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Abstract: In this speculative analysis, interdimensionality is introduced as the (co)existence of uni-
verses embedded into larger ones. These interdimensional universes may be isolated or intertwined,
suggesting a variety of interdimensional intrinsic phenomena that can only be understood in terms
of the outer, extrinsic reality.
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1. A Caveat: Speculation and Progress

Rule inference is the process of hypothesizing a general rule or “law” from examples
or “phenomena” [1,2]. The halting problem is the task to determine, given an arbitrary
computer program and an input, whether the program will eventually halt or continue to
run forever. This has been proven to be unsolvable in general. As the former rule inference
problem can be reduced to the latter halting problem, it is provable unsolvable in general.
This constraint on induction has been coped with by the philosophy of science in a variety
of ways:

Popper suggested that, instead of induction and verification, which appears to be a
hopeless endeavor, falsification might be a good demarcation criterion between science
on the one hand, and on the other hand ideology, sophisms, or, in a more frugal term,
bullshit [3]. Lakatos responded by criticizing that, due to side assumptions and a vast
‘protective belt’ of auxiliary hypotheses, in many practical circumstances, falsification
fails. As a result, contemporaries can seldom predict what might turn out to become a
progressive versus a degenerative research program [4].

Kuhn observed that science may be characterized by brief iconoclastic periods of
revolution, followed by longer conformist periods of consolidation [5]. Feyerabend even
challenged methodology as mythology and ideology akin to religious dogmas, and sug-
gested keeping science wide open and performing an “exhaustive search” of ideas by
allowing “anything” to enter the scientific debate, thereby, imposing little methodological
restrictions [6]; he also recommended a formal separation between state and science, and
lay judges for the evaluation of success [7] and the allocation of scientific funding.

In any case, there seems to be no convergence of conceptual progression. Taking
gravity and celestial motion, for example: the Ptolemaic system was expressed in terms
of geometry. It was superseded by the Copernican revolution that later became based on
Newtonian gravitational forces. Later on, Newtonian gravity was replaced by the curved
geometry of space–time of Einstein’s theory of general relativity. By analogy, it appears
highly likely that our contemporaries would view any model superseding the present
canon as utterly speculative, if not outright nonsense.

Such a historic perspective leads to greater liberty and openness of ideas, and yet
this creativity needs to be guided and stimulated by empirical findings and attempts to
falsify consequences and claims. This amounts to an amalgam of the aforementioned ideas
brought forward in the philosophy of science, resulting in a sort of pragmatism that is
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well balanced between wild fantasy and empirical grounding. Exactly how much of those
ingredients are in order may greatly depend on the temperament and character of the
individual researcher.

We, therefore, present the following considerations with a caveat to the reader, as it
trespasses far beyond any empirically verifiable physics of our time; and yet some aspects
of it might indicate the way to fruitful avenues of scientific modeling. We hope that the
following speculations are not too weird for the realistic, critical, and sober mind. At best
this could be seen as a vision of things to come.

2. Definition

Interdimensionality, or, by another naming, dimensional shadowing [8]—the “emula-
tion” of a lowerdimensional configuration space by a fractal subset of a higherdimensional
manifold—is the (co)existence and (co)habitation of parts or fragments of an “outer” space
of a “higher” extrinsic Hausdorff dimension [9] by some “inner” subspace entity that has a
“lower” or equal intrinsic Hausdorff dimension. One may imagine such a situation as a frac-
tal of Hausdorff dimension d embedded in a continuum, such as the Hilbert space Rn or Cn,
with d ≤ n. Therefore, pointedly speaking, we might exist on a sort of Cantor set or Menger
sponge-like structure—fractals obtained by self-similar elimination of proper parts—of
(almost) an integer Hausdorff dimension, which is part of a high-dimensional super-verse.

Formally, the Hausdorff dimension d of a set A ∈ Rn, defined via the d-dimensional
Hausdorff measure, is based on its “umklapp” property—the sudden change from measure
value zero to infinity if the dimension parameter is taken higher or lower than a unique
value—as follows. Suppose ∪iFi covers A, and suppose further that there exists a limit in
which all individual constituents Fi of this covering become infinitesimal in diameter. Then,
the Hausdorff measure µd, and a unique dimensional parameter d called the Hausdorff
dimension is

µδ(A) = lim
ε→0+

inf
{Fi}

{
∑

i

(
diam Fi

)δ

∣∣∣∣∣ δ ∈ R, δ > 0, ∪iFi ⊃ A,
(
diam Fi

)
≤ ε

}
, (1)

where the infimum is over all countable ε-covers {Fi} of A; with the dimension d as an
“umklapp” parameter of

µδ(A) =

{
0 if δ > d,
∞ if δ < d.

(2)

That is, the Hausdorff dimension d is the unique dimensional parameter at which the
measure µδ as a function of the dimensional parameter value δ smaller or larger than d is
infinite or vanishes, respectively. Note that the diameter “diam” presupposes the notion of
a distance defined via a metric. For self-similar fractal sets, the capacity dimension c is
defined by

c = lim
ε→0+

log[n(ε)]/ log
(

ε−1
)

, (3)

where n(ε) is the number of segments of length ε, equals the Hausdorff dimension d.
An example of a set of integer dimension m embedded into an outer space Rn with

n > m is the set whose (contravariant) coordinates with respect to some (covariant) basis
Rn is given by{(

x1, x2, . . . , xm, r1(x1, x2, . . . , xm), . . . , rn−m(x1, x2, . . . , xm)
)ᵀ∣∣∣xi, rj ∈ R

}
, (4)

where ri(x1, x2, . . . , xm), 1 ≤ i ≤ n − m are some total, possibly constant or random,
choice functions.

For most practical operational purposes [10,11] the intrinsic perception of the dimen-
sionality of such shadowed, interdimensional object might effectively remain that of a
“solid continuum” of that intrinsic (Hausdorff) dimension. It may not be too unreasonable
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to compare this to the common notion of “emptiness of space in-between point particles”
constituting solid physical objects, or the “perceived continuous motion” from individual
still frames [12,13].

There are some findings consistent such speculations: For instance, associated with
every integer-dimensional regular rectifiable m-dimensional fractal embedded in Rn, there
exists a locally defined tangential m–dimensional vector subspace of Rn [9,14]. Even
for non-integer-dimensional fractals, integer-dimensional tangent spaces may be “good”
approximations for all practical physical purposes.

Further examples for cohabitation of continua that need not involve fractals are para-
doxical decompositions, such as Vitali’s partition of the unit interval and the decomposition
of the sphere by Hausdorff [15]. If we relax the definition of dimension, we may also speak
of (dense) “scattered” point sets “inhabiting” the continuum. The variations may be many-
fold; for instance, one may consider partitions or intertwined subsets of continua. One
may not even deal with extrinsic continua but with general sets that allow some form of
intrinsic embedding.

Let us finally review two almost trivial examples of an arbitrary number of one-
dimensional subspaces of R2, as schematically depicted in Figure 1. The first one is a
collection of parallel lines. The second one is a star-shaped configuration intertwining in
the origin, spanned by respective mutually distinct unit vectors. In the latter case, the only
way for “flatlanders” [16] living on different subspaces to communicate with each other is
through a single point—the origin.

(a) (b)

Figure 1. Schematic drawing of interdimensional configurations that are (a) isolated or (b) intertwine,
as seen from some outer, embedding space.

In general, fractals need not be regular and rectifiable and of integer dimension. Rather
they may be “cloud-like shapes”, with “scattered” holes and gaps. Those gaps will not be
perceived intrinsically. Indeed, one may speculate that this situation gives rise to a metric
that essentially mimics curvature [17].

Fractal theory has inspired and evolved into many innovative, useful, and interesting
applications, especially in new materials and nanostructures. Such important developments
can lead us to new views of, and physical means related to, dimensionality [18,19].

As the aim is the provision of a very general analysis that is unconstrained by the
technicalities of specific models, no concrete theory is discussed. Nevertheless, it might
be not too far-fetched to briefly mention some potential connections between interdimen-
sionality and various paradigms in modern particle physics and cosmology. Some of these
involve the description of a volume of space as conceptualized by holographic principles,
such as the AdS/CFT correspondence related to D-branes in string theory, or the ekpyrotic
models relying on string theory, branes, and extra “hidden” dimensions. Other scenar-
ios in the context of the theory of general relativity involve traversable wormholes (aka
Einstein–Rosen bridges) linking disparate points in spacetime.

3. Disjoint and Intertwining Shadows

To proceed to interdimensional motion, we need to consider intertwining areas of
interdimensionality. The simplest nontrivial case is the one schematically depicted in
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Figure 1b in which all universes share a single point of communication. Of greater interest
might be a situation in which an entire region of space is shared. One might think also of a
“small” fraction of a universe “traversing” another universe, such that, compared to the
overall extension of these universes, this common share appears like the tip of an iceberg.

4. Interdimensional Motion

Interdimensional motion is the motion of some “inner” intrinsic subspace in the
“outer”, extrinsic space. If two inner spaces are involved, it may happen that certain limits
of motion, such as continuity or maximal speed, that are valid in one subspace, can be
breached and overcome by another subspace. In what follows, some scenarios will be
discussed. We shall adopt the following notation: inner “intrinsic” subspaces will be
denoted by M and N.

Let us discuss this by considering a simple example of a rotating point, as schematically
drawn in Figure 2a. From the point of view of M the rotation in N is observed as periodic
(dis)appearances of some object rotating in M.

Another “wormhole”-like scenario schematically drawn in Figure 2b is a “bend” or
“curved” (relative to the exterior “outer” continuum) reference frame M that is intermit-
tantly accessed from N. Suppose that the propagation speed limit for motion is the same
cM = cN in both frames. Then, the object appears to be traveling with a velocity greater
than this limit velocity in M because of the “shortcut” access through N.

Still another scenario schematically drawn in Figure 2c is one in which N allows for
faster that M–light motion—that is, cM � cN—and this property is used to access regions
in M through motion in N that appear space-like separated in M’s frame of reference.

(a) (b) (c)

Figure 2. Schematic drawing of worldlines of interdimensional motion, as seen from the outer,
embedding space: (a) periodic, (b) shortcut, and (c) coevolution.

4.1. Interdimensional Chronology Protection

In these and similar situations, no issues with respect inconsistent evolution, in partic-
ular, time paradoxes, arise. As whatever relative space–time reference frames are opera-
tionally constructed [20] in M and N, the “outer” extrinsic space, in which both M and N
are embedded, regulates the phenomenology.

Indeed, from an extrinsic, “God’s eye view” of the outer space there is no consistency
issue because the evolution seen from this “global” comprehensive perspective never
yields or allows inconsistent phenomena. Concerns raised by intrinsic space–time frames
generated with the means available in M and N are merely epistemic, and the means are
relative to the devices and conventions (such as for synchronizing clocks) available to the
inhabitants of M and N.

This results in an interdimensional scheme of chronology protection based on the
epistemic relativity of reference frames. At the same time, from an “outer” (i.e., ontolog-
ical) point of view, those frames are “bundled together” through the coembedding and
cohabitation of some outer space.

There are similarities between the consistency of observable phenomena regarding the
higher-dimensional bulk space and the consistent histories approach to the Many Worlds
models [21]. Both involve multiple “merging” paths.
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4.2. Examples of Dimensional Relativity

The following examples closely follow the scenarios schematically depicted in Figure 2b,c.
They have some similarities to ballistic missiles that avoid the limitations of velocity from
atmospheric drag (friction) by leaving and re-entering Earth’s atmosphere, or are analogs
of supercavitation—the formation of vapor bubbles in a liquid caused by flow around an
object, allowing minimal friction movement inside liquids at nearly the speed of sound.

The first example, depicted in Figure 3, shows an interdimensional dive into a di-
mension that allows higher velocities, or rather traversals of space per time, in M through
“jump” into another dimension N, thereby, creating a shortcut from two space–time points
A to B. This is different from breaking the intradimensional warp barrier by hyper-fast
solitons in Einstein–Maxwell-plasma theory [22] as it employs dimensional capacities that
are not bound by intradimensional motion.

xM

tM cM

cNA B

xN

tN cM cN

A

B

(a) (b) (c)

Figure 3. Schematic drawing of (a) worldlines of interdimensional “jump” motion, as seen from the
outer, embedding space: (a) “dive” into N at A, reappearance at B; (b) space–time diagram as seen
from intrinsic coordinates in M; (c) space–time diagram as seen from intrinsic coordinates in N.

The second example, depicted in Figure 4, shows an interdimensional “drag” motion
that uses a dimensional motion in N whose velocity exceeds that of the normal signal
velocity in M. As already mentioned, in both of these cases, consistency is guaranteed by
the overall consistency in the outer embedding space.

xM

tM cM

cN

A B

xN

tN cM cN

A

B

(a) (b) (c)

Figure 4. Schematic drawing of (a) worldlines of interdimensional forced, continuous motion, as seen
from the outer, embedding space: (a) until A and from B, the motion is dominated by constraints on
the velocity vN , and between A and B, the velocity cN dominates; (b) space–time diagram as seen
from intrinsic coordinates in M; (c) space–time diagram as seen from intrinsic coordinates in N.

5. Further Speculations

Let us conclude this article with some speculative thoughts. The first is on limits to
isolating the dimensions from one another, from “keeping them apart”; in particular, in
the event of some catastrophic occurrence. It may well be that the domain of dimensional
intersections may increase, as such events may dominate and spread to larger parts of the
“outer” space.

Secondly, interdimensionality can be compared to computer simulations, with inter-
faces between such universes serving as intertwining regions. The difference between vir-
tual reality (exchanges) and (intertwining) interdimensionality is the emphasis on measure-
theoretic aspects in the latter case.

The matters discussed here must be considered highly speculative, and far from a
fully developed formal theory. Nevertheless, it is our conviction that, to progress, science
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has to expand and explore a great variety of options, even if they appear remote to the
contemporary mind.
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