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Form of contextuality predicting probabilistic equivalence between two sets of three
mutually noncommuting observables
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We introduce a contextual quantum system comprising mutually complementary observables organized into
two or more collections of pseudocontexts with the same probability sums of outcomes. These pseudocontexts
constitute nonorthogonal bases within the Hilbert space, featuring a state-independent sum of probabilities. In
other words, regardless of the initial-state preparation, the total probability remains constant but may be distinct
from unity. The measurement contextuality in this setup arises from the quantum realizations of the hypergraph,
which adhere to a specific bound on the linear combination of probabilities. In contrast, classical realizations
can surpass this bound. The violation of quantum bounds stems from the inability of classical ontological
models, specifically the set-theoretic representation of the hypergraph corresponding to the quantum observables’
collections, to adhere to and explain the observed statistics.
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I. CONTEXTUALITY AMONG MUTUALLY
NONCOMMUTING OBSERVABLES

Contextuality has various meanings and formalizations
in the literature [1–4]. One of the most common might be
in terms of Kochen and Specker’s demarcation criterion [5,
Theorem 0] concentrating on the separability of any pair of
noncommuting observables by two-valued states interpretable
as truth assignments.

In this framework, a logico-algebraic structure of propo-
sitions is considered [6], represented in terms of unit vectors
spanning linear subspaces. These subspaces are constructed
through the orthogonal projections formed by the summation
of dyadic vector products. The linear span of these subspaces
is identified with the logical OR operator, the formation of
orthogonal subspaces is associated with the NOT operation (or
complements), and set-theoretic intersection corresponds to
the AND operation.

When a collection of propositions is equipped with
a separating set of two-valued states, it can be termed
(quasi)classical. This is due to its set representability; that is,
the possibility of embedding the propositions by a homomor-
phic (structure preserving) map into a larger Boolean algebra.
On the other hand, if no structure-preserving homomorphic
embedding into a larger, representable Boolean algebra exists,
we classify it as contextual as well as (classically) value indef-
inite. This, in essence, is Kochen and Specker’s demarcation
criterion [5, Theorem 0].
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However, there are various manifestations of weaker con-
textuality. Examples include Bell-type inequalities like the
Clauser-Horne-Shimony-Holt inequality and the Klyachko
inequality, paradoxes such as Hardy’s paradox, and config-
urations like the Greenberger-Horne-Zeilinger setup (which
incorporates operator-valued elements and is not exclusively
based on elementary propositional operators with eigenvalues
of zero and one). What distinguishes these instances are the
associated non-Boolean logics.

What unifies them is the potential existence of classical
ontologic models, such as set representations, that replicate
the respective logics. However, the statistics derived from
these ontologies deviate from quantum predictions in terms
of probabilities, correlations, and expectations.

To address these situations, Spekkens has classified
contextuality in terms of operational equivalence of, say,
measurement outcomes, thereby also accommodating statis-
tical forms of contextual behavior [1]. Remarkably, these
“weaker” statistical forms of contextuality, even though
they can be represented using sets and faithfully embedded
into Boolean algebras, include complementary observables
that are not jointly measurable. When realized in a quan-
tum context, they result in probabilities that differ from
those in classical realizations. The significance of these
statistical contextual variations lies in their potential for
experimental verification (subject to the assumptions such
as counterfactuals), as opposed to relying on theoretical
proofs employing reductio ad absurdum (proof by contradic-
tion). While the specific concept of contextuality introduced
here can be considered within this statistical framework, it
retains its independent standing, encompassing novel prop-
erties among collections of observables. The same holds
true when compared with the varieties of contextuality that
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can be expressed in and linked to (hyper)graphs discussed
previously [2–4,7–9].

In the following sections, we present a type of contextuality
falling within the realm of “weak” contextuality. This classi-
fication arises from the fact that its set of observables is both
complementary and set-representable. However, classical on-
tologic models provide statistical predictions that diverge
from those derived using quantum probabilities.

These collections of observables represent instances of
“extreme” complementarity within the framework of con-
textuality, as all propositions associated with them exist in
distinct contexts. As we proceed, we examine six observables
arranged into two triples. Remarkably, the sum of probabil-
ities for the occurrence of events within each of these two
triples is identical to the sum of probabilities of the other
triple.

II. PSEUDOCONTEXTS OR PSEUDOBLOCKS

In what follows, we introduce the concept of a “pseu-
doblock” or “pseudocontext” in a hypergraph. We begin with
hypergraphs that are uniformly conformal. “Uniform” in this
context implies that the cardinality of a hyperedge in the
hypergraph, the number of elements of a hyperedge, remains
constant for all hyperedges in the hypergraph [10, Sec. 1.1,
p. 3]. “Conformal” means that every maximal clique (although
we primarily focus on uniform configurations, so all cliques
are maximal) is represented by a hyperedge in the hypergraph
[10, Sec. 2.4, p. 35]. Some related graph-theoretical concepts
include Greechie [11] and McKay-Megill-Pavičić (MMP) di-
agrams [12].

The hypergraphs under consideration are often motivated
by and derived from configurations of observables in quantum
mechanics [5,6], or from other algebraic structures such as
partition logics [13] and their empirical realizations through
initial-state identification of finite automata [14] or general-
ized urn models [15]. At times, hypergraphs are constructed
solely to explore “exotic” properties of specific algebraic
structures [16–18].

As will be elucidated later, to establish a quantum model
for any such ad hoc hypergraph of the latter type, it must
possess a faithful orthogonal representation in terms of vector
labels. Similarly, for the development of a classical model
that is set-representable, such as a generalized urn or finite
deterministic automaton model, any ad hoc hypergraph of the
latter type must have a partition logic representation.

Any probability distribution on hypergraphs must adhere
to the following properties for each hyperedge within the
hypergraph: (i) Exclusivity: This ensures that the probabilities
associated with two distinct elements on the same hyperedge
are additive. (ii) Completeness: This requires that the sum
of probabilities assigned to all elements within any given
hyperedge in the hypergraph equals one [19,20].

For historical reasons, we use the terms “context” or
“block” interchangeably to refer to a hyperedge within a
hypergraph. However, we intend to broaden this concept of
context or block by considering collections of elements in a
hypergraph that (i) do not belong to any hyperedge and are,
therefore, complementary in quantum-mechanical terms; (ii)
are not necessarily mutually exclusive; (iii) do not necessarily

3

4

5

1

2

8

9

10

6

7

13

14

15

11

12

FIG. 1. A hypergraph with two pseudocontexts formed by
{1, 6, 11} and {5, 10, 15} marked by dashed boxes.

sum to one in terms of probabilities; and, (iv) nevertheless,
they have a total probability sum equal to that of other collec-
tions of elements in the same hypergraph. Such collections of
elements in a hypergraph will be referred to as pseudocontexts
or pseudoblocks.

We illustrate this concept with two examples.

III. EXAMPLE 1: GENERALIZATIONS OF
FIREFLY LOGIC

Consider the 3-uniform (all hyperedges have three atoms
or elements) hypergraph depicted in Fig. 1 [21]. This example
has 15 atoms in 8 contexts. It was suggested by René Mayet as
a simplification of the diagram described in the next section.
It was used as a cornerstone in Ref. [22].

Assuming exclusivity and completeness there are two
triples of elements or atoms {1, 6, 11} and {5, 10, 15} which
are not on a hyperedge and whose probability sums are equal.
The “coverings” of the hypergraph depicted in Figs. 2(a) and
2(b) include four contexts but leave out the elements men-
tioned. Therefore,

15∑
i=1

p(i) =
∑

i∈covering (a)

p(i) + p(5) + p(10) + p(15)

= 4 + p(5) + p(10) + p(15)

=
∑

i∈covering (b)

p(i) + p(1) + p(6) + p(11)

= 4 + p(1) + p(6) + p(11), (1)

and thus p(1) + p(6) + p(11) = p(5) + p(10) + p(15), mak-
ing {1, 6, 11} and {5, 10, 15} pseudocontexts.

A. Representation in terms of sets and vectors

The hypergraph depicted in Fig. 1 allows both a classical
and a quantum representation.
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FIG. 2. Graphical representation of the proof that there are two
triples of elements or atoms {1, 6, 11} and {5, 10, 15} which are not
on a hyperedge and whose respective probability sums are equal. The
coverings of the hypergraph depicted in panels (a) and (b) include
four contexts but leave out the elements mentioned.

1. Quasiclassical representation in terms of partitions of sets

The hypergraph encompasses a total of 24 two-valued
states, which will not be exhaustively enumerated in this ar-
ticle. There exist two-valued states that are 0 on all of the
observables in the pseudocontexts {1, 6, 11} and {5, 10, 15},
as well as two-valued states that are 1 on two of them.
As classical probabilities are the convex combinations of all
two-valued states [23,24], we obtain bounds for the sum of
probabilities p in the pseudocontexts:

0 � p(1) + p(6) + p(11) = p(5) + p(10) + p(15) � 2.

(2)
Therefore, the hypergraph can be used as a false-implies-false
gadget for the pseudocontexts {1, 6, 11} and {5, 10, 15}. If the
input state is chosen to be triple-0 on one pseudocontext, then
the other pseudocontext exhibits an identical performance.
This property is symmetric with respect to exchange of the
pseudocontexts.

A systematic approach for creating set representations of
hypergraphs with a separating set of two-valued states, as
outlined in Kochen and Specker’s demarcation criterion [5,
Theorem 0], involves a reverse indexing method that consid-
ers all two-valued states [25,26]. Using this method, we can
derive a partition logic representation of the pseudocontexts:

b1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
b6 = {1, 5, 6, 11, 12, 15, 16, 17, 19, 20},

b11 = {2, 7, 9, 11, 13, 15, 17, 18, 21, 23},
b5 = {5, 6, 7, 8, 9, 10, 15, 16, 17, 18},

b10 = {1, 2, 3, 6, 9, 11, 12, 17, 20, 23},
b15 = {1, 2, 4, 5, 7, 11, 13, 15, 19, 21}. (3)

Classical probability distributions are merely convex combi-
nations of the two-valued states, representing (not necessarily
all) “extremal points” within a convex polytope. Conse-
quently, the multiplicities of the entries (and their absence)
within the partitions that constitute the two pseudocontexts
coincide.

2. Quantum representation in terms of vector labels

Lovász introduced a faithful orthogonal representation
(FOR) of a graph G with vertices 1, . . . , n by a system of unit
vectors {|v1〉, . . . , |vn〉} in a Euclidean space “such that if i
and j are nonadjacent vertices, then |vi〉 and |v j〉 are orthog-
onal” [27]. In contradistinction, the more common definition
of FORs used here is via the complementary graph G, such
that if i and j are adjacent vertices—that is, if they belong to
the same edge also known as context or block of (maximal)
mutually comeasurable observables—then |vi〉 and |v j〉 are
orthogonal [28].

FORs have a direct quantum interpretation in terms of the
orthogonal (that is, self-adjoint) projection operators |vi〉〈vi|
of the Hilbert space H spanning a one-dimensional linear
subspace |vi〉〈vi|H which is a formalization of a pure quantum
state associated with a unit vector |vi〉. The dyadic product of
any such vector can be identified as an orthogonal projection
operator. This operator, in turn, can be interpreted as a two-
valued proposition observable in quantum mechanics.

We begin by enumerating a FOR obtained through the
application of a heuristic algorithm developed by McKay,
Megill, and Pavičić [29]:
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(
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(
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√
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(
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|v11〉 =
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(
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6
,

√
2

3
,
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|v15〉 =
(
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,

√
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7
,− 3√

14

)
. (4)

The eigenvalues of |v1〉〈v1| + |v6〉〈v6| + |v11〉〈v11| =
|v5〉〈v5| + |v10〉〈v10| + |v15〉〈v15| are 2 with the associated
eigenvector (0,− 2√

5
, 1√

5
), as well as (7 + √

21)/14 ≈ 0.827,

and (7 − √
21)/14 ≈ 0.173, respectively.

While there is currently no feasible systematic method for
the coordinatization of hypergraphs, we additionally present
an ad hoc analytical approach for generating a continuum
of FORs that differ from those obtained heuristically. This
method can be extended to establish a coordinatization for an
enlarged hypergraph, encompassing a novel “combo” com-
bination of structures discussed in the next section. This
combination poses a greater challenge, prompting us to
employ specific analytically obtained FORs to facilitate a
seamless continuation, leveraging rotational symmetry as a
simplifying tool.

Degenerate cases necessitate individual computations for
each coordinatization, typically done manually and poten-
tially with the aid of computer algebra. Some of these cases
can be anticipated from the hypergraph itself, without explicit
reference to the specific vector representation. However, a
thorough analysis is indispensable to identify all potential
undesirable relations, such as equalities and orthogonalities,
in order to describe all singular configurations accurately.

The analytically obtained coordinatization will, to some
extent, be two-dimensional: The “spiral column” of basis
vectors forming the two contexts or blocks {4, 9, 14} and
{2, 7, 12} lies on the hyperplane that is parallel to the x-y
plane, at z = 1/

√
3. The third dimension is used to “lift”

these two-dimensional vectors so that the proper orthogonality
relations are satisfied [30].

The contexts {4, 9, 14} and {2, 7, 12} can be coordinatized
by assuming that they lie on a cone with an angle arccos

√
2/3

and an axis that we choose, without loss of generality, as the
“north pole” or z axis (0, 0, 1).

Again, without loss of generality, we may choose vertex

4 to be represented by the unit vector (
√

2
3 , 0, 1√

3
). Due to

orthogonality and the choice of the cone, we thereby fix the
positions of the two vertices 14 and 26, which are in the
same context as 2. This completes the construction of the
orthonormal basis representing {4, 9, 14}.

The context {2, 7, 12} can be obtained by rotating the unit
vectors {4, 9, 14} around the z axis (0, 0, 1) by an angle α.
As a result, these vectors lie on the same cone. For the sake
of finding an instance, the choice α = π/3 complies with the
requirements. Thus, we obtain the orthonormal basis repre-
senting {2, 7, 12}.

Once the contexts {4, 9, 14} and {2, 7, 12} have been as-
signed vector labels, the other vertices and contexts are
determined, e.g., by cross products. This concludes the con-
struction of the orthonormal bases representing {3, 8, 13},
{5, 10, 15}, and {1, 6, 11}. Thus, the vector labels for the hy-
pergraph depicted in Fig. 2 are enumerated.

The above construction can always be performed, but it
leads to undesired results in several singular cases discussed
below.

Excluding symmetrical solutions, we can, without loss of
generality, focus our attention on α within the range of [0, π ].
However, we should exclude the case where α = 0 because,
in that scenario, {4, 9, 14} and {2, 7, 12}, as well as {5, 10, 15}
and {1, 6, 11}, would represent the same triples. In this case,
the labels for the lower half of the hypergraph depicted in
Fig. 1 would be identical to those of the upper half.

In this degenerate case, the construction yields nine
vectors, which, through proper rotation, can be associ-
ated with the edges and diagonals of faces of a cube,
for instance, {(1/

√
2)(1,−1, 0), (0,0,1), (1/

√
2)(1, 1, 0),

(1/
√

2)(1, 0,−1), (0,1,0), (1/
√

2)(1, 0, 1), (1/
√

2)(0, 1, 1),
(1,0,0), (1/

√
2)(0, 1,−1)}. The “cube representation” is al-

ways applicable to configurations such as the upper part of
the hypergraph, but it is not the sole representation.

Somewhat surprisingly, the other extreme case, α = π ,
does not degenerate and results in the desired configuration.

For α = 2π/3, the triples {4, 9, 14} and {12, 2, 7} (in this
order) are the same and the degenerated construction produces
nothing more than these three vectors.

For all remaining values, α ∈ (0, π ] \ {2π/3}, we ob-
tain 15 distinct vectors satisfying the desired orthogonality
relations. Nonetheless, it is important to acknowledge the
possibility of additional orthogonalities that could render our
diagram incorrect. Fortunately, there are only a limited num-
ber of vector pairs that require verification for orthogonality.
All linear subspaces form an orthomodular lattice. It is known
that such diagrams do not contain cycles of length four, at least
in our case of three-element contexts (for more details, refer
to Ref. [16]). Therefore, any pair of vectors representing this
“undesirable orthogonality” must have a minimum distance
of four in our diagram. A typical example is the pair 5 and
11, and, up to isomorphism, it appears to be the only one.
Using computer algebra we have determined that this situation
occurs for a single value:

α0 = 2arctan

{
1

5

[
−29 + 2

2
3 2

(
75(69)

1
2 + 623

) 1
3

+1

3

(
538272 − 64800(69)

1
2
) 1

3

] 1
2
}

≈ 0.886 257. (5)

For potential future reference, we present the corresponding
diagram for α0 in Fig. 3. In this degenerate case, the hyperdia-
gram obeys exclusivity (but not completeness) in its respective
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FIG. 3. A degenerated hypergraph for α0 ≈ 0.886257 has more
orthogonalities than desired.

pseudocontext because it serves as a true-implies-false gadget
for the two remaining elements in its pseudocontext.

For all values of α other than those mentioned ear-
lier, we acquire vector coordinatizations and thus FORs of
the diagram depicted in Fig. 1. These coordinatizations are
nonisomorphic.

IV. EXAMPLE 2: GENERALIZED FALSE-IMPLIES-FALSE
AND TRUE-IMPLIES-TRUE GADGET HYPERGRAPHS

The three-uniform hypergraph depicted in Fig. 4 is the
pasting of two gadget graphs introduced earlier and was first
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FIG. 4. Hypergraph of a configuration of observables and con-
texts containing 36 atoms in 22 contexts. Pseudocontexts are marked
by dashed boxes.
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FIG. 5. Graphical representation of the proof that there are two
triples of elements or atoms {4, 16, 28} and {10, 22, 34} which are
not on a hyperedge and whose respective probability sums are equal.
The coverings of the hypergraph depicted in panels (a) and (b) in-
clude 11 contexts but omit the elements mentioned.

proposed in a letter by Rogalewicz [31]. It was the addressee,
René Mayet, who discovered the potential of this observation
and possibilities of its generalization which allowed future
results [21] and [22]. This example has 36 atoms in 22
contexts.

Assuming exclusivity and completeness there are two
triples of elements or atoms {4, 16, 28} and {10, 22, 34} which
are not on a hyperedge and whose probability sums are equal.
The coverings of the hypergraph depicted in Figs. 5(a) and
5(b) include 11 contexts but leave out the elements mentioned.
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Therefore,

36∑
i=1

p(i) =
∑

i∈covering (a)

p(i) + p(4) + p(16) + p(28)

= 11 + p(4) + p(16) + p(28)

=
∑

i∈covering (b)

p(i) + p(10) + p(22) + p(34)

= 11 + p(10) + p(22) + p(34), (6)

and p(4) + p(16) + p(28) = p(10) + p(22) + p(34). One
immediate consequence of this result is that two contexts
{4, 16, 28} and {10, 22, 34} can be added, but not just one of
them. More precisely, for the coordinatization of the hyper-
graph in terms of vector labels discussed below, when the z
coordinates of 4, 16, and 28 are 1/

√
3, so are the z coordinates

of 10, 22, and 34, and these triples form orthonormal bases. (In
contrast with this, the hypergraph from Fig. 1 does not allow
the addition of any other context.)

A. Representation in terms of sets and vectors

The hypergraph depicted in Fig. 4 allows both a classical
and a quantum representation.

1. Quasiclassical representation in terms of partitions of sets

The hypergraph encompasses a total of 225 two-valued
states, which will not be exhaustively enumerated in this arti-
cle. However, it is pertinent to emphasize that the set of states
is indeed separable. In Fig. 6(a), we present a depiction of a
canonical coloring of the hypergraph in Fig. 4, where all three
colors are represented within each of the blocks, also referred
to as cliques.

It is worth noting that, in this particular coloring,
pseudoblocks or pseudocontexts such as {4, 16, 28} and
{10, 22, 34} also allow a three-coloring.

Identifying two colors with the value 0 and one color with
the value 1 is a straightforward procedure, as illustrated in
Fig. 6(b). This enables the derivation of one of the 255 two-
valued states that is supported by the hypergraph depicted in
Fig. 4.

In a classical context, achieving a probability of one for
specific observables within the triples 4, 16, 28 and 10, 22, 34
is feasible, while registering a probability of zero for the
remaining observables. However, this classical scenario con-
trasts with the quantum-mechanical perspective because the
triples are not located on a shared edge and thus prevent the
realization of such probabilities.

Moreover, there exist two-valued states that are 0 on
all of the observables in the pseudocontexts {4, 16, 28} and
{10, 22, 34}, as well as two-valued states that are 1 on all of
them. As classical probabilities are the convex combinations
of all two-valued states [23,24], we obtain bounds for the sum
of probabilities p in the pseudocontexts:

0 � p(4) + p(16) + p(28) = p(10) + p(22) + p(34) � 3.

(7)

1

2

3 4 5

6

7

8

91011

12

13

14

15 16 17

18

19

20

212223

24

25

26

27 28 29

30

31

32

333435

36

(a)

1

2

3 4 5

6

7

8

91011

12

13

14

15 16 17

18

19

20

212223

24

25

26

27 28 29

30

31

32

333435

36

(b)

FIG. 6. (a) One canonical [26] coloring of the hypergraph.
(b) One two-valued state derived from the canonical coloring de-
picted in panel (a), obtained from this coloring by identifying one
color red with the value 1 and the two remaining colors green and
blue with the value 0.

Because of the lower and upper bounds 0 and 3, respec-
tively, the hypergraph can be used as a gadget hypergraph
exhibiting a generalized true-implies-false and true-implies-
true sets of propositions in noncontextual hidden-variable
theories [32]: If, say, the input state is chosen to be triple-0 or
triple-1 on one pseudocontext, then the other pseudocontext
exhibits an identical performance. This property is symmet-
ric with respect to the exchange of the pseudocontexts. This
represents a generalization of the Specker bug [5,33,34] and
the true-implies-false gadgets of the Hardy type [35–37] (for
a historical overview, refer to Ref. [32]).
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FIG. 7. The hypergraph depicted in Fig. 4 cut along the vertical
axis formed by {4, 16, 28} and {10, 22, 34}.

2. Quantum representation in terms of vector labels

Throughout this section, when we refer to “elements” (of
edges of the hypergraph) or “points,” we are referring to “unit
vectors extending from the origin to those points.”

In regard to labeling vertices with vectors, we have not
been able to find suitable labels using the previously employed
heuristic method. Therefore, we have extended the analytic
strategy for coordinatization used earlier in Sec. III A 2—to
find FORs; that is, vertex vector labels obeying mutual or-
thogonality for the other vertex labels on the same edge—for
the hypergraph in Fig. 4 as follows: The hypergraph will be
partitioned into two sides—a “left” and a “right” side—and
thereby “cut” along the “vertical axis” formed by the six
elements {4, 16, 28} and {10, 22, 34}.

As depicted in Fig. 7 the two parts are the gadgets from
Fig. 1 and we use their coordinatization from the previous
section. On the left-hand side, we utilize it in a literal sense,
with the angle α serving as a degree of freedom. The right-
hand side is a mirror image of the left-hand side, and we
employ the same coordinatization (with the same α). The only
difference is that we rotate it around the z axis by an angle β.
This means that “adjacent” pairs of points on the left and the
right side, such as the pairs 2 and 6 or 8 and 12 or, in particular,
3 and 5, are a rotation angle β apart along the z axis. Moreover,
because of this rotation around the z axis, points 3 and 5 lie on
the same circle with the same “longitudinal” z coordinate.

In the final stage, the two parts will be “pasted” or
“stitched” together by observing the proper orthogonality re-
lations. To achieve this, β must be chosen in such a way that
points 3 and 5 become orthogonal. Once this condition is met,
all other necessary orthogonalities follow from the rotational
symmetry.

To determine β as a function of α, we first observe that, as
has been pointed out before, points 3 and 5 lie on the same
circle with the same longitudinal z coordinate. For point 3

TABLE I. Typical values of the function β as a function of α in
our construction. The value α = β = 2π/3 is disallowed because it
yields degeneracies due to multiplicities of vectors, see Sec. III A 2.

α β(α)

0 π

2
π

3 π − arccos 1
14 = arcsec(−14)

2
3 π 2

3 π

π − arccos 4
5 π

this longitudinal z coordinate is already determined by the
construction mentioned earlier in Sec. III A 2. More explicitly,
in terms of the cross product of vectors in three dimensions,
|v3〉 is the unit vector in the direction |v2〉 × |v1〉. Because |v1〉
is the unit vector in the direction |v2〉 × |v12〉, we end up with
|v3〉 being the unit vector in the direction |v2〉 × (|v2〉 × |v12〉).

Therefore, given the longitudinal third coordinate of |v3〉
(which is dependent on α) we already know the identical
longitudinal third coordinate of the corresponding vector |v5〉.
All that is needed is to rotate |v5〉 by a rotation angle β along
the z axis so that the scalar product with |v3〉 vanishes; that is,
〈v3|v5〉 = 0. This yields β as a function of α:

β(α) = arccos

(−1 + cos α

5 + 4 cos α

)

= arcsec[4 + 9(−1 + cos α)−1]. (8)

Note that the third longitudinal coordinates of |v3〉 and |v5〉
must be less than 1/

√
2 because, if they exceed 1/

√
2, this

circle cannot contain orthogonal vectors. In the case where the
third longitudinal coordinate is 1/

√
2, the orthogonal vectors

are on opposite sides, resulting in β = π . Some values of β as
a function of α are presented in Table I.

The function β(α) is defined for α ∈ [0, αmax], where
αmax = π − arccos(4/5) = 2 arctan 3. In combination with
the restrictions from the previous section, we allow values
α ∈ (0, 2 arctan 3] \ {2π/3, α0}. In all these cases, we ob-
tain (nonisomorphic) coordinatizations. We acknowledge that
there may be some (finitely many) values of α that could lead
to additional orthogonalities not depicted in the hypergraph.

For example, for α = π/3 and β(π/3) = arcsec(−14), the
vector labels of the pseudocontexts are rendered by this con-
struction as follows:

|v4〉 =
(

1

14

√
1

15
(209 − 9

√
65),−5 + 3

√
65

70
√

2
,−

√
13

15

)
,

|v16〉 =
(√

65 − 3

14
√

6
,

1

14

√
69

5
+

√
65,−

√
13

15

)
,

|v28〉 =
(

−15 + 2
√

65

35
√

6
,

√
65 − 10

35
√

2
,−

√
13

15

)
,

|v10〉 =

⎛
⎜⎝ 1√

30(97 + 12
√

65)
,

10 + √
65

35
√

2
,−

√
13

15

⎞
⎟⎠,
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|v22〉 =
(

−3 + √
65

14
√

6
,− 1

14

√
1

5
(69 − 5

√
65),−

√
13

15

)
,

|v34〉 =
(

45 + √
65

70
√

6
,

5 − 3
√

65

70
√

2
,−

√
13

15

)
. (9)

Notice that all six lie in the plane z = −√
13/15. There

is an equidistancing of the two triples {4, 16, 28} and
{10, 22, 34} in terms of the Hilbert-space inner products:

〈v4|v16〉 = 〈v4|v28〉 = 〈v16|v28〉
= 〈v10|v22〉 = 〈v10|v34〉 = 〈v22|v34〉 = 4

5 . (10)

The sums of the projection operators of the respective
triples yield diagonal matrices

|v4〉〈v4| + |v16〉〈v16| + |v28〉〈v28|
= |v10〉〈v10| + |v22〉〈v22| + |v34〉〈v34|
= diag

(
1
5 , 1

5 , 13
5

)
. (11)

A min-max argument [38] yields bounds for the quantum
probabilities of the sums of observables in the two pseudocon-
texts {4, 16, 28} and {10, 22, 34} that are strictly smaller than
the classical bounds (7). In this case,

0 < 1
5 � p(4) + p(16) + p(28)

= p(10) + p(22) + p(34) � 13
5 < 3. (12)

The triples of vectors {|v4〉, |v16〉, |v28〉} and
{|v10〉, |v22〉, |v34〉} lie on a cone with the z-axis vector
(0,0,1) as its symmetry axis |z〉 = (0, 0, 1), and an aperture
of arccos|〈v4|z〉| = · · · = arccos|〈vz|z〉| = arccos

√
13/15 ≈

0.374 ≡ 21.4◦. That is, the construction renders vectors in
the pseudocontexts whose convex combinations (with equal
weights) are equal to the z axis (0,0,1).

Figure 8 presents the dependencies of the angle β be-
tween corresponding vectors on the contexts {2, 14, 26} and
{6, 18, 30}, and the “aperture” angle of the cone on which
{4, 16, 28} and {10, 22, 34} lie relative to the z axis, as a
function of the angle α between corresponding vectors on the
contexts {2, 14, 26} and {12, 24, 36} as well as {6, 18, 30} and
{8, 20, 32}.

V. DISCUSSION

The observed scenario can be understood within the frame-
work of Spekkens’ contextuality [1], a broader concept that
extends the initial understanding of contextuality within quan-
tum theory. Measurement contextuality highlights differing
statistical predictions across various models, particularly con-
cerning quantized systems and classical ontological models.

The type of measurement contextuality introduced earlier
is independent of the preparation procedure. We can establish
equivalence between measurement procedures by summing
the probabilities of elements within their corresponding pseu-
docontexts. This summation process enables us to define
equivalence relations among measurements, resulting in the
formation of distinct equivalence classes.

This form of contextuality arises from the observation that
quantum realizations of the hypergraph defining the pseudo-

0 8 4
3
8 2

5
8

3
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0

8

4

3
8
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5
8
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8
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3
8 2

5
8

3
4
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3
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2

5
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4

7
8
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er
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re

FIG. 8. Dependencies of the angle β and the aperture angle of
the cone, on which {4, 16, 28} and {10, 22, 34} lie relative to the z
axis. The dashed (blue) line represents β, and the solid (red) line
represents the aperture angle as functions of the angle α. The units
of angles are in radians.

contexts, which adhere to the equivalence constraints, do not
violate a specific bound on the sum of probabilities within
these pseudocontexts. In contrast, classical realizations can
exceed this bound.

This type of contextuality can be quantified by observing
the sums of the observables in the pseudocontexts such as
{4, 16, 28} and {10, 22, 34} depicted in Fig. 4. As mentioned
earlier, there exists a separating set of two-valued states that
are either 0 or, alternatively, 1 on all of the observables in
the pseudocontexts. Consequently, there exist classical bounds
(7) that exceed the quantum bounds (12) obtained from a
min-max calculation.

Pseudocontexts in general, and the statistical equivalence
of pseudocontexts in particular, have the potential to serve as
valuable tools for studying quantized systems beyond merely
certifying their nonclassical nature. These pseudocontexts can
be correlated with non-orthogonal bases in Hilbert space, and,
due to the preparation independence of their probability sums,
represent generalizations of orthogonal frames.

Equality of the probability sums across pseudocontexts is
only possible when considering more than two observables
(e.g., triples) within each pseudocontext and in Hilbert spaces
of dimensions greater than two. This restriction arises from
the inherent impossibility of intertwining edges with fewer
than three observables.

Assume two couples of vectors, {|a〉, |b〉}, {|c〉, |d〉}, such
that each state attains the same sum of values on them. In
particular, this holds for any vector state determined by a
vector |e〉. If |e〉 is orthogonal to |a〉, |b〉, this sum is zero,
hence |e〉 must be orthogonal also to |c〉, |d〉. This implies the
equality of the orthogonal spaces, {|a〉, |b〉}⊥ = {|c〉, |d〉}⊥,
and all four vectors |a〉, |b〉, |c〉, |d〉 lie in a plane. Taking
now |e〉 in this plane, the sums of the corresponding vector
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state over the couples are not constant because |a〉 �⊥ |b〉. The
maximum is attained when |e〉 is an axis of symmetry of |a〉,
|b〉 and the value of this maximum determines the angle of
|a〉, |b〉. The same applies to |c〉, |d〉, so these couples must be
equal.

Furthermore, these pseudocontexts can also function as
gadgets for both false-implies-false and true-implies-true sce-
narios. They constitute broader and extended variations of the
Specker bug and hypergraphs that necessitate a true-implies-
true (TITS) set of two-valued states.

It can be argued that, to a certain extent, these
observables are intricately interconnected or grouped
together, despite lacking mutual co-measurability. This
situation draws parallels with the Einstein-Podolsky-Rosen
scenario [39,40]. For instance, one could consider the
utilization of an entangled singlet state involving two or
three constituents (in three dimensions per constituent)
[41, Table 4], simultaneously measuring all elements of
a pseudocontext, or alternatively, elements in different
pseudocontexts, (1/

√
3)(−|0, 0〉 + |−1, 1〉 + |1,−1〉)

and −(1/
√

6)(|−1, 0, 1〉 + |0, 1,−1〉 + |1,−1, 0〉) +

(1/
√

6)(|−1, 1, 0〉 + |0,−1, 1〉 + |1, 0,−1〉), respectively.
For instance, with a two-partite singlet state and in an
Einstein-Podolsky-Rosen-type setup, we can measure one
observable of one pseudocontext with one of the two
particles. Similarly, we can measure one observable of the
other pseudocontext with the second particle in the entangled
particle pair. Observing the cumulative statistics, potentially
employing a protocol akin to Bennett and Brassard’s approach
[42], could offer a dependable means of certifying the
generation of quantum random numbers.
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Megill and Mladen Pavičić for providing a C++ program that
heuristically computes the faithful orthogonal representations
of hypergraphs written in MMP format, given possible vector
components. This research was funded in part by the Austrian
Science Fund (FWF), Project No. I 4579-N, and by the Czech
Science Foundation Grant No. 20-09869L.

The authors declare no conflict of interest.

APPENDIX A: BOOLEAN SET REPRESENTATION OF THE LOGIC DEPICTED IN FIGS. 1 and 4

“Bare, generic” labels 1, . . . , 15 and 1, . . . , 36 are used for the exposition of the original hypergraph. Different label types
b1, . . . , b36 are used for set representations by partition logics, and |v1〉, . . . , |v36〉 for vector label representations.

A systematic way of generating a Boolean set representation is by computing all two-valued states of all atomic propositions,
and then, for each of the atoms, generating an index set of all those two-valued states acquiring the value 1 on that atom [25].

1. Boolean set representation of the logic depicted in Fig. 1

For the logic depicted in Fig. 1 the 24 two-valued states yield the following quasiclassical vertex labels:

b1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
b2 = {11, 12, 13, 14, 15, 16, 17, 18},
b3 = {19, 20, 21, 22, 23, 24},
b4 = {1, 2, 3, 4, 11, 12, 13, 14},
b5 = {5, 6, 7, 8, 9, 10, 15, 16, 17, 18},
b6 = {1, 5, 6, 11, 12, 15, 16, 17, 19, 20},
b7 = {2, 3, 7, 8, 9, 21, 22, 23},
b8 = {4, 10, 13, 14, 18, 24},
b9 = {5, 7, 8, 15, 16, 19, 21, 22},

b10 = {1, 2, 3, 6, 9, 11, 12, 17, 20, 23},
b11 = {2, 7, 9, 11, 13, 15, 17, 18, 21, 23},
b12 = {1, 4, 5, 6, 10, 19, 20, 24},
b13 = {3, 8, 12, 14, 16, 22},
b14 = {6, 9, 10, 17, 18, 20, 23, 24},
b15 = {1, 2, 4, 5, 7, 11, 13, 15, 19, 21}. (A1)
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2. Boolean set representation of the logic depicted in Fig. 4

For the logic depicted in Fig. 4 the 225 two-valued states yield the following quasiclassical vertex labels:

b1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,

61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86},
b2 = {87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,

110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131,

132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153,

154, 155, 156, 157, 158, 159, 160, 161},
b3 = {162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,

180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201,

202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220,

221, 222, 223, 224, 225},
b4 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 87, 88, 89, 90, 91, 92, 93, 94, 95,

96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118,

119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133},
b5 = {51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,

75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,

146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161},
b6 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 162, 163, 164,

165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184,

185, 186, 187, 188, 189},
b7 = {27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,

49, 50, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125,

126, 127, 128, 129, 130, 131, 132, 133, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201,

202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221,

222, 223, 224, 225},
b8 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,

62, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 134, 135, 136, 137, 138, 139, 140, 141,

142, 143, 144, 145, 146, 147, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175,

176, 177, 178, 179, 180, 181},
b9 = {15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,

73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 102, 103, 104, 105, 106, 107, 148, 149, 150,

151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 182, 183, 184, 185, 186, 187, 188, 189},
b10 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,

37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,

87, 88, 89, 90, 91, 92, 93, 94, 95, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119,

120, 121, 134, 135, 136, 137, 138, 139, 162, 163, 164, 165, 166, 167, 190, 191, 192, 193, 194,

195, 196, 197, 198, 199, 200, 201},
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b11 = {96, 97, 98, 99, 100, 101, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,

133, 140, 141, 142, 143, 144, 145, 146, 147, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177,

178, 179, 180, 181, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216,

217, 218, 219, 220, 221, 222, 223, 224, 225},
b12 = {87, 88, 89, 90, 91, 92, 93, 94, 95, 102, 103, 104, 105, 106, 107, 108, 109, 110,

111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 134, 135, 136, 137, 138, 139, 148, 149,

150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 182,

183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201},
b13 = {1, 2, 3, 4, 15, 16, 17, 18, 27, 28, 29, 30, 31, 32, 51, 52, 53, 54, 63, 64, 65, 66,

67, 68, 87, 88, 89, 90, 91, 92, 96, 97, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112, 113, 114,

115, 116, 122, 123, 124, 125, 134, 135, 136, 137, 138, 140, 141, 142, 148, 149, 150, 151, 152,

153, 154, 155, 156, 162, 163, 168, 169, 170, 171, 182, 183, 184, 190, 191, 192, 193, 202, 203,

204, 205, 206, 207},
b14 = {5, 6, 7, 8, 9, 10, 11, 19, 20, 21, 22, 23, 24, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,

43, 44, 55, 56, 57, 58, 59, 60, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 164, 165, 166, 172,

173, 174, 175, 176, 177, 178, 185, 186, 187, 188, 194, 195, 196, 197, 198, 199, 208, 209, 210,

211, 212, 213, 214, 215, 216, 217, 218, 219},
b15 = {12, 13, 14, 25, 26, 45, 46, 47, 48, 49, 50, 61, 62, 81, 82, 83, 84, 85, 86, 93, 94,

95, 98, 99, 100, 101, 107, 117, 118, 119, 120, 121, 126, 127, 128, 129, 130, 131, 132, 133, 139,

143, 144, 145, 146, 147, 157, 158, 159, 160, 161, 167, 179, 180, 181, 189, 200, 201, 220, 221,

222, 223, 224, 225},
b16 = {1, 2, 5, 6, 7, 8, 15, 19, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38, 39, 40, 51, 52, 53,

55, 56, 57, 58, 59, 63, 64, 65, 66, 69, 70, 71, 72, 73, 74, 75, 76, 87, 88, 89, 96, 102, 108, 109, 110,

111, 112, 113, 122, 123, 134, 135, 136, 137, 140, 141, 148, 149, 150, 151, 152, 153, 162, 164, 165,

166, 168, 169, 172, 173, 174, 175, 182, 185, 190, 191, 192, 194, 195, 196, 197, 198, 202, 203,

204, 205, 208, 209, 210, 211, 212, 213, 214, 215},
b17 = {3, 4, 9, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 31, 32, 41, 42, 43, 44, 54, 60, 67,

68, 77, 78, 79, 80, 90, 91, 92, 97, 103, 104, 105, 106, 114, 115, 116, 124, 125, 138, 142, 154, 155,

156, 163, 170, 171, 176, 177, 178, 183, 184, 186, 187, 188, 193, 199, 206, 207, 216, 217, 218, 219},
b18 = {27, 28, 29, 33, 34, 35, 36, 37, 45, 46, 47, 48, 51, 52, 55, 56, 57, 61, 63, 64, 65,

69, 70, 71, 72, 73, 81, 82, 83, 84, 108, 109, 110, 111, 117, 118, 119, 122, 126, 127, 128, 129, 130,

134, 135, 136, 140, 143, 144, 145, 148, 149, 150, 151, 157, 158, 159, 190, 191, 194, 195, 196, 200,

202, 203, 204, 208, 209, 210, 211, 212, 220, 221, 222, 223},
b19 = {1, 2, 5, 6, 7, 8, 12, 13, 14, 15, 19, 25, 26, 30, 38, 39, 40, 49, 50, 53, 58, 59, 62,

66, 74, 75, 76, 85, 86, 87, 88, 89, 93, 94, 95, 96, 98, 99, 100, 101, 102, 107, 112, 113, 120, 121,

123, 131, 132, 133, 137, 139, 141, 146, 147, 152, 153, 160, 161, 162, 164, 165, 166, 167, 168, 169,

172, 173, 174, 175, 179, 180, 181, 182, 185, 189, 192, 197, 198, 201, 205, 213, 214, 215, 224, 225},
b20 = {16, 17, 20, 21, 22, 23, 27, 28, 31, 33, 34, 35, 36, 41, 42, 45, 46, 47, 63, 64, 67, 69,

70, 71, 72, 77, 78, 81, 82, 83, 103, 104, 105, 108, 109, 110, 114, 117, 118, 119, 122, 124, 126, 127,

128, 129, 148, 149, 150, 154, 157, 158, 159, 183, 186, 187, 188, 190, 194, 195, 196, 199, 200, 202,

203, 206, 208, 209, 210, 211, 216, 217, 220, 221, 222},
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b21 = {3, 4, 9, 10, 11, 18, 24, 29, 32, 37, 43, 44, 48, 51, 52, 54, 55, 56, 57, 60, 61, 65, 68,

73, 79, 80, 84, 90, 91, 92, 97, 106, 111, 115, 116, 125, 130, 134, 135, 136, 138, 140, 142, 143, 144,

145, 151, 155, 156, 163, 170, 171, 176, 177, 178, 184, 191, 193, 204, 207, 212, 218, 219, 223},
b22 = {1, 2, 5, 6, 7, 12, 15, 16, 17, 19, 20, 21, 22, 25, 27, 28, 30, 31, 33, 34, 35, 38, 39, 41,

45, 49, 53, 58, 63, 64, 66, 67, 69, 70, 71, 74, 75, 77, 81, 85, 87, 88, 89, 96, 98, 99, 100, 102, 103, 104,

105, 108, 109, 110, 112, 113, 114, 122, 123, 124, 126, 127, 128, 131, 132, 137, 141, 146, 148, 149,

150, 152, 153, 154, 162, 168, 169, 172, 173, 174, 179, 182, 183, 190, 192, 202, 203, 205, 206, 208,

209, 210, 213, 214, 216, 220, 224},
b23 = {8, 13, 14, 23, 26, 36, 40, 42, 46, 47, 50, 59, 62, 72, 76, 78, 82, 83, 86, 93, 94, 95,

101, 107, 117, 118, 119, 120, 121, 129, 133, 139, 147, 157, 158, 159, 160, 161, 164, 165, 166, 167,

175, 180, 181, 185, 186, 187, 188, 189, 194, 195, 196, 197, 198, 199, 200, 201, 211, 215, 217, 221,

222, 225},
b24 = {5, 6, 7, 9, 10, 11, 12, 19, 20, 21, 22, 24, 25, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 48,

49, 55, 56, 57, 58, 60, 61, 69, 70, 71, 73, 74, 75, 77, 79, 80, 81, 84, 85, 98, 99, 100, 126, 127, 128, 130,

131, 132, 143, 144, 145, 146, 172, 173, 174, 176, 177, 178, 179, 208, 209, 210, 212, 213, 214, 216, 218,

219, 220, 223, 224},
b25 = {5, 6, 9, 10, 19, 20, 21, 24, 33, 34, 37, 38, 41, 43, 55, 56, 58, 60, 69, 70, 73, 74, 77, 79,

87, 88, 90, 91, 93, 94, 98, 99, 102, 103, 104, 106, 107, 108, 109, 111, 112, 114, 115, 117, 118, 120, 126,

127, 130, 131, 134, 135, 137, 138, 139, 143, 144, 146, 148, 149, 151, 152, 154, 155, 157, 158, 160, 164,

165, 172, 173, 176, 177, 185, 186, 187, 194, 195, 197, 199, 208, 209, 212, 213, 216, 218},
b26 = {1, 2, 3, 4, 12, 13, 14, 15, 16, 17, 18, 25, 26, 27, 28, 29, 30, 31, 32, 45, 46, 47, 48,

49, 50, 51, 52, 53, 54, 61, 62, 63, 64, 65, 66, 67, 68, 81, 82, 83, 84, 85, 86, 162, 163, 167, 168, 169,

170, 171, 179, 180, 181, 182, 183, 184, 189, 190, 191, 192, 193, 200, 201, 202, 203, 204, 205, 206,

207, 220, 221, 222, 223, 224, 225},
b27 = {7, 8, 11, 22, 23, 35, 36, 39, 40, 42, 44, 57, 59, 71, 72, 75, 76, 78, 80, 89, 92, 95, 96,

97, 100, 101, 105, 110, 113, 116, 119, 121, 122, 123, 124, 125, 128, 129, 132, 133, 136, 140, 141,

142, 145, 147, 150, 153, 156, 159, 161, 166, 174, 175, 178, 188, 196, 198, 210, 211, 214, 215, 217, 219},
b28 = {1, 3, 5, 9, 12, 13, 16, 20, 27, 30, 31, 32, 33, 38, 41, 43, 45, 46, 49, 50, 51, 53, 54, 55, 58,

60, 61, 62, 63, 66, 67, 68, 69, 74, 77, 79, 81, 82, 85, 86, 87, 90, 93, 98, 103, 108, 112, 114, 115, 117, 120,

126, 131, 134, 137, 138, 139, 143, 146, 148, 152, 154, 155, 157, 160, 162, 163, 164, 167, 168, 170, 172,

176, 179, 180, 183, 186, 190, 192, 193, 194, 197, 199, 200, 201, 202, 205, 206, 207, 208, 213, 216, 218,

220, 221, 224, 225},
b29 = {2, 4, 6, 10, 14, 15, 17, 18, 19, 21, 24, 25, 26, 28, 29, 34, 37, 47, 48, 52, 56, 64, 65, 70,

73, 83, 84, 88, 91, 94, 99, 102, 104, 106, 107, 109, 111, 118, 127, 130, 135, 144, 149, 151, 158, 165, 169,

171, 173, 177, 181, 182, 184, 185, 187, 189, 191, 195, 203, 204, 209, 212, 222, 223},
b30 = {30, 31, 32, 38, 39, 40, 41, 42, 43, 44, 49, 50, 53, 54, 58, 59, 60, 62, 66, 67, 68, 74, 75, 76,

77, 78, 79, 80, 85, 86, 112, 113, 114, 115, 116, 120, 121, 123, 124, 125, 131, 132, 133, 137, 138, 139, 141,

142, 146, 147, 152, 153, 154, 155, 156, 160, 161, 192, 193, 197, 198, 199, 201, 205, 206, 207, 213, 214,

215, 216, 217, 218, 219, 224, 225},
b31 = {1, 3, 5, 7, 8, 9, 11, 12, 13, 16, 20, 22, 23, 27, 33, 35, 36, 45, 46, 51, 55, 57, 61, 63, 69, 71,

72, 81, 82, 87, 89, 90, 92, 93, 95, 96, 97, 98, 100, 101, 103, 105, 108, 110, 117, 119, 122, 126, 128, 129,

134, 136, 140, 143, 145, 148, 150, 157, 159, 162, 163, 164, 166, 167, 168, 170, 172, 174, 175, 176, 178,

179, 180, 183, 186, 188, 190, 194, 196, 200, 202, 208, 210, 211, 220, 221},
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b32 = {15, 18, 19, 24, 25, 26, 29, 30, 32, 37, 38, 39, 40, 43, 44, 48, 49, 50, 65, 66, 68, 73, 74,

75, 76, 79, 80, 84, 85, 86, 102, 106, 107, 111, 112, 113, 115, 116, 120, 121, 123, 125, 130, 131, 132, 133,

151, 152, 153, 155, 156, 160, 161, 182, 184, 185, 189, 191, 192, 193, 197, 198, 201, 204, 205, 207, 212,

213, 214, 215, 218, 219, 223, 224, 225},
b33 = {2, 4, 6, 10, 14, 17, 21, 28, 31, 34, 41, 42, 47, 52, 53, 54, 56, 58, 59, 60, 62, 64, 67, 70, 77,

78, 83, 88, 91, 94, 99, 104, 109, 114, 118, 124, 127, 135, 137, 138, 139, 141, 142, 144, 146, 147, 149, 154,

158, 165, 169, 171, 173, 177, 181, 187, 195, 199, 203, 206, 209, 216, 217, 222},
b34 = {1, 3, 5, 8, 9, 13, 15, 16, 18, 19, 20, 23, 24, 26, 27, 29, 30, 32, 33, 36, 37, 38, 40, 43, 46,

50, 51, 55, 63, 65, 66, 68, 69, 72, 73, 74, 76, 79, 82, 86, 87, 90, 93, 96, 97, 98, 101, 102, 103, 106, 107,

108, 111, 112, 115, 117, 120, 122, 123, 125, 126, 129, 130, 131, 133, 134, 140, 143, 148, 151, 152, 155,

157, 160, 164, 168, 170, 172, 175, 176, 180, 185, 186, 194, 197, 202, 204, 205, 207, 208, 211, 212, 213,

215, 218, 221, 225},
b35 = {7, 11, 12, 22, 25, 35, 39, 44, 45, 48, 49, 57, 61, 71, 75, 80, 81, 84, 85, 89, 92, 95, 100,

105, 110, 113, 116, 119, 121, 128, 132, 136, 145, 150, 153, 156, 159, 161, 162, 163, 166, 167, 174, 178,

179, 182, 183, 184, 188, 189, 190, 191, 192, 193, 196, 198, 200, 201, 210, 214, 219, 220, 223, 224},
b36 = {1, 2, 3, 4, 8, 13, 14, 15, 16, 17, 18, 23, 26, 27, 28, 29, 30, 31, 32, 36, 40, 42, 46, 47, 50,

51, 52, 53, 54, 59, 62, 63, 64, 65, 66, 67, 68, 72, 76, 78, 82, 83, 86, 96, 97, 101, 122, 123, 124, 125, 129,

133, 140, 141, 142, 147, 168, 169, 170, 171, 175, 180, 181, 202, 203, 204, 205, 206, 207, 211, 215, 217,

221, 222, 225}. (A2)

APPENDIX B: FAITHFUL ORTHOGONAL REPRESENTATION OF THE LOGIC DEPICTED IN FIG. 4

According to an “inverted” definition [28] inspired by Lovász [27], a faithful orthogonal representation or coordinatization
of a hypergraph G with elements 1, . . . , n is a corresponding system of vector labels—that is, unit vectors |v1〉, . . . , |vn〉 in a
Euclidean space—such that if i and j are in the same hyperedge, then |vi〉 and |v j〉 are orthogonal.

There is currently no tractable systematic method for the coordinatization of hypergraphs. The following two faithful
orthogonal representations have been obtained by an ad hoc analytical approach, using rotations by two angles α and β along a
common axis.

1. α = π
3 and β( π

3 ) = arcsec(−14)

In the first faithful orthogonal representation of the hypergraph depicted in Fig. 4, the values α = π
3 and β( π

3 ) = arcsec(−14)
have been chosen:
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2. α = π
2 and β( π

2 ) = arcsec(−5)

The second faithful orthogonal representation of the hypergraph depicted in Fig. 4 uses the values α = π
2 and β( π

2 ) =
arcsec(−5):
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