labels of the elements of  hyperedges29, as detailed  in28, Table I. By subsequently applying the admissibility 
 rules30, Figure (24.2.a) a single consistent value assignment, as in Fig. (2a) allows v(a) = 1 and v(b) = 0 , whereas 
an inconsistent value assignment arises when assuming v(a) = v(b) = 1 . Therefore, for any such configuration 
of quantum observables, there exists no classical admissible value assignment v satisfying the constraint on the 
input and output ports v(a) = v(b) = 1 . Consequently, if a has a preselected input state v(a) = 1 , then the value 
assignment v(b) for the output state b cannot be 1. Therefore, v(b) can only be 0 or undefined. In the latter case, 
b is value indefinite.

Conversely, the TITS gadget hypergraph in Fig. 3 illustrates the orthogonality relations among vector labels 
of the elements of  hyperedges29, as detailed  in28, Table I. Using the admissibility  rules30, Fig. (24.2.a) a single 
consistent value assignment, as in Fig. (3a) implies v(a) = 1 and v(b) = 1 , in contrast with the value assignment 
when assuming v(a) = 1 and v(b) = 0.

As before, for any such configuration of quantum observables, there exists no classical admissible value assign-
ment v satisfying the constraint on the input and output ports v(a) = 1 and v(b) = 0 , respectively. Consequently, 
if a has a preselected input state v(a) = 1 , then the value assignment v(b) for the output state b must be either 1 
or undefined, that is, value indefinite.

(5)U ′ =
1

2
√
2





1+
√
2

√
2 1−

√
2

1−
√
2

√
2 1+

√
2√

2 − 2
√
2





(6)U ′Ux =
1
√
2





1 1 0
1 − 1 0

0 0
√
2



 .

V =











1
2
√
3

�

2−
�

2+
√
3 1

2
√
3

�

2+
�

2+
√
3

�

2
3

− 1√
6

�
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�

2+
√
3 − 1√

6

�

2+
�

2+
√
3 1√

3

1
2

�

2+
�

2+
√
3 − 1

2

�

2−
�

2+
√
3 0











Ux U ′
|a′′〉
|a′〉
|a〉

|3′〉
|2′〉

|1′〉

|0〉
|1〉
|2〉

Figure 1.  A horizontal schema of two beam splitters Ux and U ′ in serial composition U ′
Ux , with the ‘input’ state 

prepared in |a� , and two ‘active output’ ports in states |0� and |1�.



5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:12845  | https://doi.org/10.1038/s41598-024-62566-2

www.nature.com/scientificreports/

Therefore, the concatenation of the two hypergraphs depicting TIFS and TITS gadgets, originally introduced 
by Abbott and the authors  in28, and shown in Figs. 2 and 3 respectively, excludes both admissible value assign-
ments of 0 and 1, rendering v(b) undefined and thus the observable b value indefinite. Indeed, as in Fig. 4 the 
penetration of admissible value assignments is rather limited: if the system is prepared in state a, then admissibil-
ity merely allows “star-shaped” value definite observables along the two contexts {a, 1, 2} and {a, 4, 5} . Note that 
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Figure 2.  The TIFS gadget hypergraph for b given v(a) = 1 , as well as the TITS gadget hypergraph for 3 given 
v(a) = 1 , illustrates the orthogonality relations among vector labels of the elements of  hyperedges29 within a 
subset of quantum observables—also known as a faithful orthogonal  representation31 or  coordinatization32, 
as enumerated  in28, Table I. Red squares represent the value 1, and green circles represent the value 0. (a) 
A singular, consistent value assignment is obtained by assuming v(a) = 1 and v(b) = 0 and applying the 
admissibility rules  successively30, Figure (24.2.a). (b) An inconsistent value assignment is obtained by assuming 
v(a) = v(b) = 1 and applying the admissibility rules successively: the context {3, 21, 23} , shown dotted, contains 
three observables with the value 0; hence no admissible value assignment v with the constraint on the input 
and output ports v(a) = v(b) = 1 exists. Therefore, if a has a preselected input state v(a) = 1 , then the value 
assignment v(b) for the output state b has either to be 0 or needs to be undefined, that is, b is value indefinite.
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Figure 3.  The TITS gadget hypergraph for b given v(a) = 1 , as well as the TIFS gadget hypergraph for 3 
given v(a) = 1 , which is partly reflection symmetric along the {a, 1, 2} context to the TIFS gadget hypergraph 
in Fig. 2, illustrates the orthogonality relations among vector labels of the elements of  hyperedges29 within a 
subset of quantum observables—also known as a faithful orthogonal  representation31 or  coordinatization32, as 
enumerated  in28, Table I. Red squares represent the value 1, and green circles represent the value 0. (a) A single 
consistent value assignment is obtained by assuming v(a) = 1 and v(b) = 1 and applying the admissibility rules 
 successively30, Figure (24.2.b). (b) An inconsistent value assignment is obtained by assuming v(a) = 1 and 
v(b) = 0 and applying the admissibility rules successively: because the context {6, 7, b} , shown dotted, contains 
three observables with the value 0, no admissible value assignment v exists with the constraint on the input 
and output ports v(a) = 1 and v(b) = 0 . Therefore, if a has a preselected input state v(a) = 1 , then the value 
assignment v(b). For the output state, b has to be 1 or undefined; that is, b is an indefinite value.
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all contexts {b, 2, 3} , {b, 6, 7} , and {b, 8, 9} , in which b is an element, have at least one more element with indefinite 
value. This is because the set of observables O = {a, b, 1, . . . , 35} is not  unital33, that is, all eight admissible (or 
global) value assignments must assign the value 1 to the observable 1, and thus the value 0 to a. There does not 
exist any value assignment v(a) = 130, Table 24.1. However, such value assignments with v(a) = 1 exist for the 
reduced set of observables O \ {29, 31} and O \ {10, 12} forming TIFS and TITS, respectively.

A very similar argument uses the same hypergraphs as in Figs. 2 and 3 as TITS and TIFS gadgets for 3 given 
v(a) = 1 , respectively. Therefore, v(3) is undefined, and the observable 3 is value indefinite.

Finally, what are the effects of errors and system imperfections? This question requires a technical long dis-
cussion, which will be the object of another study. Here, we argue only about the stability of the construction of 
our QRNGs due to variations in the indefinite observable value and measurement.

1. The stability of the choice of value indefinite observable comes from the Located Kochen–Specker 
 Theorem8,9 stated at the beginning of this section: The projection observable Pφ of any state |φ� such 
that0 < |�ψ ||φ�| < 1 is value indefinite.

2. The stability of the measurement comes from the result proved at the beginning of this section, stating that 
any unitary operator is universal.

Binary QRNG based on value indefinite observables
Subsequently, we present in detail an example of a configuration that illustrates a scenario where two observables 
within a context are value-indefinite, while the third observable is value-definite.

Here, value indefiniteness is contingent upon two factors: (i) the state that is (pre-)selected and prepared, and 
(ii) the specific set of observables arranged within a particular configuration of intertwined contexts. To estab-
lish value indefiniteness within this configuration, the (pre-)selected state and the state characterized by value 
indefiniteness must be elements of the setup. Therefore, any explicit assertion regarding the value indefiniteness 
of an observable should include a reference to the specific conditions upon which this claim relies.

Quantum versus classical models
A quantum realization of the construction in Figs. 2, 3 and 4 can be obtained from the faithful orthogonal rep-
resentation of the elements of the hyperedges as vectors. One such representation was given  in28, Table I. It assigns 
the (superscript T indicates transposition) |a� =

(

1, 0, 0
)T to (the pure state) a, also representable by the trace-

class one orthogonal (that is, positive, self-adjoint) projection operator whose matrix representation with respect 
to the Cartesian standard basis is a diagonal matrix Ea = |a��a| = diag

(

1, 0, 0
)T and |b� =

(

1√
2
, 12 ,

1
2

)T
 as well 

as |3� =
(

1√
2
,− 1

2 ,−
1
2

)T
 to the observables b and 3, respectively. Therefore, if the system is preselected (or 

prepared) in state |a� , the output of the measurement of

along |b� is obtained with the probability

Eb = |b��b| =
1

2
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2
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2
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2
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2







Tr
(

Ea · Eb
)
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Figure 4.  Concatenated hypergraph from the hypergraphs depicting TIFS and TITS gadgets shown in Figs. 2 
and 3, respectively. Admissibility merely allows “star-shaped” value definite observables along the two contexts 
{a, 1, 2} and {a, 4, 5} if the system is prepared in state a.
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Likewise, the output of the measurement of

along |b� is obtained with the probability

As |2� is orthogonal to |a� , Tr
(

Ea · E2
)

= |�2|a�|2 = 0 , and the observable 2 is defined. Hence, when the observ-
able a is preselected in the state |a� , both observables b and 3 become value-indefinite (relative to admissibil-
ity), while observable 2 has value v(2) = 0 . A quantum calculation confirmes what is posited in the (Located) 
Kochen–Specker Theorem, that both b and 3 occur with a probability of 12.

To emphasize the three-dimensionality of the configuration, even if only two observables have nonzero prob-
abilities, the sum of frequencies of the remaining quantum observables 2 and 3 in the complement {2, 3} of the 
context {b, 2, 3} containing b is 1/2. More explicitly, expressed in terms of orthogonal projection operators, the 
observable corresponding to {2, 3} is given by a matrix corresponding to the orthogonal projection operator E2,3:

The vectors in E2,3 ∈ C
3 are orthogonal to vectors in Eb ∈ C

3 . Together, Eb + E2,3 = |b��b| + |2��2| + |3��3| = I3 
yield the identity I3 = diag

(

1, 1, 1
)

.
Classically, there is no realization of the set of observables O = {a, b, 1, . . . , 35} in Fig. 4 because some ele-

ments of O are assigned the value 0 for all two-valued  states30, Table 24.1, hence not  separable10, Theorem 0. 
This result holds for total value assignments—a stronger assumption than admissibility. Indeed, in this case the 
“central” point 1 must be classically assigned the value v(1) = 1 , and, therefore, all remaining eight elements 
{a, 2, 13, 15, 16, 17, 25, 27} in the four contexts {a, 1, 2} , {1, 13, 16} , {1, 15, 17} , and {1, 25, 27} containing 1 to be zero.

Finally, using the Eigenstate principle and Theorem 5.6  in14, we deduce that the QRNG described above 
generates maximally unpredictable binary random digits.

Beam splitter realizations
Figure 5 presents a triangular array of quantum beam splitters which physically transforms the preparation 
context {a, 4, 5} into the measurement context {b, 2, 3}.

The vector  coordinatization28, Table  I |a� =
(

1, 0, 0
)T  , |b� =

(

1√
2
, 12 ,

1
2

)T
 , |2� =

(

0, 1√
2
,− 1√

2

)T
 , 

|3� =
(

1√
2
,− 1

2 ,−
1
2

)

 , |4� =
(

0, 0, 1
)T , and |5� =

(

0, 1, 0
)T computes the unitary transformation  matrix34,35 that 

transforms the input state |a� into the output state |b� , the input state |4� into the output state |2� , and the input 
state |5� into the output state |3�:
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1
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Figure 5.  A triangular array of quantum mechanical beam splitters is a realization of the input or preparation 
context {a, 4, 5} and the output or measurement context {b, 2, 3}.
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This unitary matrix realizes a beam  splitter36–38 using the parametrization of the unitary  group39. Besides phase 
shifters operating in one-dimensional subspaces (in this particular case, all zero but one), these concatenations 
of optical elements contain beam splitters operating in two-dimensional subspaces. These beam splitters have a 
parametrization unitary matrix

depending on two parameters: ω is the transmissivity T = sin2 ω and reflectivity R = 1− T = cos2 ω , and ϕ is 
the phase change at reflection.

The output wave function, given the input wave function, is the coherent superposition of the contributions 
of all the possible forward passes from the input port(s) toward the output port(s). Thereby, the transmissibility 
and reflectivity contribute by the square roots 

√
T = sinω and reflectivity 

√
R = cosω of T and R40. The sum of 

the phase shifts between reflected and transmitted waves excited by a wave incident from the side of the beam 
splitter, and the corresponding phase shift for a wave incident from the opposing side, contribute with π41. For a 
symmetric lossless dielectric  plate42, the reflected and transmitted parts are π/2 out of  phase40,43.

The relations (7) present a computation of the effects on the input ports of the beam splitter in Fig. 5 by suc-
cessive applications of phase shifts and beam mixings.

Beam splitter as an analogy of Ariadne’s tread
How come can we quantum mechanically ‘spread’ a qutrit state of input into a coherent superposition of all 
qutrit states, and finally end up with a binary sequence—very much like two Hadamard unitary transformations 
first ‘spread’ a qubit, and then (up to a constant scalar factor) ‘fold it back’ into its original state? This is where 
the allegory of Ariadne’s thread comes up in the configuration of a beam splitter. Consider a general quantum 
beam splitter with m > 0 nonzero inputs and n > 0 nonzero output ports. As long as the sum of probabilities of 
preparation and detection on both the respective input and the output ports adds up to one, a quantum realiza-
tion is  feasible36–38. Indeed, all that is necessary is that the input and the output state are tailored according to 
the probability amplitudes (phases do not count).

Considering this scenario, one may question: What happens to quantum unitarity, especially if m  = n ? For 
instance, with such a beam splitter, we could ‘merge’ two input ports into one output port ( n = m+ 1 = 2 ). 
Alternatively, one could ‘split’ a single input port into (a coherent superposition, resulting in) two output ports 
( m = n+ 1 = 2 ). For example, the associated unitary three-dimensional matrix entries could be

where, for U2-to-1 (or U1-to-2 ) the remaining rows (or columns) could fill up with unit vectors forming the ortho-
normal basis of a two-dimensional subspace orthogonal to 

(

0 1√
2

1√
2

)

 (or its Hermitian conjugate).
Indeed, to obtain a binary sequence, one could ‘post-process’ the beam splitter arrangement in Fig. 5 by a 

beam splitter corresponding to the following real-valued unitary matrix:

U = |b��a| + |2��4| + |3��5| =
1

2
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When the input state is |a� , the resulting output state is U ′
2-to-1U |a� , with U and U ′

2-to-1 defined in (6) and (9), 
respectively.

More explicitly,

A particle in state |a� will end up in either the first or second port with probability 12 and be registered in the third 
port with probability 0.

Two questions arise: (i) The unitary quantum evolution—of the von Neumann type ‘Vorgang’  244,45, referred to 
as ‘process 2’ by  Everett46—that needs to be one-to-one, and it appears to be compromised. (ii) Can this problem 
be discussed in terms of value indefiniteness and partial value assignments?

The first question can be quickly addressed: The beam splitter examples discussed here show that concentra-
tion on a partial array of input and output ports cannot represent the whole picture. The full specification of 
a beam splitter in n dimensions has the same number n of input and output ports. The quantum evolution is 
incomplete if some input and output contexts are not considered. Because any unitary transformation can be 
represented by a bijective map of the vectors of one orthonormal basis—the input context—into the vectors of 
another orthonormal  basis34,35—the output context. Suppose we also allow incomplete mappings of vectors from 
one context into some vectors of another context. This could not exclude mappings that are not one-to-one. 
Therefore, only the totality of those one-to-one vector transformations relating to two orthonormal bases forms 
a forward- and backward-reversible transformation.

The context-to-context unitary mapping can be viewed as a sort of ‘rescrambling’ of information contained 
in the channels or ports of the beam  splitter47,48. Thereby, the ‘latent’ and ‘omitted’ ports act as Ariadne’s thread 
that must be considered for reversibility. The situation resembles a zero-sum game encountered in entanglement 
 swapping49,50.

Although the results in this article have been proved in C3 , they can easily be generalized to Cn with n > 3 . 
Therefore, by ‘merging’ or ‘folding’ two or more observables of the context, represented by the orthogonal pro-
jection operators E2, . . . ,En , we never leave the n-dimensional Hilbert space Cn , because E2,...,nCn is the (n− 1)
-dimensional Hilbert space spanned by the vectors |ei� that form Ei = |ei��ei| , with i = 2, . . . , n . The vectors in 
E2,...,nC

n are orthogonal to the one-dimensional subspace E1Cn spanned by |e1� , and the vectors |e1�, . . . , |e1� 
form an orthonormal basis.

Regarding the second question, we may say that value indefiniteness ‘prevails’ over value definiteness: when-
ever a value indefinite observable is involved, the ‘merged’ observables ‘inherit’ value indefiniteness.

Conclusions
We have proved that for every probability distribution (p1, p2, p3) ( 

∑

i pi = 1 and 0 ≤ pi < 1 ), one can construct a 
value indefinite quantum state which, by every unitary measurement, produces the outcomes with probabilities pi.

Based on this result, the quantization of an algorithmic pre-processing binary  method25 and the quantum 
‘merging’ technique, we have constructed quantum random generators based on measuring a three-dimensional 
value indefinite observable producing binary quantum random outputs with the same randomness qualities as 
the ternary ones; their outputs are maximally  unpredictable16. The results can easily be generalized from C3 to 
C
n with n > 3.
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