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In this article, we investigate classical simulations of quantum-type probabilities and correlations
that defy Boole’s conditions of possible experience, specifically the Clauser-Horne-Shimony-Holt
inequality, and even surpass the Tsirelson bound. We demonstrate that such violations can be
achieved by encoding a single bit to communicate the measurement context. Our findings highlight
the crucial role of context communication in reproducing quantum correlations that are stronger than
classical limits, providing insights into the fundamental principles underlying entangled systems.

I. UNRAVELING THE CONUNDRUM OF THE
EINSTEIN-PODOLSKY-ROSEN (EPR)

PARADOX

In order to fully grasp the distinction between quan-
tum entanglement and classical correlations, we will con-
struct classical states that exhibit certain characteristics
of quantum entangled states. These classical states pos-
sess indefinite values for individual outcomes, yet they
are correlated or relationally encoded in such a way that
measurement of a particular outcome on one side guar-
antees the outcome of the same experiment on the other
side with certainty. The key difference between quan-
tum and classical systems lies in the ontology of the mi-
crostates. While classical physical states are statistical
and have completely specified individual value-definite
properties, such value definiteness in quantum mechanics
is postulated to hold true only for a specific context or a
‘star-shaped’ multiplicity of contexts (as proposed in [1]),
corresponding to the particular pure state in which the
particle was prepared (preselected).

II. ENHANCING UNDERSTANDING OF
EPR-TYPE CONFIGURATIONS WITH

CLASSICAL SHARES

In this section, we investigate classical models of sin-
glet states. While a deterministic outcome is obtained
by considering individual micro-states, bundling these
micro-states effectively leads to value indefiniteness in
the macro-states.

The distinction between micro- and macro-states,
rooted in the philosophical concepts of ontology and epis-
temology, respectively, finds parallels in classical statisti-
cal mechanics [2]. In Maxwell’s own words [3, p. 442], “I
carefully abstain from asking the molecules which enter
where they last started from. I only count them and reg-
ister their mean velocities, avoiding all personal inquiries
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which would only get me into trouble.” Hence [4, p. 279],
“The truth of the second law is, therefore, a statistical,
not a mathematical, truth, for it depends on the fact that
the bodies we deal with consist of millions of molecules,
and that we never can get hold of single molecules.”

A. Peres’ bomb fragment model: a classical
mechanics analog for the quantum mechanical

’singlet’ state

To establish a concrete classical simulacrum, we begin
by reviewing the explanatory model introduced by Peres
in [5]. Peres proposed a system consisting of a bomb that
is initially at rest, with zero angular momentum, which
subsequently explodes into two fragments carrying oppo-
site angular momenta. Dichotomic, that is, binary, ob-
servables of those individual fragments are then defined
by rα = sign (α · J), where α is a unit vector in an ar-
bitrary direction, chosen by the observer, and J is that
individual particle’s angular momentum.

Disregarding other physical categories and features, we
can denote J as the ‘micro-state’ of the explosion frag-
ments. Ontological realism posits that J exists indepen-
dently of any (finite) observing mind, as suggested by
Stace [6]. However, a precise specification of J may re-
quire an infinite amount of information, such as speci-
fying an orthonormal basis and its respective three real-
valued coordinates.

The epistemology of the classical configuration in ques-
tion requires further clarification. On one hand, it is the-
oretically possible to measure and operationalize J with
arbitrary precision, for example, by probing it with di-
chotomic observables rα at any arbitrary angle α. The
level of precision achieved depends on the specific choices
made by the experimenter, including the means invested
and the measurement setup. In classical systems, it may
even be claimed that, at least in principle, the outcome
of any stochastic process such as a coin toss an explo-
sion, can be controlled, allowing for the production of a
precisely specified state at will, rather than being purely
random [7].

In contrast, to maintain analogy with quantum EPR
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configurations, and for practical considerations, it is as-
sumed that the parameter J remains effectively hidden
and unknown to the experimenter until the observable rα
is measured. Additionally, the experimenter is assumed
to have no effective control or choice over the individual
particle’s angular momentum J due to the supposed un-
controllable detonation of the bomb in the environment,
even if ontological realism suggests otherwise. There-
fore, for practical purposes, by Jaynes’ principle [8] J is
assumed to be equidistributed over all spatial directions,
following Peres’ characterization of it as ‘unpredictable
and randomly distributed.’

Note that, as per the construction of the experi-
ment, two experimenters share individual fragments of
the bomb. Due to the conservation of angular momen-
tum (and the initial angular momentum being zero), each
fragment carries the same absolute but opposing amount
of angular momentum, expressed as ‘opposing’ states de-
noted as J and −J.

Due to the inherent and subjective nature of each ex-
perimenter A and B, as well as the prevailing circum-
stances, the observed outcome rα or rβ of any single ob-
servation appears to be uncontrollable and unpredictable.
This is a consequence of the effective concealment of the
parameter J relative to the available means of A and B.

It appears, albeit erroneously, that the outcomes on
each side of the system occur in an irreducibly ran-
dom manner. These outcomes seem to be spontaneously
and continuously created—in theological terms, creatio
continua—as if by a mysterious process, in relation to
the measurement apparatus and the environment of sides
A and B, which may be spatially separated. This phe-
nomenon is reminiscent of Bohr’s [9–11] concept of condi-
tionality of phenomena [9–11], a contingency due to “the
impossibility of any sharp separation between the behavior
of atomic objects and the interaction with the measuring
instruments which serve to define the conditions under
which the phenomena appear.”

Despite this, joint outcomes from the same explo-
sion exhibit correlations, which are observed statisti-
cally over many experimental runs and through averag-
ing over multiple outcomes. A compelling geometric ar-
gument [5] establishes the existence of these correlations
〈rαrβ〉 = 2θ/π−1 which are linear in the angle θ = ∠αβ
between α and β.

For pairs of outcomes associated with two fragments
of the same bomb, it is always observed that when both
experimenters A and B measure the same observable rα,
that is, β = α, they end up with exactly inverse events.
Specifically, if A obtains outcome rα = ±1, then B ob-
tains outcome −rα = ∓1 along the same direction α,
and vice versa. This phenomenon arises from the config-
uration of the original angular momentum being zero and
the conservation of momentum, where if A measures the
shares ±J, then B measures the (opposite) shares ∓J,
and vice versa.

The relational property described above is shown to
be independent of the spatio-temporal distance between

events. Even under strict Einstein locality conditions,
where events are spatially separated such that no causal
communication can occur between observers A and B,
this property holds. It may seem astonishing to these
observers that despite being ‘far away’ and causally (rel-
ativistically) separated, and despite each event appearing
irreducibly random on their respective sides, the state is
encoded in such a way that every random outcome on
one side necessarily corresponds to the exact opposite
outcome on the other side.

This seemingly perplexing aspect can be resolved by
recognizing that the apparent randomness is an inher-
ent illusion, as it is intrinsically determined by a shared
state J that both spatially separated observers work on,
from an ontological perspective. This unknown shared
state serves as both the source of intrinsic randomness
and the relational encoding. Importantly, in this case,
the share and the two fragments representing it are value
definite and precisely defined, rendering the randomness
epistemic in nature. This is in contrast to Bohr’s sugges-
tion of contextuality, as neither the environment nor any
nesting of Wigner’s friend contributes to the outcome.
One may also consider that the interface or Heisenberg
cut is located at the share, that is, the individual frag-
ments themselves. These fragments, as a reminder, carry
the share J and possess definite values.

B. Finite set partitions in the formation of
analogues to singlet quantum states

One feature of Peres’ model discussed earlier is the infi-
nite amount of information necessary to specify the ‘hid-
den parameter’ share J. In what follows a finite quasi-
classical set representable partition model will be pre-
sented that allows similar EPR-type considerations but
delineates the basic assumptions even further. It is based
on partition logics [12–14] that are pasting of blocks [15]
many allowing a faithful orthogonal representation [16]
by a vertex labeling of vectors that are mutually orthog-
onal within blocks [17, 18]. For the sake of comparison to
the Clauser-Horne-Shimony-Holt (CHSH) configuration,
consider again pairs of particles with four potential ob-
servables a,a′,b,b′. Suppose that a,a are measured on
experimenter A’s side, and b,b are measured on experi-
menter B’s side, respectively.

For the convenience of comparison with the CHSH
configuration we again suppose that these observables
are dichotomic, with outcomes +1 or −1; that is, more
explicitly, a,a′,b,b′ ∈ {−1,+1}. Suppose further
that we are forming ‘singlets’ by ‘bundling opposite-
valued’ particle pairs, represented as ordered pairs H =[
{a,a′,b,b′}, {−a,−a′,−b,−b′}

]
of two four-tuples per

singlet state, forming the singlet states. There are 24 =
16 different types of pairs or singlet states, namely, in
lexicoraphic order (−1 < +1),
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{−1,−1,−1,−1}, {1, 1, 1, 1, }

]
,[

{−1,−1,−1, 1}, {1, 1, 1,−1, }
]
,

. . .[
{1, 1, 1,−1}, {−1,−1,−1, 1}

]
, and[

{1, 1, 1, 1, }, {−1,−1,−1,−1}
]
.

A generalization to more observables is straightforward.

Suppose further that we are filling a generalized
urn [19] with such ordered pairs, and draw (choose) them
‘at random’. We might imagine these ordered pairs as
two balls painted uniformly black; printed on this black
background are the symbols ‘−’ (for value −1) or ‘+’
(for value +1) in exactly four mutually different colors—
one color for each one of the four observables a,a′,b,b′.
Suppose that experimenter A wears two types of eye-
glasses, making visible either observable a or observable
a′; likewise, experimenter B wears two other types of
eye-glasses, making visible either observable b or observ-
able b′. Suppose that, in this subtractive color scheme,
all other three colors appear black. Each one of the two
observers sees exactly one of the four observables. (More
economically, only two colors could be used, assuming
that the two experimenters are isolated from each other.
In such a case, the same two colors can be used on both
sides.)

The ‘hidden parameters’ in this case are the values of
a,a′,b,b′ in the state or share H; and yet the way this
model or game is constructed, every single experimen-
tal run accesses only two of them, corresponding to the
choices a versus a′, and b versus b′. (Of course, experi-
menters may cheat and put off their eyeglasses, thereby
seeing the full state with all variations.)

Classical probabilities and expectations of such models
can be obtained by forming the convex sum over all ex-
treme cases or states. In particular, the CHSH bounds to
these probabilities and expectations are obtained by (i)
first interpreting the tuples codifying these 16 extreme
cases or two-valued states as vector coordinates (with
respect to an orthonormal basis such as the Cartesian
standard basis), (ii) then consider the convex polytope
defined by identifying these 16 vectors as vertices of the
polytope (in four-dimensional vector space R4), and (iii)
finally solving the hull problem, yielding the hull inequali-
ties characterizing the ‘inside-outside’ borders of this con-
vex polytope [20–23].

As mentioned earlier, we must make a distinction be-
tween ontology versus epistemology, or, in another con-
ceptualization, extrinsic versus intrinsic, operational ob-
servables. In this case, it is very transparent that the
seemingly random occurrence of outcomes originated in
the choice or draw of the pair from the (generalized) urn.
There is no influence of the environment on the outcome,
and thus contextuality in the way possibly imagined by
Bohr appears to be absent.

C. Microstates versus macrostates

The inherent uncertainty of experimental outcomes in
classical cases arises from the lack of knowledge in the
specific selection of certain elements: in the Peres model,
it is the angular momentum vectors of the fragments de-
noted as J, and in the discrete generalized urn model
described earlier, it is the random selection of partic-
ular elements H from the set of ball pairs. Since we
are either unwilling or unable or limited in directly ob-
serving these individual micro-states, we refer to the re-
sulting outcomes as exhibiting ‘irreducible randomness’.
This irreducibility is rooted in our epistemic limitations
in capturing and comprehending the individual share as
a microstate.

When the microstate is specified, the correlation for
identical measurements becomes perfect. However, for
non-identical measurements, the share J produces linear
correlations given by the equation: 〈rαrβ〉 = 2θ/π − 1
where θ represents the relative angle in the plane per-
pendicular to the fragment’s velocity. The correlations
in the discrete urn case are bound by linear constraints

−1 ≤ E13, E14, E23, E24 ≤ 1,

−2 ≤ −E13 + E14 + E23 + E24 ≤ 2,

−2 ≤ E13 − E14 + E23 + E24 ≤ 2,

−2 ≤ E13 + E14 − E23 + E24 ≤ 2,

−2 ≤ E13 + E14 + E23 − E24 ≤ 2,

(1)

called the ‘conditions of possibly experience’ by Boole,
who encountered the following challenge [22, 24, 25]:
When provided with (rational) numbers representing the
relative frequencies (or reals representing the probabili-
ties of expectation) of specific events, and these events ex-
hibit logical interconnections, a new layer of constraints
emerges beyond the basic requirements of non-negativity
and being less than one for each number. In instances
where events are intricately linked by logical relations,
additional equalities or inequalities arise among these
numerical values. Consequently, the central issue is to
ascertain the precise numerical relationships—expressed
through a combination of equalities and inequalities—
arising from a defined set of logical relations among the
events. The task involves unraveling the intricate numer-
ical fabric woven by the interplay of logic and frequency,
thereby elucidating the underlying structure of these in-
terconnected events.

A systematic way of deriving Boole’s ‘conditions of
possibly experience’ is by enumerating all possible ‘ex-
tremal’ configurations—formalized by the two-valued
states supported by the logic of events—and interpret-
ing them as vertices of a convex polytope, whose equiva-
lent representation is in terms of its hull, thereby solving
the hull problem [20, 21, 26]. Some of Boole’s condi-
tions have been rediscovered by physicists in recent years,
such as Bell-type or inequalities. Indeed, the last four of
these linear constraints in Equations (1) are called CHSH
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inequalities for historical reasons. Relative to the as-
sumptions, such as value definiteness of all hypothetical
(counterfactual) observables and strict Einstein locality,
As they are violated by quantum events, Boole’s ‘con-
ditions of possibly experience’ pose a challenge for the
classical interpretation of quantum mechanics.

III. VALUE (IN)DEFINITENESS IN EPR TYPE
CONFIGURATIONS WITH QUANTUM SHARES

Quantum mechanics postulates that a pure state,
such as the entangled singlet Bell state |Ψ〉 =
1
2 (|+−〉 − | −+〉), provides the most comprehensive
representation of a quantized system. Any entangled
state, including |Ψ〉, encodes a certain degree of value
indefiniteness in its individual constituents [27–29, §10],
Due to the unitarity of quantum mechanics. if a state
specification is shifted or rescrambled to relational prop-
erties, it results in a tradeoff or a zero-sum game of infor-
mation: any increase in relational information encoded
into a quantum system must be compensated by a de-
crease in individual value definiteness of the components
of the composite system involved [30]. In the case of |Ψ〉,
the value indefiniteness of each component is maximal,
as there is a 50:50 chance of finding the respective parti-
cles in the single-particle states |−〉 and |+〉 individually,
respectively.

We may hypothesize that |Ψ〉 could potentially be con-
sidered as a macro-state, similar to classical examples
mentioned earlier, while there might be microstates anal-
ogous to J or H. This hypothesis can be ruled out
either through statistical analysis [5], or by employing
proof by contradiction [31–35]. It is important to note
that these theorems are contingent upon the assumptions
made, particularly the existence of definite values that re-
flect potential but counterfactual experimental outcomes,
and their independence from the measurement context or
type.

However, when considering Einstein’s original motiva-
tion for the EPR paper as explained to Schrödinger [36–
38], the ontological irreducible randomness (or contex-
tual behavior) exhibited by both ends of the entangled
pair, along with the perfect singlet correlation, presents
a perplexing and seemingly contradictory phenomenon.
How does the second constituent of the pair ‘know’ the
outcome produced by the first constituent, possibly in-
fluenced by its local measurement context and the dis-
position of the measurement instrument? Unlike in the
(quasi-)classical cases discussed in earlier sections, there
is no discernible, albeit potentially hidden, information
or share that corresponds to or determines the single out-
comes encoded in the quantum share.

This challenge is particularly pronounced when the
events or outcomes, along with their local measurement
contexts, are spatially separated under strict Einstein lo-
cality conditions [39]. Moreover, in such cases, the tem-
poral succession of events or outcomes becomes a mat-

ter of conventions determined by observational means,
as this depends on the reference frame, and could occur
simultaneously or sequentially. In Einstein’s terms [37],
“The real state of B thus cannot depend upon the kind
of measurement I carry out on A.’ (German original:
‘Der wirkliche Zustand von B kann nun nicht davon
abbhängen, was für eine Messung ich an A vornehme.”)

In the quantum case, it is not primarily the correla-
tion function that is of significance, which in this case
is described by cos θ (in contrast to the linear classical
correlation 2θ/π− 1 mentioned earlier). Rather, it is the
inherent and irreducible (by whatever quantum means)
ambiguity or indefiniteness in the values of the appar-
ently ‘isolated’ constituents of the Bell singlet state |Ψ〉
in all spatial directions that plays a crucial role. I pur-
posely used the term ’isolated’ in quotations, because the
concept of isolation may be a fallacy, an illusion, a fan-
tasy. In the realm of quantum theory, the constituents
of an entangled multi-partite state lack operational and
theoretical separateness.

For instance, if we were to measure a pair of such par-
ticles that are separated by a significant distance (e.g.,
lightyears) apart from each other in space-like fashion,
regardless of the measurement direction chosen (as long
as the directions at both ends are identical), we would
obtain

(i) value indefiniteness: any individual outcome on
each of the two ends occurs randomly, reflecting
value indefiniteness of individual observables; and
yet,

(ii) relational encoding: those outcomes are the exact
opposite of each other, reflecting the relational en-
coding of the particle pair.

It is important to highlight that local contextuality, as
described by Bohr, cannot be at play on either side of the
measurement in question. In the case of the singlet state,
where the individual state of any of the two constituents
is indefinite, the outcome of the measurement would only
be influenced by the local environment, as it provides the
sole source of information. This would result in maximal
or total contextuality, where the outcome conveys no in-
formation about the state, but only reflects the measure-
ment environment. However, the question arises: how
can two seemingly uncorrelated and spatially separated
environments, potentially light years apart, produce per-
fect (anti-)correlations in individual outcomes of joint
measurements for each pair with a share devoid of any
local (possibly hidden) information?

Einstein proposed a solution to the challenges of quan-
tum entanglement by rejecting the idea of wave function
completeness and embracing the concept of hidden pa-
rameters. For example, a wave function such as |Ψ〉 =
1
2 (|+−〉 − | −+〉) could correspond to a macrostate that
groups or bundles together | + −〉 and | − +〉. The mi-
crostate, for a specific measurement direction α on both
sides, could then be either |+−〉 or | −+〉.
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An objection to this proposal is that it seems ad hoc,
as it would require choosing between | + −〉 or | − +〉
for every direction α, resulting in an infinite amount of
information in the microstate. However, a response to
this objection is that even in the classical case, a precise
choice of J would also require an infinite amount of infor-
mation. This infinite amount of information or specifica-
tion may even be true for the specification of any quan-
tum observable or state, thereby challenging the alleged
finiteness of information encoded in a quantum state of
finite particles [30].

An alternative approach to consider is the hypothe-
sis of altogether discarding the notion of spatio-temporal
distinctness among the elements of an entangled state,
which would challenge the principle of Einstein locality.
This paradigm shift would necessitate a comprehensive
reevaluation of how space-time categories are formed. We
plan to address this intriguing question in a forthcoming
publication, where we will delve deeper into this concept.

IV. ELASTIC BAND TOY MODEL FOR
CLASSICAL LOCAL SIMULATION VALUE

INDEFINITENESS AND RELATIONAL
ENCODING

The following should not be interpreted as a claim
about the fundamental nature of reality, but rather as
a conceptual framework for constructing classical local
model analogues that can provide a basis for understand-
ing capacities of quantized systems. For the purpose of
demonstration, we propose a modified and ‘inverted’ elas-
tic sphere model, inspired by the work of Aerts and de
Bianchi [40–44], that may be considered ‘local’ under cer-
tain circumstances, and satisfies the criteria of value in-
definiteness and relational encoding mentioned earlier.

In this model, depicted in Figure 1(a), the dichotomic
observable A is characterized by the angle α relative to
the angle of the state J. The state is represented as an
elastic string J, and is further characterized by a sin-
gle, unique breaking point x. In each experiment, the
breaking point is pre-determined, and for multiple exper-
iments, the breaking points are evenly distributed along
the entire length of the elastic string. Thus, effectively,

A = sgn
(
J ·A− x

)
. (2)

A. Single observable probabilities and expectations

The angle between the observable vector A and the
elastic string vector J is denoted as α. It is assumed
that the breaking point x of the elastic string is uniformly
distributed along the line segment J+J−, where J+ and
J− are the endpoints of the segment. The radius of the
unit circle is given as 1.

The probability that the breaking point will be ob-
served as lying between J+ and the projection of A onto

J− = −1

J+ = +1

A
AJ

x

α

J

./

(a)

J− = −1

J+ = +1

A

B

AJ

BJ

x

β θ

J

./

(b)

FIG. 1. (a) ‘Inverted’ elastic string model of Aerts and de
Bianchi [40, 42, 43]: A stands for the observable located on
the unit circle. The state J is characterized by its angle (aka
position of the sphere, in this drawing it is at angle zero), as
well as its single, unique breaking point x. α is the angle be-
tween J and A. The ‘quantum-type’ cosine law results from
the orthogonal projection of A onto J at point AJ, as well
as from the assumption that the breaking point x is equidis-
tributed along the line segment J+J−. Whenever x lies within
J+AJ the observable rα is associated with +1; otherwise it is
−1. (b) The same elastic string model with two observables
A and B.

J, denoted as AJ, can be calculated as the length of
the line segment J+AJ, which is equal to 1 + cosα,
divided by the length of the diameter of the circle;
that is, P+(α) = 1

2 (1 + cosα) = cos2(α/2). Likewise,

P−(α) = 1 − P+(α) = 1
2 (1− cosα) = sin2(α/2). The

expectation is an affine transformation of the probabili-
ties; that is, E(α) = P+(α) − P−(α) = 1 − 2P−(α) =
−1 + 2P+(α) = cosα.

B. Joint probabilities and correlations

EPR-type configurations involving elastic band mod-
els can be conceptualized by considering pairs of identi-
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cal elastic bands that share the same initial states. This
means that both bands need to be aligned along the same
ray, and their breaking points should be inversely identi-
cal.

In the case of a ‘singlet’ configuration, the orientation
of the elastic bands should be relatively inverse. This can
be visualized by imagining two initially identical bands,
with one of the bands rotated by 180 degrees around its
midpoint, so that the directions of the bands are essen-
tially opposite to each other.

For two observables A and B in a configuration de-
picted in Figure 1(b) with the relative angle θ = β − α
between the measurement directions 0 ≤ α ≤ π and
0 ≤ β ≤ α associated with A and B, respectively, an
analog argument counting the length of the respective
line segments on J yields

P+(α,β) =
1

2

[
(1− cosβ) + (1 + cosα)

]
= 1 +

1

2
(cosα− cosβ) ,

P−(α,β) =
1

2
(cosβ − cosα) ,

E(α,β) = P+(α,β)− P−(α,β)

= 1 + cosα− cosβ

= 1 + cosα− cos (α + θ) .

(3)

A plausibility check indicates that this correlation func-
tion lies in-between −1 and +1: for α = −θ = π and
β = 0, E(π, 0) = −1; likewise, for α = β and thus θ = 0,
E(π, 0) = +1.

A similar calculation for β ≥ α yields the general form
for 0 ≤ α,β ≤ π:

E(α,β) = 1 +
(

cosα− cosβ
)
sgn
(
α− β

)
= E(α,α + θ) = 1−

[
cosα− cos (α + θ)

]
sgnθ,

(4)

as depicted in Figure 2.
Suppose now a protocol in which α is always aligned

along with the share J, such that α = 0. Then the
correlation in Equation (4) reduces to

E(α = 0,β = θ) ≡ E(θ) = cosθ. (5)

Another option would be to assume that the direction
of J is uniformly distributed in the interval [0, π], result-
ing in

E(θ) =
1

π

∫ π

0

[
1 + cosα− cos (α− θ)

]
dα

= 1− 2

π
sinθ.

(6)

C. Locality and contextuality

The quantum-type cosine form of the two-particle ex-
pectation function E(A,B) should give rise to viola-
tions of classical Boolean ‘conditions of possible expe-
rience’ [20, 22], in particular, the CHSH inequality −2 ≤

FIG. 2. Correlation function of the elastic band model.

E(α,β) + E(α,β′) + E(α′,β) − E(α′,β′) ≤ 2. It is
maximally violated [45, 46] by quantum mechanics at,
for instance, α = 0, α′ = π/2, β = π/4, β′ = −π/4.
This can be readily verified by inserting into the quan-
tum expectation functions E(α,β) = cos(β −α), cosine
of the (relative) angles, so that E(0, π/4)+E(0,−π/4)+
E(π/2, π/4) − E(π/2,−π/4) = cos(−π/4) + cos(π/4) +

cos(π/4)− cos(3π/4) = 2
√

2.

The elastic band model, when analyzed using a specific
protocol, exhibits a correlation pattern that, for one par-
ticular context (but not for other contexts, as discussed
later), is similar to quantum mechanics, as shown by the
expectation function (5). This suggests that, like quan-
tum mechanics, the elastic band model may also allow
for violations of the CHSH inequality.

However, this hypothesis is challenged by Peres’ argu-
ment [5], who thoroughly examined all classically pos-
sible configurations and demonstrated that the convex
sum of their entries never violates the CHSH inequality.
This raises the question of how violations of the CHSH
inequality could occur in the elastic band model, despite
Peres’ findings.

In the following sections, we will present arguments in
favor of an adaptive protocol that adjusts α and α′ to
align with the direction of the share J, as an approach
capable of violating the CHSH inequality. This particular
type of adaptation refers to adapting or changing the
relative positioning of the pairs of observables α,β, α,β,
α′,β, and α′,β′ defining the four contexts containing α
or α′ on one side of the EPR arrangements relative to the
direction of the shared J. This (re)alignment, which also
affects the position of β or β′ relative to J on the other
side of the EPR arrangements, effectively resets those
contexts in terms of J and thereby allows a reshaping
or rescrambling of the correlation function to a uniform
cosine form that is instrumental for violations of a CHSH
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inequality.

Without these (re)alignments, the correlation func-
tion would not maintain its uniform quantum-type co-
sine form. This absence of (re)alignments would en-
able a context-independent assignment of (counterfac-
tual) observables in a Peres-type valuation table, con-
sequently preventing any violation of the CHSH inequal-
ities imposed by classical value definiteness. Conversely,
the adaptive protocol results in a nonlocal, context-
dependent assignment of (counterfactual) observables in
a Peres-type valuation table, thereby allowing for viola-
tions of the CHSH inequalities.

It is worth noting that delayed choice protocols pose
limitations on adaptation. Therefore, under strict Ein-
stein locality conditions, as enforced in studies [39, 47],
non-adaptive protocols can be employed, but adaptive
protocols are not feasible.

First, let us observe that a non-adaptive protocol al-
lowing delayed choice under strict Einstein locality condi-
tions yielding a correlation function of the type of Equa-
tion (4) does not violate the CHSH inequality, say, for
α = 0, α = π/2, β = π/4, β′ = −π/4; indeed it renders

the value
√

2 for the CHSH sum E(α,β) + E(α,β′) +
E(α′,β)−E(α′,β′). Indeed, for β,β′ ≤ α,α′ the CHSH
sum reduces to 2

(
1 + cosα − cosβ

)
≤ 2 which, as per

assumption, α ≥ β, is bounded from above and below
by the classical bounds. The second to fifth colums of
Table I enumerate a simulation (similar to Peres’ Ta-
ble 1[5]) of all four terms of the CHSH inequality in a
non-adaptive setting.

However, when utilizing an adaptive protocol, such as
the one resulting in (5), it is possible for the absolute
value of the CHSH (Clauser-Horne-Shimony-Holt) sum
to surpass the maximal classical value of 2. This occurs
due to the significance of the complete context, including
the need to discern between either A or A′ in order to
unambiguously define B and B′. In Table I, columns
seven to ten present a simulation of all four terms of
the CHSH inequality in an adaptive setting, employing
the same configurations as the simulation for the non-
adaptive protocol mentioned previously.

The evaluation of correlation functions in the CHSH
sum necessitates knowledge not only of the share but
also of the specific context selected, which includes the
choice between A or A′, as well as between B or B′.
In order for violations of the CHSH inequality to occur,
there must be uniformity, which implies that the form
of the correlation function must remain invariant across
all variations of the (classical) share. It is insufficient
to render, say, the classical cosine form of the quantum
correlation function for a particular configuration, such
as setting α = 0 in the general correlation function 1 +
cosα−cos (α + θ) of Equation (3), thereby obtaining the
quantum cosθ form. Because any other configuration
α 6= 0 involving shares J not aligned with α0 yields
correlations that may ‘compensate’ and ‘regularize’ the
CHSH form to its classical bounds.

V. PLASTICITY OF THE ELASTIC BAND
MODEL

The elastic band model exhibits a degree of plasticity,
allowing for the deformation of the circumference of a
circle, as illustrated in Figure 1. In particular, by ap-
plying pressure or other forms of distortion to the outer
circle, elliptic shapes, as depicted in Figure 3, can be ob-
tained while maintaining a constant length of the elastic
band. However, this deformation results in changes to
the length of the convex shape, necessitating compensa-
tion and renormalization in terms of the parametrization
based on the length of the outer shape.

The model indicates the existence of two limits in this
process. The first limit corresponds to a classical scenario
achieved by decreasing the minor axis in Figure 3(a),
which increases the eccentricity. The second limit yields
a unit step function centered around the mid-point of
the elastic band, as described in a previous work by
Krenn and the author [48], by increasing the eccentricity
through increasing the major axis in Figure 3(b). It is
worth noting that similar distortion transformations have
been discussed previously [26], albeit without a concrete
model.

VI. DISCUSSION AND OUTLOOK

The general goal of this paper was twofold. First, to
point out that it is not sufficient to recover, by classi-
cal means, a quantum-type correlation function or some
non-linear, trigonometric form (such as cosine) of prob-
ability for elementary propositions in order to fully re-
construct quantum predictions. And second, and more
importantly, it has been argued that the mind-boggling
features of quantum mechanics reveal themselves only
through delayed choice measurements under strict Ein-
stein locality conditions.

Without the enforcement of delayed choice under strict
Einstein locality conditions, we can still simulate epis-
temic randomness using classical means and the com-
munication of the context. Epistemic randomness is a
type of randomness that arises due to our limited knowl-
edge about the system, rather than inherent properties of
the system itself. Despite the limitations associated with
epistemic versus ontic randomness, we can observe total
relational dependence between pairs of observables. In
other words, these models yield observed quantum phe-
nomena that, for all practical purposes (as referenced
in [49]), are consistent with quantum predictions within
our operational means and practical purposes.

To gain a deeper understanding of these phenomena,
we have constructed a classical model based on Aerts’
elastic band model, with certain modifications. We com-
puted the corresponding quantum-type probabilities and
correlation functions for ‘singlet’ states using this clas-
sical model, while making certain assumptions, particu-
larly regarding (non-)adaptive measurements.
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TABLE I. Peres-type valuation table for 20 runs of the elastic string model: the first number indicates the position of the
breaking point x, the following group of four numbers enumerates instances of single outcomes of the observables A, A′, B,
and B′, the second group of five numbers enumerates the respective expectations AB, AB′, A′B, and A′B′ and the resulting
CHSH sum for the non-adaptive protocol, and the second group of five numbers enumerates these expectations and the resulting
CHSH sum for the adaptive protocol.

non-adaptive, delayed choice adaptive

x A A′ B B′ AB AB′ A′B A′B′ CHSH sum AB AB′ A′B A′B′ CHSH sum

-0.514823 + + + + + + + + 2 + + + − 4

-0.832267 + + + + + + + + 2 + + + + 2

0.920526 + − − − − − + + -2 − − − − -2

0.013375 + − + + + + − − 2 + + + − 4

0.444354 + − + + + + − − 2 + + + − 4

0.486249 + − + + + + − − 2 + + + − 4

-0.760656 + + + + + + + + 2 + + + + 2

0.425472 + − + + + + − − 2 + + + − 4

0.973582 + − − − − − + + -2 − − − − -2

0.626781 + − + + + + − − 2 + + + − 4

-0.35275 + + + + + + + + 2 + + + − 4

0.988427 + − − − − − + + -2 − − − − -2

-0.762208 + + + + + + + + 2 + + + + 2

0.735898 + − − − − − + + -2 − − − − -2

0.0588852 + − + + + + − − 2 + + + − 4

-0.498925 + + + + + + + + 2 + + + − 4

-0.53331 + + + + + + + + 2 + + + − 4

-0.822113 + + + + + + + + 2 + + + + 2

0.0398871 + − + + + + − − 2 + + + − 4

-0.226003 + + + + + + + + 2 + + + − 4
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

〈x〉 = 0 〈CHSH〉 =
√

2 〈CHSH〉 = 2
√

2

This model incorporates the communication of con-
text information, rather than the outcome, and has the
potential to accurately replicate quantum predictions in
the standard experimental setup. For instance, if the
four terms in the CHSH (Clauser-Horne-Shimony-Holt)
sum are sequentially measured in a coordinated fashion,
such that the respective contexts are well known to the
two observers and allow for communication about which
context is used; or alternatively, if the terms entering
the CHSH sum are measured consecutively, one after the
other, this model could yield results that closely resemble
quantum predictions. For instance, by performing obser-
vations ‘AB after breakfast, AB′ after lunch, A′B after
teatime, and A′B′ after supper’—the elastic band model
can deliver quantum performance. Indeed, by deforming
the circumference of the elastic band we obtain a wide
variety of correlation functions; and even stronger-than-
classical correlations such as approximations to the unit
step function [48].

At first glance, this may seem similar to protocols that
involve the transfer of a single bit, as discussed in previ-

ous studies [50, 51]. However, there is one crucial differ-
ence: while the previously quoted protocols necessitate
direct communication of actual measurement outcomes
between the parties, the adaptive protocol introduced
in this study for the elastic band model only requires
communication of the context. In the CHSH simulation
case, this is a single bit. (In that aspect, our proto-
col is not dissimilar to the Wiesner [52] and BB84 [53]
schemes requiring classically communicating the choice
of basis.) If this bit is denoted by 1 co-bit then it may
be compared to 1 bit exchanging outcomes, and consid-
ered to be a ‘weaker’ form of communication—that is,
1 co-bit ≺ 1 bit—because it would be possible to sim-
ulate quantum correlations without revealing the actual
outcomes. Moreover, a 1 co-bit can be used to simulate a
(Popescu-Rohrlich) non-local machine [54] and the asso-
ciated 1 nl-bit by identifying it with the hidden variable
λ transferred [55].

While it has been pointed out that the direct commu-
nication of actual respective measurement outcomes can
be replaced by the invocation of a non-local resource [55],
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FIG. 3. ‘squeezed’ elastic band models, whereby the length
of the elastic band is kept constant but the circumference is
distorted: (a) towards weaker-than-quantum correlations; (b)
towards stronger-than-quantum, classical type correlations.

one may still ask whether the only way to realize such a
non-local resource is by means of a concealed internal
signal between its ports [56]. The protocol introduced by
Cerf, Gisin, Massar, and Popescu [55], which invokes a
generic (Popescu-Rohrlich) non-local machine, in combi-
nation with the realization of such a non-local machine
that uses non-local rubber band shares and pulls and re-
mains causal such that no superluminal signalling occurs
by Sven Aerts [56], is capable of delivering a violation
of the CHSH inequality by classical means, similar to
the direct communication of the context discussed ear-
lier. We conjecture that the protocol introduced by Cerf,
Gisin, Massar, and Popescu, augmented by Aerts’ non-
local resources, can be generalized to render stronger-
than-classical violations of the CHSH inequality.

Furthermore, we postulate that, similar to the elastic
band model previously discussed, the non-local resource
would need to perform uniformly across all possible vari-
ations of legal states of the share. In light of this con-
jecture, it is concluded that achieving this goal would be
impossible through strictly local means.

The analogy between the phenomenon of ‘non-local’
signaling and the cloning (also known as copying) of bits
is intriguing. Just as this type of signaling appears to be
allowed for only one specific parameter setting [56] and
a single context, the copying of a fixed single bit is simi-
larly possible but strictly limited to a single context [57,
Eq.(2.12), page 40].

It could be argued that the information encoded in
an entangled state of two constituents, such as a singlet
state, appears to be purely relational sampling [30, 58],
and therefore quantum entanglement may not provide
any means to encode any potential hidden internal share
J. This is consistent with relativity theory, as the respec-
tive outcomes are uncontrollable and faster-than-light
signaling is not achievable.

The implications of these findings have far-reaching
consequences for various forms of ‘quantum certifica-
tions’ in security applications, such as the generation
of random bits certified by value indefiniteness [59–62],
or EPR-based quantum cryptography [63]. The imple-
mentations of these protocols can be considered ‘good’
only with respect to the means—in particular, strict Ein-
stein locality—highlighting the importance of this factor
in evaluating their effectiveness.

Let us revisit the broader perspective and review the
strategy adopted in this study. One approach to explain
the singlet-type behavior observed in both sides of the
EPR-type (Einstein-Podolsky-Rosen) configuration is to
hypothesize that the constituent particles of a pair pos-
sess a common share that determines their outcomes.
The apparent randomness of these outcomes is attributed
to the random sampling of these shared properties. Ac-
cording to this conception, randomness does not arise
from the measurement process itself, which is often seen
as revealing aspects or properties of the share as well as
of the (supposedly macroscopic) measurement context,
but rather from the inherent randomness of the shared
properties.

One direct approach to achieving this goal is through
Peres’ bomb model, as previously mentioned. However,
this model is incapable of violating inequalities such as
the CHSH inequality. To explain a violation of Bell-
type inequalities, which are based on Boole’s conditions
of possible experience, a cost must be incurred. This
cost could be in the form of one or more bits of com-
munication between the parties at both ends of the EPR
configuration, either by informing the other side of one’s
outcome(s) [50, 51], or by revealing (part of) the measure-
ment context, as proposed in this study. Alternatively,
another option could be to provide the parties with a
non-local machine [55, 56].

My current perspective, though highly speculative and
hypothetical, is that we inhabit a vector-based realm
where entangled quantum states are not truly separated
in space and time. Rather, a pure state represented by a
vector is the complete and sole share, without any hidden
elements that trigger outcomes, as discussed previously.
Both observers have access to and share the same vector,
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which formalizes a pure entangled state. This concept
does not necessarily require a revision of the construc-
tion of space-time coordinate frames, as long as peaceful
coexistence is maintained. In another part of this series,
we will further explore this scenario.
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