
Theoretical Computer Science 1003 (2024) 114632

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

How real is incomputability in physics? ✩

José Manuel Agüero Trejo a, Cristian S. Calude a,∗, Michael J. Dinneen a, 
Arkady Fedorov b,c, Anatoly Kulikov b,c, Rohit Navarathna b,c, Karl Svozil d

a School of Computer Science, University of Auckland, New Zealand
b School of Mathematics and Physics, University of Queensland, Australia
c ARC Centre of Excellence for Engineered Quantum Systems, Queensland, Australia
d Institut für Theoretische Physik, TU Wien, Vienna, Austria

A R T I C L E I N F O A B S T R A C T

Keywords:

Incomputability

Localised Kochen-Specker Theorem

3D-QRNG physical implementation

Testing incomputability

A physical system is determined by a finite set of initial conditions and “laws” represented by 
equations. The system is computable if we can solve the equations in all instances using a “finite 
body of mathematical knowledge”. In this case, if the laws of the system can be coded into a 
computer program, then given the initial conditions of the system, one can compute the system’s 
evolution.

Are there incomputable physical systems? This question has been theoretically studied in the last 
30–40 years.

In this paper, we experimentally show for the first time the strong incomputability of a 
quantum experiment, namely the outputs of a quantum random number generator. Moreover, 
the experimental results are robust and statistically significant.

1. Introduction

Incomputability in physics has been studied by many authors [55,56,58,39,23,45,19,21,64,38,22,10,42,30,36,62,15,37,1,3,27,8,

31]. The results in all these articles are theoretical, so following Einstein [25],

Physics constitutes a logical system of thought which is in a state of evolution . . . The justification (truth content) of the system 
rests in the proof of the usefulness of the resulting theorems on the basis of sense experiences, where the relations of the latter to 
the former can only be comprehended intuitively.

we can ask: what is their justification? The word “real” in the title of this article means “a justification of incomputability based on 
usefulness”.

Justifying “usefulness” is not easy. Indeed, for sufficiently complex systems (even reversible) determinism on a “one-by (to)-one” 
evolution basis does not imply predictability [54]. For example, take the 𝑛-body problem: the series of solutions [61,44,53,59,60]

could be “very slowly” convergent [24], or even encode the Halting Problem [57].

In this article, we study experimentally the outputs of a quantum random number generator (QRNG), which was theoretically 
proven to be strongly incomputable, the only QRNG among many candidates – see [34,35,11,55,29,28]. Our main results are: a) 
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we experimentally show the strong incomputability of a quantum experiment, namely the outputs of a quantum random number 
generator, a significant improvement of the results in [2] and b) we prove that the experimental results are robust and statistically 
significant.

We use a located form of the Kochen-Specker Theorem [1,5,6] to derive a class of quantum protocols producing quantum random 
bits [8,9]. Theoretically, it was proved that every infinite sequence generated with these quantum protocols is strongly incomputable 
– no algorithm computing any bit of such a sequence can be proved correct, hence the sequence is maximally unpredictable [5]. 
This result is more robust than the ones in the literature and satisfies Einstein’s requirement of justification: the experimental results 
presented here confirm and complement the theoretical results of incomputability and unpredictability and, quite significantly, the 
choice of physical assumptions.

The paper is organised as follows. In Section 2, we present the theoretical framework for the Localised Kochen-Specker Theorem, 
allowing the construction of strongly incomputable sequences via measurements of value-indefinite observables. In Section 3, we use 
a standard superconducting transmon system to implement logical states as qutrits and realise the theoretical quantum protocols in 
Section 2. In Section 5, we present a method to empirically show the incomputability of the outputs generated in Section 3. The last 
Section 6, we briefly discuss the results presented in this article and suggest further continuations.

2. 3D-QRNG – theory

In this section, we present the theoretical framework allowing the construction of value-indefinite observables, their tolerance to 
measurement errors and the certification of the degree of randomness of their outcomes.

2.1. Notation and definitions

The set of positive integers will be denoted by ℕ. Consider the alphabet 𝐴𝑏 = {0, 1, … ,
𝑏 − 1}, where 𝑏 ≥ 2 is an integer; the elements of 𝐴𝑏 are the digits used in natural positional representations of numbers in the 
interval [0, 1) at base 𝑏. By 𝐴∗

𝑏
and 𝐴𝜔

𝑏
we denote the sets of (finite) strings and (infinite) sequences over the alphabet 𝐴𝑏. Strings will 

be denoted by 𝑥, 𝑦, 𝑢, 𝑤; the length of the string 𝑥 = 𝑥1𝑥2… 𝑥𝑚, 𝑥𝑖 ∈ 𝐴𝑏, is denoted by |𝑥|𝑏 = 𝑚 (the subscript 𝑏 will be omitted if it 
is clear from the context); 𝐴𝑚

𝑏
is the set of all strings of length 𝑚. Sequences will be denoted by 𝐱 = 𝑥1𝑥2… ; the prefix of length 𝑚 of 

𝐱 is the string 𝐱(𝑚) = 𝑥1𝑥2… 𝑥𝑚. Strings will be ordered quasi-lexicographically according to the natural order 0 < 1 < 2 <⋯ < 𝑏 −1
on the alphabet 𝐴𝑏. For example, for 𝑏 = 2, we have 0 < 1 < 00 < 01 < 10 < 11 < 000 … . We assume knowledge of elementary 
computability theory over different size alphabets [13].

By ℂ, we denote the set of complex numbers. We then fix a positive integer 𝑛 ≥ 2 and let 𝑂 ⊆ {𝑃𝜓 ∶ |𝜓⟩ ∈ ℂ𝑛} be a non-empty 
set of one-dimensional projection observables on the Hilbert space ℂ𝑛.

A set 𝐶 ⊂𝑂 is a context of 𝑂 if 𝐶 has 𝑛 elements and for all 𝑃𝜓 , 𝑃𝜙 ∈ 𝐶 with 𝑃𝜓 ≠ 𝑃𝜙, ⟨𝜓|𝜙⟩ =𝑂. A value assignment function (on 
𝑂) is a partial function 𝑣 ∶𝑂→ {0, 1} assigning values to some (possibly all) observables in 𝑂. The partiality of the function 𝑣 means 
that 𝑣(𝑃 ) can be 0, 1 or indefinite. An observable 𝑃 ∈ 𝑂 is value definite (under the assignment function 𝑣) if 𝑣(𝑃 ) is defined, i.e. it 
is 0 or 1; otherwise, it is value indefinite (under 𝑣). Similarly, we call 𝑂 value definite (under 𝑣) if every observable 𝑃 ∈ 𝑂 is value 
definite.

We then fix a positive integer 𝑛 ≥ 2 and let 𝑂 ⊆ {𝑃𝜓 ∶ |𝜓⟩ ∈ ℂ𝑛} be a non-empty set of one-dimensional projection observables 
on the Hilbert space ℂ𝑛. A set 𝐶 ⊂ 𝑂 is a context of 𝑂 if 𝐶 has 𝑛 elements and for all 𝑃𝜓 , 𝑃𝜙 ∈ 𝐶 with 𝑃𝜓 ≠ 𝑃𝜙, ⟨𝜓|𝜙⟩ = 𝑂. A value 
assignment function (on 𝑂) is a partial function 𝑣 ∶𝑂→ {0, 1} assigning values to some (possibly all) observables in 𝑂. The partiality 
of the function 𝑣 means that 𝑣(𝑃 ) can be 0, 1 or indefinite. An observable 𝑃 ∈𝑂 is value definite (under the assignment function 𝑣) if 
𝑣(𝑃 ) is defined, i.e. it is 0 or 1; otherwise, it is value indefinite (under 𝑣). Similarly, 𝑂 is value definite (under 𝑣) if every observable 
𝑃 ∈𝑂 is value definite.

2.2. The quantum protocol

The protocol is simple: localise a value indefinite observable, measure it, and start again afresh.

2.3. Localised Kochen-Specker Theorem

We assume the following premises to localise a value indefinite observable.

• Admissibility. This assumption guarantees agreement with quantum mechanics predictions. Fix a set 𝑂 of one-dimensional 
projection observables on ℂ𝑛 and the value assignment function 𝑣 ∶𝑂→ {0, 1}. Then 𝑣 is admissible if for every context 𝐶 of 𝑂, 
we have that 

∑
𝑃∈𝐶 𝑣(𝑃 ) = 1. Accordingly, only one projection observable in a context can be assigned the value 1.

• Non-contextuality of definite values. Every outcome obtained by measuring a value definite observable is non-contextual, i.e. 
it does not depend on other compatible observables, which may be measured alongside it.

• Eigenstate principle.1 If a quantum system is prepared in the state |𝜓⟩, then the projection observable 𝑃𝜓 is value definite.
2

1 The motivation comes from Einstein, Podolsky and Rosen’s definition of physical reality [26, p. 777].
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Theorem 1 (Localised Kochen-Specker Theorem [4,5,37,8]). Assume a quantum system prepared in the state |𝜓⟩ in a dimension 𝑛 ≥ 3
Hilbert space 𝐂𝑛, and let |𝜙⟩ be any quantum state such that 0 < |⟨𝜓|𝜙⟩| < 1. If the following three conditions are satisfied: i) admissibility, 
ii) non-contextuality and iii) eigenstate principle, then the projection observable 𝑃𝜓 is value indefinite.

Theorem 1 has two major consequences:

1. it shows how to construct a value indefinite observable effectively,

2. it guarantees that the status of “value-indefiniteness” is invariant under minor measurement errors: this is a significant property 
as no measurement is exact.

We note that Theorem 1, as the original Kochen-Specker Theorem [33], is not valid in 𝐂2, hence the requirement to work in 𝐂3.

How “good” is such a 3D-QRNG, i.e. what randomness properties can be certified for their outcomes? For example, can we prove 
that the outcomes of the 3D-QRNG are “better” than the outcomes produced by any pseudo-random number generator (PRNG)? For 
certification, we use the following assumption:

• epr principle: If a repetition of measurements of an observable generates a computable sequence, then these observables are 
value definite.

Based on the Eigenstate and epr principles, one can prove that the answer to the last question is affirmative: Any infinite repetition 
of the experiment measuring a quantum value indefinite observable generates an incomputable infinite sequence 𝑥1𝑥2… : no PRNG has this 
randomness property.

A stronger result is true. Informally, a sequence 𝐱 is bi-immune if no algorithm can generate infinitely many correct values of its 
elements (pairs, (𝑖, 𝑥𝑖)). Formally, a. sequence 𝐱 ∈ 𝐴𝜔

𝑏
(𝑏 ≥ 2) is bi-immune if there is no partially computable function 𝜑 from ℕ to 

𝐴𝑏 having an infinite domain dom(𝜑) with the property that 𝜑(𝑖) = 𝑥𝑖 for all 𝑖 ∈ dom(𝜑) [12]).

Theorem 2 ([1,8]). Assume the Eigenstate and epr principles. An infinite repetition of the experiment measuring a quantum value indefinite 
observable in ℂ𝑏 always generates a 𝑏-bi-immune sequence 𝐱 ∈𝐴𝜔

2 , for every 𝑏 ≥ 2.

Theorem 3 ([8]). Assume the epr and Eigenstate principles. Let 𝐱 be an infinite sequence obtained by measuring a quantum value indefinite 
observable in ℂ𝑏 in an infinite repetition of the experiment 𝐸. Then, no single bit 𝑥𝑖 can be predicted.

In particular, no single digit of every sequence 𝐱 ∈𝐴𝜔
3 generated by the 3D-QRNG can be algorithmically predicted.

The following simple morphism 𝜑∶ 𝐴3 →𝐴2 transforms a ternary sequence into a binary sequence:

𝜑(𝑎) =
⎧⎪⎨⎪⎩
0, if 𝑎 = 0,
1, if 𝑎 = 1,
0 if 𝑎 = 2,

(1)

which can be extended sequentially for strings, 𝐲(𝑛) = 𝜑(𝐱(𝑛)) = 𝜑(𝑥1)𝜑(𝑥2) … 𝜑(𝑥𝑛) and sequences 𝐲 = 𝜑(𝐱) = 𝜑(𝑥1)𝜑(𝑥2) … 𝜑(𝑥𝑛) … . 
This transformation preserves 2-bimmunity:

Theorem 4 ([8]). Assume the epr and Eigenstate principles. Let 𝐲 = 𝜑(𝐱), where 𝐱 ∈ 𝐴𝜔
3 is a ternary sequence generated by the 3D-QRNG 

and 𝜑 is the alphabetic morphism defined in (1). Then, no single bit of 𝐲 ∈𝐴𝜔
2 can be predicted.

These results have been used to design the following quantum operators of the 3D-QRNG. These 3D-QRNGs operate in a succession 
of events of the form “preparation, measurement, reset”, iterated indefinitely many times in an algorithmic fashion [1]. The first 
3D-QRNG was designed in [1], realized in [37] and analysed in [2]. While the analysis failed to observe a strong advantage of the 
quantum random sequences due to incomputability, it has motivated the improvement in [8], in which the problematic probability 
zero branch 𝑆𝑥 = 0 in Fig. 1.
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Fig. 1. QRNG setup proposed in [1]; the values
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(in blue) correspond to the outcome probabilities.
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Fig. 2. Blueprint for a new QRNG; the values
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(in blue) correspond to the outcome probabilities of setups prepared in the state |𝜓⟩ = |±1⟩.

The next 3D-QRNG is presented in Fig. 2. The unitary matrix 𝑈𝑥 corresponding to the spin state operator 𝑆𝑥 is

𝑈𝑥 =
1
2

⎛⎜⎜⎜⎝
1

√
2 1√

2 0 −
√
2

1 −
√
2 1

⎞⎟⎟⎟⎠
.

As 𝑈𝑥 can be decomposed into two-dimensional transformations [18]

𝑈𝑥 =
⎛⎜⎜⎝
1 0 0
0 −𝑖 0
0 0 −𝑖

⎞⎟⎟⎠ ⋅
⎛⎜⎜⎜⎜⎝

1√
3

√
2
3 0

𝑖

√
2
3 − 𝑖√

3
0

0 0 1

⎞⎟⎟⎟⎟⎠
⋅

⎛⎜⎜⎜⎝

√
3
2 0 − 𝑖

2
0 1 0
𝑖

2 0 −
√
3
2

⎞⎟⎟⎟⎠
⋅

⎛⎜⎜⎜⎜⎝

1 0 0

0 1√
3

√
2
3

0 𝑖

√
2
3 − 𝑖√

3

⎞⎟⎟⎟⎟⎠
,

a physical realisation of the unitary operator by a lossless beam splitter [47,63] was obtained; the new outcome probabilities are 
1/4,1/2,/1/4.

3. 3D-QRNG – physical realisation

To realise the protocols shown in Figs. 1, 2 we used a standard superconducting transmon system [37]. The transmon has a 
weakly anharmonic multi-level structure [32], and its three lowest energy eigenstates |0⟩, |1⟩ and |2⟩ can be used as the logical states 
of a qutrit.

To implement the protocol shown in Fig. 1 we followed the recipe from [37] where the eigenstates of the 𝑆𝑧 operator are mapped 
to the states of the qutrit as follows

{|𝑧,−1⟩, |𝑧,0⟩, |𝑧,+1⟩}→ {|2⟩, |0⟩, |1⟩}. (2)

This mapping provided an advantage of preparing |𝑧, 0⟩ state by cooling down the transmon to the base temperature of a dilution 
refrigerator (∼ 20 mK).

To perform an arbitrary rotation of the qutrit quantum state 𝑅𝑖,𝑖+1
�̂�

(𝜙) we applied microwave pulses resonant to the |0⟩ ↔ |1⟩ or 
|1⟩ ↔ |2⟩ transition frequencies, respectively. Two rotations 𝑅12

𝑦
(𝜋) ⋅𝑅01

𝑦
(𝜋∕2) of the state before the dispersive measurement were 

used to engineer a measurement in the eigenbasis of 𝑆𝑥. The resulting measurement outcomes of the transmon energy eigenstates 
were mapped to the following outcomes of the measurement of 𝑆𝑥 operator: {|0⟩, |1⟩, |2⟩} → {|𝑥, +1⟩, |𝑥, −1⟩, |𝑥, 0⟩}.

To implement the protocol shown in Fig. 2, we used a slightly different encoding:

{|𝑧,−1⟩, |𝑧,0⟩, |𝑧,+1⟩}→ {|1⟩, |2⟩, |0⟩}. (3)

In this case, the state |𝑧, +1⟩ was prepared by cooling the transmon. The following measurement in the eigenbasis of 𝑆𝑥 was engi-

neered by applying the same rotations 𝑅01
𝑦
(𝜋∕2) ⋅𝑅12

𝑦
(𝜋∕2) before the dispersive measurements. The measurement outcomes of the 

transmon were then mapped to the following outcomes of the measurement of 𝑆𝑥 operator: {|0⟩, |1⟩, |2⟩} → {|𝑥, 0⟩, |𝑥, −1⟩, |𝑥, +1⟩}.

To measure the transmon, we used the standard dispersive readout scheme where the transmon is capacitively coupled to a 
co-planar waveguide resonator. The difference between the frequency of the resonator (𝑓𝑟 = 7.63 GHz) and the |0⟩ ↔ |1⟩ (𝑓01 =
5.49 GHz) and |1⟩ ↔ |2⟩ (𝑓12 = 5.16 GHz) transitions of the transmon was designed to be much larger than the qubit-resonator 
coupling to ensure that the system is in the dispersive regime. In this regime, the frequency of the resonator depended on the states 
of the transmon and underwent shifts of −8.5 MHz or −15.5 MHz when the transmon was excited in |1⟩ or |2⟩ states, relative to 
𝑓𝑟 when the transmon was prepared in its ground state |0⟩ [32]. We used a Josephson parametric amplifier to distinguish between 
three different transmon states with high fidelity. In addition, we set the readout pulse frequency close to the cavity frequency 
corresponding to the |1⟩ state of the qutrit, which allowed the three possible qutrit states to be well separated on the I-Q plane for 
the time-integrated signal measured with the heterodyne detection scheme. The readout frequency was then fine-tuned to maximise 
the three-level readout fidelity. The measurement response was classified using a convolutional neural network (CNN) to increase 
the readout fidelity further, as described in [43].

The procedure used to generate the random numbers required an initial calibration procedure typical for circuit quantum elec-
4

trodynamics setups. This involved calibration of 𝑓𝑟, 𝑓01 and the 𝑅01
𝑦
(𝜋) and 𝑅01

𝑦
(𝜋∕2) pulses. Two 𝑅01

𝑦
(𝜋∕2) pulses were used to 
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fine-tune 𝑓01 using a Ramsey measurement. The 𝑅01
𝑦
(𝜋) and 𝑅01

𝑦
(𝜋∕2) pulses were then fine-tuned with repeated pulses. A similar 

procedure was followed to calibrate for 𝑓12 and the 𝑅12
𝑦
(𝜋) and 𝑅12

𝑦
(𝜋∕2) pulses.

After initial calibrations, we optimised the readout frequency of a single-shot readout using the Josephson parametric amplifier. 
The CNN is then trained for 50 cycles using 1024 measurements of the readout resonator after preparing each of the three states, |0⟩, |1⟩ and |2⟩ as described in [43].

The procedure so far involved repeated measurements where the transmon was reset to |0⟩ state by waiting 35 𝜇 s to reach 
thermal equilibrium (at a decay rate of 250 kHz). We used an active reset protocol described in [40] to increase the experiment cycle 
time. This involved a reset pulse to transfer the |2⟩ state population to the readout resonator and let it decay much faster (at a decay 
rate of 4 MHz). An 𝑅12

𝑦
(𝜋) pulse is then used to transfer the unwanted |1⟩ state population to the |2⟩ state, and the reset pulse was 

used again to transfer |2⟩ state population to the readout resonator. The 𝑅12
𝑦
(𝜋) (40 ns), reset pulse (370 ns), and a wait time (50 ns) 

for the readout resonator to decay were used four times in series to ensure the transmon is in the ground state, taking 1.84 us in 
total. The reset time, the preparation pulses for the protocol and the measurement pulse time amounted to 3.2 us, corresponding to 
a rate of 312.5 kHz. To ensure robust generation of 100 Gbit of random numbers we used the procedure in Section 4.

4. Data generation

The quantum random numbers have been generated using the procedure in Algorithm 1. The algorithm involves intermittent 
checks of the CNN without a reset, if necessary, retraining the CNN and re-calibrating the transmon according to Algorithm 2.

Algorithm 1 Generation.

1: procedure RUNINDEX

2: if files exist then

3: 𝑟 ← 1+ last random_xxx.rbf file number

4: else

5: return 𝑟 ← 0
6: end if

7: return 𝑟

8: end procedure

9: 𝑇rep ← 40 𝜇 s

10: Prepare |0⟩, |1⟩ and |2⟩ ⊳ Cyclically for each repetition

11: Create convolutional neural network (CNN)

12: Train CNN for 50 training cycles

13: 𝑓 ← measurement accuracy ⊳ Assignment fidelity as defined in [43]

14: 𝑐← 0 ⊳ Calibration counter used to terminate

15: 𝑙← 0 ⊳ Low 𝑓 counter used to calibrate

16: 𝑟 ← RUNINDEX

17: while r < 750 do

18: while 𝑓 < 0.86 do

19: if 𝑙 > 20 then

20: if 𝑐 > 5 then

21: ERROR ⊳ Calibrated 5 times already. Failed

22: end if

23: CALIBRATE

24: 𝑐← 𝑐 + 1
25: 𝑙← 0
26: end if

27: 𝑙← 𝑙 + 1
28: Train CNN for 20 more training cycles

29: 𝑓 ← measurement accuracy

30: end while

31: 𝑇rep ← 3.2 𝜇 s

32: Program protocol pulses

33: Measure 226 repetitions

34: Store measurements in random_𝑟.rbf

35: 𝑇rep ← 40 𝜇 s

36: end while

Three types of errors could appear: initialisation errors, errors of the control pulses, and measurement errors. As the initialisation 
and control errors are calibrated to be kept within < 1%, the measurement error was the dominant error: this is due to the relaxation 
of the higher excited states of the qutrit to the lower energy states during the readout time. The typical assignment fidelities have 
been 95%, 88%, and 78% for the ground, first and second excited states, respectively. All the fidelities have been continuously 
monitored during random number generation, and a drop in the value of the average assignment fidelity was used to trigger the 
re-calibration of the protocol (see Algorithm 1).

5. Testing incomputability
5

In this section, we present an empirical method to show the incomputability of the outputs generated in Section 3.
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Algorithm 2 Calibration.

1: procedure CALIBRATE ⊳ Calibrates the transmon preparation and readout

2: 𝑇rep ← 40 𝜇 s

3: set measurement frequency to 𝑓𝑟
4: set previously calibrated settings

5: Ramsey frequency calibration for 𝑓01
6: Calibrate 𝑅01

𝑦
(𝜋) and 𝑅01

𝑦
(𝜋∕2) pulses

7: Ramsey frequency calibration for 𝑓12
8: Calibrate 𝑅12

𝑦
(𝜋) and 𝑅12

𝑦
(𝜋∕2) pulses

9: Calibrate reset pulse frequency

10: set measurement frequency to 𝑓𝑟 − 9 MHz

11: Create convolutional neural network (CNN)

12: Train CNN for 50 training cycles

13: end procedure

5.1. Why do we need testing?

Why should we be interested in answering the above question? After all, incomputability is established by mathematical proof, 
so why would we need experimental corroboration, a weaker argument? An example is a random number generator certified (by a 
mathematical proof) to always produce an incomputable infinite sequence of random bits. Indeed, the mathematical proof certifying 
incomputability is part of a mathematical model which uses certain physical assumptions; its veracity rests on those assumptions. 
The fact that each assumption is reasonable does not automatically guarantee that the set of assumptions is also reasonable globally. 
Experimental testing is essential not only for corroborating the conclusion of the proof but also for supporting the adequacy of the 
model. Furthermore, thorough testing allows one to detect any issues with assumptions made in the theoretical analysis of a device 
or its practical deployment.

Can we test incomputability with a statistical test, that is, with a method of statistical inference, to decide whether the data 
at hand sufficiently supports a particular hypothesis? The answer is negative. Intuitively, this is a consequence of the “asymptotic” 
nature of the notion of computability and its negation: finite variations do not change them. For example, if the sequence 𝑥1𝑥2… 𝑥𝑛… 
is computable (incomputable), then the sequences 𝑦1𝑦2… 𝑦𝑚𝑥1𝑥2… 𝑥𝑛… and 𝑥𝑘𝑥𝑘+1… 𝑥𝑚… are also computable (incomputable) 
for every string 𝑦1𝑦2… 𝑦𝑚 and positive integer 𝑘. For example, the Champernowne binary sequence [17]

0,1,00,01,10,11,000,…

obtained by concatenating all binary strings in shortlex order.2 This sequence is computable and normal, i.e. its digits are uniformly 
distributed: all digits are equally likely, all pairs of digits are equally likely, all triplets of digits are equally likely, and so on. Normality 
is a “symptom” of randomness, and computability is a “symptom” of non-randomness. The Champernown sequence shows that these 
symptoms can be compatible; no statistical test can detect its computability, hence non-randomness.

Does this mean that incomputability cannot be “experimentally tested”? Of course, no. In what follows, we will describe such a 
test used in assessing the quality of outputs of quantum random generators, [14,2].

5.2. Theory

We continue with a topic apparently unrelated to the question discussed in this section: testing of primality of positive integers. 
Primality is considered computationally easy because there exist polynomial algorithms in the size of the input to solve it; the 
first such algorithm was proposed in 2004 [7]. However, every known primality polynomial algorithm is “practically slow”, so 
probabilistic algorithms3 are instead used [52].4

The practical failure of polynomial primality tests motivated the search for probabilistic algorithms for primality [41,46,49,50,

52]. To test the primality of a positive integer 𝑛, the Solovay-Strassen primality test generates the first 𝑘 natural numbers uniformly 
distributed between 1 and 𝑛 − 1, inclusive, and, for each 𝑖 ∈ {𝑖1, … , 𝑖𝑘} checks “quickly” the validity of a predicate 𝑊 (𝑖, 𝑛) based 
on Euler’s criterion (called the Solovay-Strassen predicate). If 𝑊 (𝑖, 𝑛) is true then “𝑖 is a witness of 𝑛’s compositeness”; hence 𝑛 is 
certainly not prime. Otherwise, the test is inconclusive. In this case, the probability that 𝑛 is prime is greater than 1 −2−𝑘. This result 
is based on the fact that at least half the 𝑖’s between 1 and 𝑛 −1 satisfy 𝑊 (𝑖, 𝑛) if 𝑛 is composite, and none of them satisfy 𝑊 (𝑖, 𝑛) if 𝑛
is prime [51].

In detail, we first define the Solovay-Strassen predicate 𝑊 (𝑖, 𝑛) by(
𝑖

𝑛

)
𝑖(𝑛−1)∕2 ≢ 1 mod 𝑛,

2 Strings are first sorted by increasing length, and strings of the same length are sorted into lexicographical order: 0, 1; 00, 01, 10, 11; 000, 001, … 111; …
3 Currently the best runs in time O ((log 𝑛)6).
4 In contrast, factorisation of positive integers is “thought”, but not proved, to be a computationally difficult problem. Currently, one cannot factorise a positive 

integer of 500 decimal digits that is the product of two randomly chosen prime numbers. This fact is exploited in the RSA cryptosystem implementing public-key 
6

cryptography [48].
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where 
(
𝑖

𝑛

)
is the Jacobi symbol5 with 𝑖 ∈ℕ, 𝑖 < 𝑛 − 1.

If 𝑖 ≥ 2 and 𝑊 (𝑖, 𝑛) is true, we say that 𝑖 is an Euler witness (E-witness). If 𝑛 > 3 is an odd composite, and 𝑊 (𝑖, 𝑛) is false for 𝑖 ≥ 1, 
we say 𝑛 is an Euler pseudo-prime for the base 𝑖 or that 𝑖 is an Euler liar (E-liar) for the Solovay-Strassen primality test. In particular, 
the set 𝐿𝑠𝑠(𝑛) of E-liars has at most 𝜙(𝑛)2 elements. Thus, the probability of sampling an E-liar when performing the Solovay Strassen 
test is given by 𝛽𝑛 = |𝐿𝑠𝑠(𝑛)|∕(𝑛 − 1)

The size of 𝐿𝑠𝑠(𝑛) varies for different odd composite numbers. Consider the Carmichael numbers, that is, composite positive 
integers 𝑛 satisfying the congruence 𝑏𝑛−1 ≡ 1 (mod 𝑛) for all integers 𝑏 relatively prime to 𝑛. The largest 𝛽𝑛 is found in a subset of 
Carmichael numbers with 𝛽𝑛 =

1
2 . A Carmichael number passes a Fermat primality test [20, Section 31.8] to every base relatively 

prime to the number, but few of them pass the Solovay-Strassen test. Increasingly Carmichael numbers become “rare”.6

Consider 𝑠 = 𝑠0… 𝑠𝑚−1 a binary string (of length 𝑚) and 𝑛 an integer greater than 2. Let 𝑘 be the smallest integer such that 
(𝑛 − 1)𝑘+1 > 2𝑚 − 1; we can thus rewrite the number whose binary representation is 𝑠 into base 𝑛 − 1 and obtain the unique string 
𝑑𝑘𝑑𝑘−1… 𝑑0 over the alphabet {0, 1, … , 𝑛 − 2}, that is,

𝑘∑
𝑖=0

𝑑𝑖(𝑛− 1)𝑖 =
𝑚−1∑
𝑡=0

𝑠𝑡2𝑡.

The predicate 𝑍(𝑠, 𝑛) is defined by

𝑍(𝑠, 𝑛) = ¬𝑊 (1 + 𝑑0, 𝑛) ∧⋯ ∧ ¬𝑊 (1 + 𝑑𝑘−1, 𝑛), (4)

where 𝑊 is the Solovay-Strassen predicate.

The digits of 𝑠 (rewritten in base 𝑛 − 1) are used to define the Solovay Strassen predicates. If 𝑛 is a pseudo-prime for all the bases 
from 𝑠 used to construct these predicates, we say that 𝑠 is a 𝑍 − 𝑙𝑖𝑎𝑟.

A string 𝑠 is 𝑐-random if 𝐾(𝑠) ≥ |𝑠| − 𝑐; |𝑠| is the string length and 𝐾 is the Kolmogorov complexity [13].

Chaitin-Schwartz Theorem. [16] For all sufficiently large 𝑐, if 𝑠 is a 𝑐-random string of length (𝑙 + 2𝑐) and 𝑛 is an integer whose 
binary representation is 𝑙 bits long, then 𝑍(𝑠, 𝑛) is true if and only if 𝑛 is prime.

This result cannot be used to de-randomise7 Solovay-Strassen probabilistic algorithm because the set of 𝑐-random strings is 
incomputable.8 However, the result can be used to model strings from different random number generators to test the quality of long 
binary strings by comparing their behaviour. In particular, we look at the number of Z-liars found by each generator.

5.3. Experimental analysis

Standard statistical tests of randomness focus on properties of the distribution of bits or bit strings within sequences, failing to 
distinguish between pseudo-random number generators and quantum random number generators. To address this issue, in [2], the 
ability of random strings to de-randomise the Solovay-Strassen probabilistic test of primality was used to compare the algorithmic 
randomness of strings generated by a QRNG and those produced by different PRNGs. Despite leading to mostly inconclusive results, 
the tests conducted showed some advantages offered by a 3D-QRNG against PRNGs with respect to the randomness of its outputs.

The following test, called the fourth Chaitin-Schwartz-Solovay-Strassen test (CSS4) in [2], showed the highest potential for dis-

tinguishing between sources of random strings. Recall that the crucial fact is that the set of 𝑐-random strings is (highly) incomputable.

We construct the Chaitin-Schwartz predicate 𝑍(𝑠, 𝑛) from (4) and generate a pool of Solovay-Strassen predicates composed of the 
digits 𝑠 in base 𝑛 − 1. Then, we fix 𝑐 = 𝑙 − 1 where 𝑙 is the 𝑙-bit binary representation of 𝑛 and sample 𝑠 from chunks of 𝑙(𝑙 + 2𝑐) bits 
in order to look for Z-liars generated by a set of bases for the predicates extracted from the string 𝑠.

In [2], Carmichael numbers were used in the majority of the tests. However, despite Carmichael numbers having a larger 𝐿𝑠𝑠(𝑛), it 
is difficult to find Z-liars due to the length of their binary representation. For example, for the smallest Carmichael number more than 
70 × 232 bits would need to be read to find a Z-liar since the Solovay-Strassen test guarantees a predicate is true with a probability of 
at least one-half when 𝑛 is a composite number. For smaller numbers we expect see to a larger number of Z-liars. Thus, for this test, 
only odd composite numbers less than 50 were used for each round, and the process was repeatedly parsed through each string with 
an incremental bit offset.

Recently in [31], a similar approach was taken by applying these tests to a different set of PRNGs and two different QRNGs 
with a larger set of numbers; each string tested had a length of 226. Once again, the QRNGs showed no clear advantage over the 
PRNGs. Moreover, the difficulty of finding Z-liars led to a similar limitation in terms of numbers tested; Z-liars were only observed 
for composites 𝑛 ≤ 25. Still, an essential characteristic of this test was confirmed: its sensitivity to the size of the pool of unique bases 
extracted from the random strings. No Z-liars were recorded when a repetitive structure generated by their sampling process was 
present. For this reason, we have a variation of this test was performed.

5 If the prime factorisation of the odd number 𝑛 is 𝑝𝑎11 𝑝
𝑎2
2 … 𝑝𝑎𝑘

𝑘
, then 

(
𝑖

𝑛

)
=
(

𝑖

𝑝1

)𝑎1
(

𝑖

𝑝2

)𝑎2
… 

(
𝑖

𝑝𝑘

)𝑎𝑘
.

6 There are 1,401,644 Carmichael numbers in the interval [1, 1018].
7 That is, to transform the probabilistic algorithm into an equivalent deterministic algorithm.
7

8 In fact, highly incomputable [13]: no infinite set of 𝑐-random is computable.
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Table 1

Average number of Z-liars sampled by composite number tested (over 10 strings of length 232).
Composite number tested 9 15 21 25 27 33 35 39 45 49

sha3 265.6 60.3 0 0.2 0 0 0 0 0 0

python3 260.1 58 0 0.3 0 0 0 0 0 0

qutrits 536.4 131.9 0 0.2 0 0 0 0 0 0

Fig. 3. Fourth Chaitin-Schwartz-Solovay-Strassen test: distribution of the average Z-liar counts for all odd composite numbers less than 50.

Table 2

Kolmogorov-Smirnov test 𝑝-values 
for the fourth Chaitin-Schwartz-

Solovay-Strassen test with the Z-

liar count metric.

sha3 qutrits

python3 0.9780 0.0047

sha3 0.0047

We tested two PRNGs and a QRNG: the Python3 Mersenne Twister-based generator, the hashing function SHA3, considered a 
“cryptographically secure PRNG” and the 3D-QRNG described in this paper.

Since the number of Solovay-Strassen tests increases with longer binary representations, the probability of observing a Z-liar

becomes smaller, so a large pool of unique bases was required to detect a significant number of Z-liars [2]. Thus, we prepared ten 
sets of strings of size 232 for each generator and applied the shifting process described in [2] for the test. The average number of 
Z-liars over the composite numbers less than 50 was taken as the metric. Despite only detecting Z-liars for composites up to 25, there 
was a noticeable difference between sources for the numbers 9 and 15. For these numbers, from our predicate construction, we have 
that a minimum of 40 × 213 bits and 40 × 210 bits are needed for a 𝑐-random string to have a chance of finding a Z-liar; see Table 1.

The occurrence of patterns in long enough sequences of random events is inevitable. Since a lower quality of randomness increases 
the rate at which this occurs, the gap between the number of unique bases extractable between RNGs with different qualities of 
randomness widens. Thus, given long enough strings, we can observe this behaviour. Since many unique bases are required to 
increase the likelihood of finding Z-liars, from Fig. 1, we see the advantage offered by a 3D-QRNG generator over other alternative 
sources of randomness; see Fig. 3.

In order to analyse the statistical significance of these results, we conducted the non-parametric and distribution-free two-sample 
Kolmogorov–Smirnov test. This test identifies if two datasets differ significantly without any prior assumption about an underlying 
distribution. To this end, we say that the difference between two datasets is statistically significant if the 𝑝-value obtained through 
this test is less than 0.005. This critical 𝑝-value is chosen to reduce the chance of false positives as well as allow us to provide a direct 
comparison with results from [2]; see Table 2.

We note that there is a significant difference between the 3D-QRNG qutrits and the PRNGs. A similar behaviour was revealed 
8

in [2], where despite the non-conclusive results of the fourth Chaitin-Schwartz-Solovay-Strassen test, the Kolmogorov-Smirnoff test 
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showed that the difference between a 3D-QRNG and the other PRNGs is statistically relevant. The outcomes of the fourth Chaitin-

Schwartz-Solovay-Strassen test presented here show a stronger advantage of 3D-QRNGs over PRNGs.

6. Conclusions

This article uses a located form of the Kochen-Specker Theorem to derive a physical realisation of a class of 3D-QRNGs by means 
of a superconducting transmon. The sequences produced by these 3D-QRNGs are strongly incomputable, a property that no other 
QRNG provides to date. Furthermore, we have used a non-statistical randomness test to probe experimentally the incomputability of 
its generated long strings: for the first time, a provable advantage over the best PRNGs was found. This result has been achieved by 
using the Chaitin-Schwartz Theorem to probe the “usefulness” of generated quantum random bits, a form of Einstein’s justification.

These results highlight the real effects of incomputability in quantum systems and complement the theoretical certification via 
value indefiniteness of the class of QRNGs implemented. Furthermore, the experimental results confirm and complement incom-

putability and, quite significantly, the choice of physical assumptions in the theoretical part.

Finally, there is a strong motivation for developing alternative tests capable of probing at algorithmic properties of randomness 
that better suit a wide range of applications where the quality of randomness needs to be assessed quickly or dynamically.
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