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Abstract: The Householder transformation, allowing a rewrite of probabilities into expectations of
dichotomic observables, is generalized in terms of its spectral decomposition. The dichotomy is mod-
ulated by allowing more than one negative eigenvalue or by abandoning binaries altogether, yielding
generalized operator-valued arguments for contextuality. We also discuss a form of contextuality by
the variation of the functional relations of the operators, in particular by additivity.
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1. From probabilities to expectations

A standard way to recast classical probabilities p ∈ [0, 1] into expectations E ∈ [−a, a]
of two-valued—indeed, {−a, a}-valued, observables—is in terms of affine transformations
Ea(p) = a(2p− 1), amounting to a doubling of the probability and a shift by minus one,
times a. (Often the physical units in terms of which observables are measured are chosen to
be such that a = 1.) This can be motivated by the linearity of classical probabilities, which
can be defined as the convex polytope of “extreme cases” or truth assignments, symbolized
by two-valued measures v ∈ {0, 1}.

It is an interesting property of quantum mechanics that the dimensionality n ∈ N
of the associated Hilbert space Cn is determined by the finest resolution of its contexts
or “maximal observables”: a context contains an exhaustive (also known as maximal or
complete) set of mutually exclusive elementary observables. Each one of these elementary
observables is identifiable by an elementary proposition, which in turn is formalizable
by a one-dimensional orthogonal projection operator F that is both self-adjoint, as well
as idempotent, that is F = F†, where † represents the Hermitian adjoint (also known
as conjugate), and F2 = F, respectively. Thereby, n = 2 associated with dichotomic
observables just represents a bound from below for nontrivial predictions. However, for
n > 2, there are no preferred Leibnizian “dyadic” schemes, such as bases, to represent and
encode vectors or pure states in n-dimensional Hilbert spaces: neither the dimensionality—
suggesting rather an n-ary encoding—nor the scalar product (nor completeness) yield any
such preference, albeit that arbitrary rotations (unitary transformations) in n dimensions
can be obtained (and parameterized [1]) by the serial composition of rotations (unitary
transformations) in two-dimensional subspaces of Cn.

Therefore, it might not be too far-fetched to ask which constructions might provide
generalizations of the aforementioned affine transformations in arbitrary dimensions. In
particular, what presents, at least to some degree of semblance, the quantum mechanical
counterparts of classical expectations from probabilities mentioned earlier?

An answer can be given in terms of the so-called Householder transformations (e.g., [2])
as follows. The respective techniques are well developed, but may be less known in the
quantum foundations community, so a review at the beginning seems in order. We shall then
proceed to modifications of Householder transformations to nondichotomous, multiple
eigenvalues.
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Let |x〉 ∈ Cn be a nonzero vector and Fx = (〈x|x〉)−1|x〉〈x| the respective orthogonal
projection operator. The Householder transformation Ux is defined by:

Ux = 1− 2Fx = 1− 2(〈x|x〉)−1|x〉〈x|. (1)

If |x〉 is a unit vector, then Ux = 1− 2|x〉〈x|.
The following properties can be asserted by direct proofs:

(i) Ux is Hermitian; that is, Ux = U†
x;

(ii) Ux is unitary, that is,

UxU†
x = U†

xUx = UxUx

=
(

1− 2(〈x|x〉)−1|x〉〈x|
)(

1− 2(〈x|x〉)−1|x〉〈x|
)

= 1− 4(〈x|x〉)−1|x〉〈x|+ 4(〈x|x〉)−1|x〉〈x| = 1;

(2)

(iii) Hence, Ux is involutory: U−1
x = Ux;

(iv) The eigensystem of Ux has two eigenvalues ±1:

−1: For the eigenvector |x〉 of Ux, with Ux|x〉 =
(
1− 2(〈x|x〉)−1|x〉〈x|

)
|x〉 = |x〉 −

2|x〉 = −|x〉, the associated eigenvalue is −1;
+1: The remaining n− 1 mutually orthogonal eigenvectors span the n− 1-dimensional

subspace orthogonal to |x〉. Every vector in that subspace has eigenvalue +1.
(For n > 2, the spectrum is degenerate.)

Stated differently, for all vectors orthogonal to |x〉, the Householder transformation
Ux acts as the identity; for |x〉, the Householder transformation Ux acts as a reflection
on the one-dimensional subspace spanned by |x〉;

(v) Since the determinant of a matrix is the product of its eigenvalues, the determinant of
a Householder transformation is −1;

(vi) If C = {|e1〉, |e2〉, . . . , |en〉} is an orthonormal basis formalizing a context, then the
succession of the respective Householder transformations renders negative unity,
that is,

Ue1Ue2 · · ·Uen = (1− 2|e1〉〈e1|)(1− 2|e2〉〈e2|) · · · (1− 2|en〉〈en|)
= 1− 2 (|e1〉〈e1|+ |e2〉〈e2|+ · · ·+ |en〉〈en|)︸ ︷︷ ︸

1

= −1. (3)

For the sake of an example, let |z〉 =
(
1, 1
)ᵀ, so that the corresponding Householder

transformation can be written in matrix form as:

Uz = 1− 2(〈z|z〉)−1|z〉〈z| ≡
(

1 0
0 1

)
− 2(2)−1

(
1 1
1 1

)
= −

(
0 1
1 0

)
.

Take |x〉 =
(
2, 1
)ᵀ, so that |y〉 = −

(
1, 2
)ᵀ: this “reflected” vector |y〉 and the original

vector |x〉 have the same length or norm. The component of |y〉 along |z〉 is reversed,
whereas its component orthogonal to |z〉 remains the same. This situation is depicted in
Figure 1.

Because of (iii), if |x〉 6= |y〉 are two vectors in Rn with identical length or norm ‖x‖ =
‖y‖, then there exists a remarkable “symmetry delivered by” a Householder transformation
Uz such that Uz|x〉 = |y〉 and UzUz|x〉 = Uz|y〉 = |x〉. For this to hold, the vector
|z〉 needs to be a vector equal to |x〉 − |y〉:

(
1− 2(〈z|z〉)−1|z〉〈z|

)
|x〉 = |y〉 and |x〉 =(

1− 2(〈z|z〉)−1|z〉〈z|
)
|y〉, resulting in (〈z|z〉)−1|z〉〈z|(|x〉 − |y〉) = |x〉 − |y〉, and thus,

|z〉 = |x〉 − |y〉. (For |x〉 = |y〉, identify with |z〉 a vector orthogonal to |x〉 = |y〉.) This
is not true for Cn, as for instance, there exists no |z〉 that would render Uz|x〉 = i|x〉 for
nonzero |x〉, and an additional unitary transformation is required.
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Figure 1. Depiction of the Householder transformation Uz with |z〉 =
(

1, 1
)ᵀ

acting on a vector

|x〉 =
(

2, 1
)ᵀ

. The resulting “reflected” vector |y〉 = Uz|x〉 and the original vector |x〉 have the

same length or norm. Its component along |z〉 is reversed, whereas its component orthogonal to |z〉
remains the same.

This gives rise to the orthonormalization of a set of k linear independent nonzero vec-
tors S = {|s1〉, |s2〉, . . . , |sk〉} inRn by taking some orthonormal basis C = {e1, e2, . . . , en} ≡
{|e1〉, |e2〉, . . . , |en〉}, choosing k vectors thereof—say, the first k vectors of the standard
Cartesian coordinate system—and identifying |si〉 with |xi〉, and (the extra factor ‖si‖
serves to make the vector of equal length or norm) |yi〉 with ‖si‖|ei〉, thereby constructing
a Householder transformation followed by normalization (through division by ‖si‖) Uzi of

|si〉
Uzi7→ |ei〉 with the respective |zi〉 = |si〉 − ‖si‖|ei〉. This kind of orthonormalization may

yield a span “outside” of the subspace spanned by the “original” vectors.
Cabello used the Householder transformation to argue for what he called “state-

independent quantum contextuality” [3,4]. Thereby, in a first construction step, all 216

possible classical value assignments of the elementary propositions a1, · · · , a16 ∈ {−1, 1}
depicted in Figure 2, grouped into the nine contexts C1, . . . , C9, are enumerated. In a second
step, for each one of the nine contexts, the respective four (per context) possible classical
value assignments of the elementary propositions are multiplied. In a third step, these nine
(per classical value assignment) products are added together. As a result, each of the 216

valuations yields a number, an integer between the algebraically maximal values −9 and
9—bounds obtained from the number of the (nine) contexts involved.

As it turns out, 9216 value assignments render the number −7, and none render −8
or −9. However, these classical value assignments are not admissible [5] in the sense
of (iv) mentioned earlier—an ad hoc assumption—as there does not exist a classical (non-
contextual) two-valued {0, 1}-state on these 18 observables in nine contexts, which would
allow a translation into a {−1, 1}-value assignment such that each context contains exactly
one element that is assigned the value “−1”, and all other elements of that context are
assigned the value “+1”. For the sake of anecdotal demonstration (no proof), Figure 2
contains an “illegal” value assignment that renders the maximal value of seven of the sum
of the products of all value assignments within the nine contexts.

Indeed, relative to admissibility, state-independent quantum contextuality is a corol-
lary of the Kochen–Specker theorem for configurations without any two-valued states.
Because in this case, no (homomorphic) translation from admissible two-valued {0, 1}-
states p into two-valued {−1, 1}-observables E with affine E(p) = 2p− 1 exist.

In the relaxed case, admissibility can be violated—in particular, by an ad hoc breach
of exclusivity, thereby allowing more than one value assignment “1” per context—while
at the same time maintaining noncontextuality (at the intertwining observables). State-
independent quantum contextuality can only be counterfactually postulated if and only if
the quantum-Householder-transformation-based predictions—equal to the (modulus of
the) number of contexts involved—are not realizable by classical noncontextual, admissible,
or inadmissible value assignments. Therefore, the sum of all products of observables
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within all contexts should not reach its algebraic maximal obtainable value. (As noted
earlier, this maximal obtainable value is just the number of contexts involved.) That implies
that it should not be possible to require the number of noncontextual value assignments
“−1” within each given context to be odd. As a result, strictly bi-connected (indeed, even-
number-connected) Kochen–Specker configurations involving an odd number of contexts
always exhibit state-independent quantum contextuality. The proof is similar to the indirect
parity proof of the Kochen–Specker theorem for the configuration introduced by Cabello,
Estebaranz, and García-Alcaine [6]: for a proof by contradiction, suppose the products
of observables within all contexts are multiplied. On the one hand, since by assumption,
there are odd contexts, each contributing a factor −1, this number—the odd product of
products—should be −1. On the other hand, by bi- or even-connectivity, the product of
products contains only squares or even multiples of factors, which return +1—a complete
contradiction.

Figure 2 contains an instance of the classical inadmissible value assignment that cannot
reach the algebraic maximal sum, as would be required by the quantum Householder
transformation prediction. Further methods to obtain such configurations based on parity
proofs were discussed by Waegell, Aravind, Megill, and Pavičić [7–9]. The Greenberger–
Horne–Zeilinger operator theorem is based on a similar argument [10,11].

C1

C2

C3

C4

C5

C6

C7 C8

C9

a1

a2 a3

a4

a5

a6

a7

a8

a9

a10

a11a12

a13
a14

a15

a16

a17
a18

Figure 2. Orthogonality diagram (hypergraph) of a configuration of observables without any two-
valued state, used in a parity proof of the Kochen–Specker theorem presented by Cabello, Estebaranz,
and García-Alcaine [6]. One (from 9216) underlaid value assignments represents squares as “+1” and
circles as “-1”. A quantum realization is, for example, in terms of 18 orthogonal projection operators
associated with the one-dimensional subspaces spanned by the vectors from the origin (0, 0, 0, 0)ᵀ

to |a1〉 =
(

0, 0, 1,−1
)ᵀ

, |a2〉 =
(

1,−1, 0, 0
)ᵀ

, |a3〉 =
(

1, 1,−1,−1
)ᵀ

, |a4〉 =
(

1, 1, 1, 1
)ᵀ

, |a5〉 =(
1,−1, 1,−1

)ᵀ
, |a6〉 =

(
1, 0,−1, 0

)ᵀ
, |a7〉 =

(
0, 1, 0,−1

)ᵀ
, |a8〉 =

(
1, 0, 1, 0

)ᵀ
, |a9〉 =

(
1, 1,−1, 1

)ᵀ
,

|a10〉 =
(
−1, 1, 1, 1

)ᵀ
, |a11〉 =

(
1, 1, 1,−1

)ᵀ
, |a12〉 =

(
1, 0, 0, 1

)ᵀ
, |a13〉 =

(
0, 1,−1, 0

)ᵀ
, |a14〉 =(

0, 1, 1, 0
)ᵀ

, |a15〉 =
(

0, 0, 0, 1
)ᵀ

, |a16〉 =
(

1, 0, 0, 0
)ᵀ

, |a17〉 =
(

0, 1, 0, 0
)ᵀ

, |a18〉 =
(

0, 0, 1, 1
)ᵀ

,
respectively.

For all other multi-context configurations allowing two-valued states—even with a
nonseparable or unital set of two-valued states—and the translation from {0, 1}-states into
two-valued {−1, 1}-observables, there is no state-independent quantum contextuality. For
other operator-valued assignments, see, for instance, [4,12].
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I shall leave open the question of how convincing and applicable to counterfactual ar-
guments such inadmissible value assignments—even in their operator-valued translations—
might be. At the moment, I am inclined to understand such situations and configurations
rather in terms of the Kochen–Specker theorem [13], or quantitatively about the associated
chromatic number, that is in terms of how many colors are needed to separate elements in
the respective contexts [14].

A quantum realization of the Cabello, Estebaranz, and García-Alcaine [3,6] configura-
tion is a faithful orthogonal representation [15–17] that includes 18 unit vectors or associated
one-dimensional orthogonal projection operators Fi = |ai〉〈ai|, with 1 ≤ i ≤ 18 as vector
labels of the hypergraph depicted in Figure 2, whereby the adjacency of hypergraph vertices
is translated into the orthogonality of the vectors serving as their labels.

As we learned in (vi), Equation (3), within each one of the nine contexts, the products
of these elementary observables is −1. Adding together all nine products of the nine
contexts yields the algebraically maximal sum −1 for all quantum value assignments. This
is in contradiction to the classical predictions, which never yield −8 or −9. Note that this
argument requires the counterfactual existence of all quantum observables Fi = |ai〉〈ai|,
even as only a single one context (from nine contexts C1, . . . , C9) is operationally accessible.

2. Generalized Operator-Valued Arguments for Mixed States

From now on, we shall assume that states are prepared (preselected) to be in a “max-
imal” mixture ρ = 1

n 1n, where n stands for the dimension of the Hilbert space. That
is, we abandon state independence for “maximal ignorance” or “maximally scrambled
(pure) states”. This cannot be performed from a pure state by merely unitary, one-to-
one, means. One has to allow many-to-one processes such as (partial) tracing over con-
stituents of a multipartite state. The advantage of such states is that the expectation value
of an operator A reduces to the weighted sum over its eigenvalues λ1, . . . , λn, that is
〈A〉ρ = Tr(Aρ) = 1

n Tr(A1n) =
1
n (λ1 + . . . + λn).

Then, from a purely algebraic point of view, Householder transformations can be
characterized in terms of commutativity ([18], §79, 84): the two observables associated with
a pure state and the corresponding expectation values are just functional variations of one
and the same maximal operator ([19], Satz 8) (see also [13], Section 4). For an illustration,
consider two operators P and E whose respective eigensystems include identical projection
operators, but different eigenvalues.

To be more precise, according to the spectral theorem, let C = {e1, e2, . . . , en} ≡
{|e1〉, |e2〉, . . . , |en〉} with n ≥ 2 be an orthonormal basis suitable for a spectral decom-
position of P and E, and let Fi = |e1〉〈e1| be the associated one-dimensional orthogonal
projection operators that are mutually orthogonal. Then, the spectral sums of P and E can
be uniformly written as:

P =
n

∑
i=1

λiFi = (+1) · F1 + (0) ·
(

n

∑
i=2

Fi

)
︸ ︷︷ ︸

F{2,...,n}

= F1,

E =
n

∑
i=1

µiFi = (−1) · F1 + (1) ·
(

n

∑
i=2

Fi

)
︸ ︷︷ ︸

F{2,...,n}

= −F1 + F{2,...,n}.

(4)

From this perspective of the spectral decompositions, a transition from P to E is nothing
more than a mapping of the eigenvalues in the spectral sums of (4):

{λ1, λ2, . . . , λn} =
{

1, 0, . . . , 0︸ ︷︷ ︸
n−1 times

}
7→ {µ1, µ2, . . . , µn} =

{
− 1, 1, . . . , 1︸ ︷︷ ︸

n−1 times

}
.

(5)
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From this spectral point of view, a generalization to mutually disjoint eigenvalues, for
instance different primes p1, . . . , pn, suggests itself, such that, in the orthonormal basis,
also known as the context, C = {e1, e2, . . . , en} ≡ {|e1〉, |e2〉, . . . , |en〉} corresponding to
mutually perpendicular orthogonal operators F1, . . . , Fn, the operator associated with the
maximal observable has just diagonal entries:

M =
n

∑
i

piFi = diag
(

p1, . . . , pn
)
. (6)

This generalization has the advantage that, because all eigenvalues are prime, all combina-
tions and, in particular, its product Π = p1 · · · pn, have unique prime decompositions. This
translates into a unique decomposition into eigenvalues.

The number of eigenvalues in the spectral sum can be compared with the chromatic
number of the sphere [20–22], as well as of hypergraphs [14,23]. (Hyper)graphswhose
chromatic number exceeds the number of vertices per hyperedge (the clique number) have
no classical noncontextual truth assignments formalized by two-valued {0, 1} states. This
strategy to obtain noncontextual classical colorings of orthogonality (hyper)graphs derived
from quantum observables fails for those (hyper)graphs whose chromatic number n is
equal to the dimension of the associated Hilbert space. These cases also yield no state-
independent quantum contextuality, because there exist classical noncontextual observables
whose n colors can be one-to-one mapped (relabeled) into the observable values p1, . . . , pn.

Another possibility is a choice of the eigenvalues −1,−1, 1, 1 or any permutation
thereof, yielding a quantum prediction of the sum of the products equal to 9 · (−1 · −1 · 1 ·
1) = 9, which is just the negative of Cabello’s prediction [3].

3. Generalized Operations

Other methods to derive state-dependent quantum contextuality involving “maxi-
mally mixed states” use operations different from multiplication. The most elementary
such operation is the summation among all eigenvalues within a given maximal observable
or context. The resulting violations can be tested in a similar (counterfactual) manner as for
the sums of products.

For the sake of an example, we again use the Kochen–Specker-type configuration
introduced by Cabello, Estebaranz, and García-Alcaine [6], depicted in Figure 2. If instead
of multiplying the eigenvalues within any such context (yielding −1 · 1 · 1 · 1 = −1), these
eigenvalues are added, we obtain the context sum −1 + 1 + 1 + 1 = 2. (This renders an
expectation of the context sum divided by four; that is 1

2 .) The associated function between
operators within a given context Cj, 1 ≤ j ≤ 9, is addition:

g(FCj ,1, FCj ,2, FCj ,3, FCj ,4) = −FCj ,1 + FCj ,2 + FCj ,3 + FCj ,4 = SCj (7)

As there are nine contexts Cj, 1 ≤ j ≤ 9, the sum over all context sums is 2 · 9 = 18,
which is not divisible by four. The respective expectation, given a preselected state ρ = 1

4 14,
is:

〈
9

∑
j=1

SCj〉ρ =
9

∑
j=1
〈SCj〉ρ =

9

∑
j=1

Tr
(
SCj ρ

)
=

1
4

9

∑
j=1

Tr
(
SCj 14

)
=

9

∑
j=1

1
2
=

9
2

. (8)

A classical computation produces only multiples of four: Since the 18 observables
a1, . . . , a18 are bi-connected—that is, every such observable occurs in exactly two contexts—
the sum total of all dichotomic observables is:

2(a1 + · · ·+ a18) = n, with a1, . . . , a18 ∈ {−1, 1}, n ∈ Z, (9)

so that −36 ≤ n ≤ 36. Suppose there are k positive observables ai and 18− k negative
observables aj. Therefore, all cases are permutations of the following configuration:
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a1 + · · ·+ ak︸ ︷︷ ︸
k positive ai=1

+ ak+1 + · · ·+ a18︸ ︷︷ ︸
18−k negative aj=−1

= k− (18− k) = 2(k− 9) =
n
2

, (10)

with k ∈ N, so that:
0 ≤ k = 9 +

n
4
≤ 18, and n = −36 + 4k. (11)

This results in n arithmetically progressing from −36 in steps of four, that is:

k ∈ {0, 1, . . . , 18}, with respective n ∈ {−36,−32, . . . , 0, . . . , 32, 36}. (12)

In particular, as 18 is not divisible by four, no sum total of 18 can be classically realized by
the configuration of Cabello, Estebaranz, and García-Alcaine [6]. Classical expectations
from the assumption of equidistribution of the occurrences are obtained by dividing these
cases by four.

Indeed, a combinatorial argument shows that there are:

#(n(k)) = #(−36 + 4k) =
(

18
k

)
=

(
18

18− k

)
=

18
k!(18− k)!

(13)

configurations, yielding n = −36 + 4k, so that the number of occurrences are #(±0) =
48620, #(±4) = 43758, #(±8) = 31824, #(±12) = 18564, #(±16) = 8568, #(±20) = 3060,
#(±24) = 816, #(±28) = 153, #(±32) = 18, #(±36) = 1. This classical prediction is in
contrast with the quantum prediction 18, which always occurs.

4. Applications beyond the Quantum Domain

It would certainly be interesting to study analogs of Householder transformations for
systems that are not quantized, but exhibit some form of complementary or contextual
behavior. To specify such extensions, one would need to commit to or define the meaning
of “contextuality”.

There exist synthetic forms of contextuality that are inspired by Bohr [24,25] and
Heisenberg [26]. These allow comprehensive applicability by emphasizing the conditional-
ity of phenomena by the impossibility of any sharp distinction of, or separation between,
general empirical objects or entities, in conformity with Bohr’s “interaction with the mea-
suring instruments which serve to define the conditions under which the phenomena
appear”. More restricted, analytic notions of contextuality can be defined through various
probabilistic violations of classical and nonclassical probability distributions, or from the
scarcity, or the lack of, classical value assignments [25–37].

The general tactic is a transition or recasting from a dichotomic regime—such as {0, 1}
or {−1,+1}measurement outcomes—into multi-valued observables with more than two
outcomes. Multiple values of an observable may “compress” arguments considerably:
whereas the information gain per measurement is equal for just two outcomes, it is higher
for three or more outcomes even in the single-particle regime. This is because it is always
possible to “project” multi-valued outcomes to dichotomic observables by partitioning
the set of multiple outcomes into two subsets, a technique used by Meyer [21] based on
findings by Godsil and Zaks [20]. Thereby, information is lost, as this kind of projection
amounts to a many-to-one mapping for “many” greater than one. In the multi-partite
regime, multiplication or other operations of two or more nonzero observables may also
reduce the entropy when compared to {0, 1}-valued observables [11]. This is because of the
skewed, unbalanced effect of multiplication x · y of two values x ∈ {0, 1} and y ∈ {0, 1}, as
compared to, say, Ex · Ey of two values Ex ∈ {−1, 1} and Ey ∈ {−1, 1}.

5. Summary

We discussed Householder transformations as a means to recast arguments involving
probabilities into expectations of dichotomic observables. By generalizing this procedure,
we used the spectral decomposition of the Householder transformation; more explicitly, we
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allowed eigenvalues not restricted to a single occurrence of minus one and all the others
plus one. For instance, dichotomy can be modulated by allowing more than one negative
eigenvalue. This allows novel generalized operator-valued arguments for contextuality. We
also discussed new forms of state-dependent contextuality by variation of the functional
manipulation and relation of the operators. In particular, we considered additivity.

As some original forms of expectation- or operator-based arguments such as
Greenberger–Horne–Zeilinger [10,11] or Householder-based state-independent contex-
tuality [3], those arguments developed here use complementary and thus counterfactual
observables. Likewise, reasonings involving multiplication or addition of products or sums
of the observables within single contexts allow violations of admissibility [5], in particular
exclusivity and completeness.

Those considerations inspire new ways of generating and observing nonclassical phe-
nomena. This is not necessarily restricted to quantum contextuality. Thereby, generalized
Householder transformations could inspire and expand expressibility and yield advantages
through the plasticity of the values of the observable outcomes.
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