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Abstract
The Greenberger–Horne–Zeilinger (GHZ) argument against noncontextual local 
hidden variables is recast in quantum logical terms of fundamental propositions, 
states and probabilities. Unlike Kochen–Specker- and Hardy-like configurations, 
this operator based argument proceeds within four nonintertwining contexts. The 
nonclassical performance of the GHZ argument is due to the choice or filtering of 
observables with respect to a particular state. We study the varieties of GHZ games 
one could play in these four contexts, depending on the chosen state of the GHZ 
basis.

Keywords  Greenberger–Horne–Zeilinger argument · Gleason theorem · Kochen–
Specker theorem · Born rule · Gadget graphs · Greechie diagram · McKay–Megill–
Pavicic diagram (MMP) · Orthogonality hypergraph

1 � Quantum Logical Structures

In what follows, the Greenberger–Horne–Zeilinger (GHZ) argument [1] will be 
recast in purely quantum logical terms. In particular, the operators corresponding 
to GHZ observables will be written in their spectral form, such that the respective 
orthogonal projection operators can be identified with elementary propositions. 
Since the argument is state-dependent, the appropriate states need to be identified, 
and their predictions and expectations on those elementary propositions need to be 
evaluated. This facilitates the discernment of important structural components. Such 
insights can then be used to embed and relate GHZ to traditional quantum logical 
findings, as well as to generalize and extend the argument to more general experi-
mentally verifiable predictions and assertions.
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1.1 � Appraisal

The configuration of observables and states that constitute a GHZ argument ren-
ders a capacity to perform on specific tasks (although it is worse for other tasks, see 
Sect. 6) that no classical means can achieve: It lets three parties “win” a particular 
task with certainty, whereas there is only a probabilistic classical chance to do so 
classically.

The situation is not unlike the quantum Deutsch algorithm [2, Section  2.2]: It 
yields a particular property (parity) of the input with one query with certainty, 
whereas there is only a probabilistic classical chance to do so classically.

There are potential drawbacks though since this performance increase is not 
“universal”. Because on the one hand, other tasks can only be achieved by invok-
ing different states and operators; and, on the other hand, “complete” determination 
of some unknown quantum state (without preselection) requires the same number 
of queries as in the classical case. As a result, the capacity of such algorithms is 
problem and query-specific. Yet, as long as one is interested in increasing capabili-
ties or performance not universally but for a particular task or “game” such quantum 
advantages exist and are exploitable.

What “drives” GHZ is quantum entanglement: the capacity to relationally encode 
[3, 4] multi- (in this case three-) partite systems in such a way that the (information 
of the) properties of the constituents are defined merely as their collective behavior. 
Again, there is a price involved, in this case, the complete loss of (information of 
the) properties of the individual constituents. Indeed, for pure states individual and 
relational properties can be rewritten into each other by nonlocal “scrambling” uni-
tary transformations “sampling” individual into relational states [5]. Such entangled 
states can “carry” relational information about collective properties of their constitu-
ents that no classical state can.

1.2 � Motivation for Logico‑algebraic Analysis

As mentioned earlier the GHZ argument will be very explicitly analyzed in terms 
of its quantum logical aspects; in particular, concerning the observables and states 
involved. One advantage of such an analysis is accessibility to other fields of 
research, as it appears less ad hoc and complementing existing research.

It might not be too unreasonable to state that, for classical-versus-quantum dis-
cord, the GHZ argument “competes” with the Kochen–Specker (KS) theorem [6, 
7], even though the latter can be converted into the former [8, 9]. Whereas the KS 
theorem, as well as its weaker probabilistic form, the Hardy-type argument [10, 
11] (sometimes referred to as 1-implies-{0, 1} [12] or true-implies-{false.true}-rule 
[13]) often is “local”, GHZ uses a particular three-partite configuration whose con-
stituents can be space-like separated.

KS and Hardy-type configurations use elementary dichotomic yes–no or 0–1 
propositions (which can be encoded as a normalized vector ��⟩ (in three or higher 
dimensions) spanning a one-dimensional subspace of the Hilbert space, and which 
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is equivalent to the orthogonal projection operator ��⟩⟨�� projecting the Hilbert space 
onto this subspace). In contradistinction, GHZ use expectations of three dichotomic 
variables, each of which assumes either the value 1 or −1 , and triple distributions.

Thereby, the GHZ argument is operator-based [14], because it allows observables 
and their associated self-adjoint operators with eigenvalues “ +1 ” and “ −1”—that 
should be understood in terms of their spectral forms as functions of orthogonal pro-
jection operators occurring in the KS and Hardy-type configurations. (Functions of 
normal operators can be defined by their spectral form [15, § 82, pp. 165–169].) In 
what follows we shall also find that, whereas the KS argument involves many intri-
cately intertwining contexts, the GHZ argument uses a single isolated context.

2 � Classical GHZ Games

Routine approaches to classical-versus-quantum discord start from some collection 
of quantum observables and attempt to force classical interpretations upon them. In 
contrast to this manners the GHZ argument will be motivated by the lack of capacity 
to perform certain tasks by classical means, whereas quantum capacities to achieve 
these tasks exist. The presentation starts with an exposition by Bacon (aka “The 
Quantum Pontiff”) [16] (see also Refs. [17, 18]) in which certain quantum resources 
allow players always to win, whereas this cannot be guaranteed classically.

Suppose some prison ward allows three parties to pre-select some “share”, and 
subsequently isolates them in separate cells (without further communication). After-
ward, the ward distributes paper slips to each one of them, such that each slip con-
tains a single symbol out of two symbols—say, “x” or “y”—per party and slip, in 
either one of the following four configurations or contexts: xxx, xyy, yxy, and yyx 
(the order reflects the order of the parties). In particular, the ward does not reveal 
which type of configuration is chosen, so from the intrinsic “local” perception of 
the single isolated prisoners, upon reception of “x” or “y” it could be two differ-
ent configurations or contexts (the possibility of the other two configurations can be 
eliminated by exclusion). Upon receiving the slip, all three parties must then write 
on their slips (or shout) simultaneously and without any further coordination either 
“−”1 or “ +”1.

2.1 � Positive Products from Squares of Outcomes

Suppose the goal is, in algebraic terms, to form negative products of these three 
factors for all four configurations xxx, xyy, yxy, and yyx. Does there exist a “clas-
sical strategy” for those players to always win? Yes, because by a parity argu-
ment, if one forms (x ⋅ x ⋅ x)

⏟⏞⏟⏞⏟
−1

⋅ (x ⋅ y ⋅ y)
⏟⏞⏟⏞⏟

−1

⋅ (y ⋅ x ⋅ y)
⏟⏞⏟⏞⏟

−1

⋅ (y ⋅ y ⋅ x)
⏟⏞⏟⏞⏟

−1

= (−1)4 = 1—and 

thereby multiplies all factors of all of the four configurations—one obtains x6y6 
which allows a classical strategy of writing (or shouting) “−”1 on x, and anything 
(but previously coordinated and fixed), that is, “±”1 on y. More explicitly, sup-
pose the prisoners have agreed to write (or shout) “ −1 ” for x and “ +1 ” for y; then 
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and the prisoners always win. Very similar considerations apply to requests of the 
prison ward to produce only positive results, or more general demands that will 
be discussed later.

2.2 � GHZ Goal: Negative Products from Squares of Outcomes

However, some goals for the prisoners are unachievable by classical means. In particu-
lar, let us specify the GHZ game as the goal set by the prison ward as follows: “pro-
duce the products x ⋅ x ⋅ x = +1 and x ⋅ y ⋅ y = y ⋅ x ⋅ y = y ⋅ y ⋅ x = −1 .” Then, by the 
same parity argument mentioned earlier, the prisoners cannot win all the time, since 
then the combined product (x ⋅ x ⋅ x)

⏟⏞⏟⏞⏟
+1

⋅ (x ⋅ y ⋅ y)
⏟⏞⏟⏞⏟

−1

⋅ (y ⋅ x ⋅ y)
⏟⏞⏟⏞⏟

−1

⋅ (y ⋅ y ⋅ x)
⏟⏞⏟⏞⏟

−1

= (+1)(−1)3 = −1 

would be negative but the respective factors occur in multiples of squares x2 and y2 
and must therefore result in a positive product—a perfect contradiction. Note that the 
earlier strategy of writing (or shouting) “−”1 on x, and anything, that is, “±”1 on y 
would still succeed whenever the ward invokes slips that carry xyy, yxy, and yyx on 
them. But this strategy fails miserably in the positive xxx case. Conversely, the 
“inverse” strategy of writing (or shouting) “ + ”1 on x, and anything, that is, “±”1 on y 
would succeed in the positive xxx case but fail for all other cases requesting negative 
products xyy, yxy, and yyx.

Note that if the ward would also reveal the configuration chosen then all of these 
games could easily be won by the prisoners with classical means, albeit not in a con-
text-invariant or context-independent way. Because then, from each of the four clas-
sical configurations or contexts, they could choose a single instance that would fit 
the game—say, x+x+x+ for the xxx configuration, and x−y+y+ , y+x−y+ , and y+y+x− 
for the other three configurations—and thereby win the earlier game not recoverable 
by classical noncontextual means. Here the context dependence is in the x assign-
ments: “ + ”1 for the xxx configuration, “−”1 for the other configurations xyy, yxy, 
and yyx.

However, this nondisclosure of configurations and contexts is not how the GHZ 
game has been operationalized and empirically presented [19, 20]. There, the final 
configuration or context xxx [which supposedly serves as a criterion for (non)classi-
cality] is not subjected to a “delayed-choice” involving space-like separated events. 
Therefore, this performance could in principle also be rendered classically by non-
contextual value assignments discussed later.

Nevertheless, the original GHZ protocol offers a quantum method for the pris-
oners to win all the time—that is, for all cases the ward may choose—without 



1 3

Foundations of Physics            (2022) 52:4 	 Page 5 of 23      4 

disclosing the chosen configuration or context to the prisoners. But before going into 
this particular realization, the classical case will be formalized a little further.

2.3 � Contexts Involved in Classical GHZ Configurations

We shall argue that the classical Shimony–Mermin form [21–23] of the GHZ argu-
ment employs four separate nonintertwining “complementary” contexts. For the 
sake of the argument suppose one is dealing with classical objects, such as general-
ized urn models [24] or finite automata [25, 26] which encode (a classical form of) 
complementarity. Alternatively one might think of just classical objects which can 
have two dichotomic properties, namely the dichotomic observables

where x+ and x− as well as y+ and y− are the states corresponding to outcomes of 
measurements of x and y, respectively.

Suppose further that one is drawing triples of identical balls from a generalized 
urn. Consider four types of measurements on the first, second and third ball:

In what follows, we shall use (conformal, orthogonality) hypergraphs [27, Sect. 2.4] 
introduced by Greechie [28, p.  120] that depict logical configurations or contexts 
as smooth lines [13, 27, 29–33]. The term hypergraph should be understood in the 
broadest possible consistent sense. Figure  1a represents the six Boolean algebras 
associated with the propositional structures of six single-particle observables: there 
are three particles, each measured at two angles or directions, respectively. Simulta-
neous “triple” measurements of one (of two, either x or y) observable per particle, 
on the three particles, result in 23 = 8 Cartesian product triples forming the configu-
rations or contexts {x, x, x} , {x, x, y} , … , {y, y, y} . Only four of these configurations or 
contexts, namely {x, x, x} , {x, y, y} , {y, x, y} , and {y, y, x} , are employed in the GHZ 
argument. Figure  1b represents the eight possibilities, cases or instantiations per 
type of measurement of the latter four GHZ contexts (enumerated in lexicographic 
order; for brevity we shall write “a b c” for the ordered triple “ [a, b, c]”).

which, bundeled into a set, are identified with the set of four GHZ contexts

(1)x ∈ {x+, x−}, andy ∈ {y+, y−},

(2){x, x, x}, {x, y, y}, {y, x, y}, and {y, y, x}.

(3)

Cxxx
c,GHZ

= {x+x+x+, x+x+x−, x+x−x+, x+x−x−,

x−x+x+, x−x+x−, x−x−x+, x−x−x−},

C
xyy

c,GHZ
= {x+y+y+, x+y+y−, x+y−y+, x+y−y−,

x−y+y+, x−y+y−, x−y−y+, x−y−y−},

C
yxy

c,GHZ
= {y+x+y+, y+x+y−, y+x−y+, y+x−y−,

y−x+y+, y−x+y−, y−x−y+, y−x−y−}, and

C
yyx

c,GHZ
= {y+y+x+, y+y+x−, y+y−x+, y+y−x−,

y−y+x+, y−y+x−, y−y−x+, y−y−x−}.
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Suppose that x+ , x− , y+ and y− are real nonvanishing numbers. The outcomes 
are multiplied, such that [a, b, c] = a × b × c . Multiplication of the observables in 
the four contexts results in a bound from below:

In particular, if one identifies x+ = y+ = 1 and x− = y− = −1 then [(xy)3]2 = 1 . 
As already pointed out earlier, this classical prediction rests upon a par-
ity argument: any square, indeed any even exponent, of a nonzero real num-
ber is positive. Note also that, by taking the product of the first three terms, one 
obtains 

[
(±x)2(±y)2

]3
= y6x3 = x3 . This should always be identical to the last 

term in  (5), which is x x x. Because according to the classical assumption of 

(4)
{
Cxxx
c,GHZ

,C
xyy

c,GHZ
,C

yxy

c,GHZ
,C

yyx

c,GHZ

}
.

(5)(xxx)(xyy)(yxy)(yyx) = (xy)6 > 0.

(a)

(b)

Fig. 1   Hypergraphs representing a the six disconnected classical single-particle contexts representing the 
observables of the first, second, and third particle, respectively; b four isolated, nonintertwining contexts, 
with eight atoms each, employed in the GHZ argument (there are eight contexts in total, but only half of 
them are considered). Filled circles indicate states which are classically allowed in a modified GHZ game 
requesting negativity for all products xyy = yxy = yyx = xxx = −1 . Every column represents a viable 
noncontextual winning strategy
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noncontextuality—independence of the observed value of x on whatever other 
observables are measured simultaneously alongside it in different configurations or 
contexts—and value definiteness, it should not make any difference in which of the 
four contexts in (5) x is measured. This, and the equivalent bound from below in (5), 
are the classical predictions.

The classical probabilities of this configuration are the convex summations of 43 
extreme cases from the 4 individual cases {x+y+, x+y−, x−y+, x−y−} per one of the 
three particles. If interpreted geometrically these 43 vertices in six-dimensional 
space, and their equivalent representations in terms of inequalities of the hull of the 
convex polytope spanned by them, has been enumerated for three-partite correla-
tions [34]. In all 43 classical cases, and for all classical probability distributions con-
structed from them, prediction (5) is satisfied.

Note that the classical GHZ contexts are isolated from each other and do not 
“communicate” via common intertwine observables. As has been pointed out ear-
lier, in this aspect, they differ from other KS or Hardy-type arguments involving 
gadgets of intertwining contexts.

3 � Quantum Advantage

Let us now turn to quantum mechanical predictions of quantum doubles of the 
classical configuration of contexts introduced earlier; in particular to a GHZ 
configuration that yields a winning strategy to the classical GHZ game goal 
set by the prison ward as follows: “produce the products x ⋅ x ⋅ x = +1 and 
x ⋅ y ⋅ y = y ⋅ x ⋅ y = y ⋅ y ⋅ x = −1 .” This is a rewrite of a confifuration that was pre-
sented by Greenberger, Horne and Zeilinger [1], later with Shimony [21]. (I still viv-
idly remember that earlier Zeilinger had suggested to me to pursue “a three-particle 
analog of the Bell-type two-particle setup” but I had cordially abstained.) Imme-
diately afterward Mermin gave a uniform presentation of the GHZ argument [22, 
35] that can readily be rewritten in terms of the underlying elementary propositions, 
a task which is pursued here. Subsequently, these quantum predictions have been 
empirically confirmed [19, 20]; albeit with some provisos which will be discussed 
later.

By a quantum realization is some identification of (i) the observables x and y with 
self-adjoint operators; in particular, with two-times-two Hermitian matrices with a 
dichotomic spectrum {−1,+1} , and (ii) a pure state identified with a nonzero (unit) 
vector, or its associated one-dimensional orthogonal projector, or the one-dimen-
sional subspace spanned by the vector. Only pure states which are associated with 
normalized vectors are considered; that is, we shall not consider mixed states.

For historic and empirical reasons—for instance, the experimental realizations in 
terms of spin-1

2
 particles–particular quantum realizations are often written in terms of 

Pauli spin matrices. The general form of the Pauli spin matrices in spherical coordinates 

is given by �(�,�) = �x sin � cos� + �y sin � sin� + �z cos � =

(
cos � e−i� sin �

ei� sin � − cos �

)
 , 

where 0 ≤ � ≤ � is the polar angle in the x–z-plane from the z-axis, and 0 ≤ 𝜑 < 2𝜋 is 
the azimuthal angle in the x–y-plane from the x-axis. The usual form of the Pauli spin 
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matrices is recovered by identifying �x = �

(
�

2
, 0
)
= antidiag

(
1, 1

)
 , 

�y = �

(
�

2
,
�

2

)
= antidiag

(
−i, i

)
 , and �z = �(0, 0) = diag

(
1,−1

)
.

4 � Quantum Realization

Mermin’s Ansatz [23] is the following quantum realization (1):

As we shall see the quantum state of the GHZ argument operates within a single 
context.

4.1 � Operators

The observables (formalized by eight-dimensional operators) operate within four 
contexts; very similar to the classical contexts discussed earlier. These contexts can 
be obtained by considering the spectral forms of the following four mutually com-
muting tensor products of operators (tensor products are often denoted by the sym-
bol “ ⊗ ” but, for reasons of brevity, we shall not write this symbol explicitly. This 
should not be confused with the matrix or dot product “ ⋅ ”; so that, for instance, 
𝜎y𝜎y𝜎x ≡ 𝜎y ⊗ 𝜎y ⊗ 𝜎x):

Because the operators in (7) mutually commute the spectral forms of �y�y�x , �y�x�y , 
�x�y�y , and �x�x�x can be written as sharing the same eight orthogonal projection 
operators [15, Sections 79,84]. Note that since the four-fold multiplicity of the two 
eigenvalues −1 and 1 per operator, its degenerate spectrum—enumerated in the 
columns of Table  1—extends over only two orthogonal projection operators into 
four-dimensional subspaces. The projection operators can, for instance, be directly 
obtained by a Lagrange polynomial of the form �±(�y�y�x) =

1

2

(
�y�y�x ± �8

)
 , 

�±(�y�x�y) =
1

2

(
�y�x�y ± �8

)
 , �±(�x�y�y) =

1

2

(
�x�y�y ± �8

)
 , and 

�±(�x�x�x) =
1

2

(
�x�x�x ± �8

)
 . A “refined” resolution by one-dimensional projection 

operators can be achieved by forming products of these projection operators which 
serve as “filters” [36].

(6)
y ≡ �y, x ≡ �x, and a shared state

�Υ1⟩⟨Υ1� for the sake of GHZ discord.

(7)

�y�y�x, �y�x�y, �x�y�y, and �x�x�x, with

�y�y�x = antidiag
(
−1,−1, 1, 1, 1, 1,−1,−1

)
,

�y�x�y = antidiag
(
−1, 1,−1, 1, 1,−1, 1,−1

)
,

�x�y�y = antidiag
(
−1, 1, 1,−1,−1, 1, 1,−1

)
, and

�x�x�x = antidiag
(
1, 1, 1, 1, 1, 1, 1, 1

)



1 3

Foundations of Physics            (2022) 52:4 	 Page 9 of 23      4 

4.2 � Preselected States

These eight mutually orthogonal one-dimensional projection operators correspond 
to the system of mutually orthogonal eigenvectors which can be identified with the 
GHZ basis [23, 37, 38] which, in turn, is identified with the quantum mechanical 
GHZ-context

It might be more appropriate to call this the “GHZM” context because Merim sug-
gested to use �Υ1⟩ for a GHZ argument [23]. But being aware of Stigler’s law of 
eponymy [39, 40], stating that “no scientific discovery is named after its original 
discoverer”, and having encountered similar issues already earlier with the term 
“Hardy-like”, I shall leave it at that.

The components of the vectors of the GHZ basis can be expressed in terms 
of the Cartesian standard basis which coincides with the set of eigenvectors of 
�z = �(0, 0) : we denote these eigenvectors by (the symbol “ ⊺ ” indicates transposi-
tion) �z+⟩ =

�
1, 0

�⊺ and �z−⟩ =
�
0, 1

�⊺ corresponding to the eigenvalues +1 and −1 , 
respectively. Then relative to the eigenvectors of �z = �(0, 0) the eight eigenvectors 
of the four contexts �y�y�x , �y�x�y , �x�y�y , and �x�x�x can be written as:

(8)Cq,GHZ = {�Υ1⟩, �Υ2⟩, �Υ3⟩, �Υ4⟩, �Υ5⟩, �Υ6⟩, �Υ7⟩, �Υ8⟩}.

Table 1   Eigenvalues 
+ ≡ +1 and − ≡ −1 associated 
with eigenvectors for the four 
contexts �

y
�
y
�
x
 , �

y
�
x
�
y
 , �

x
�
y
�
y
 , 

and �
x
�
x
�
x
 in Eq. (7)

The components of the GHZ states are relative to the Cartesian 
standard basis which contains the eigenstates of �

z
�
z
�
z
 . I will argue 

later that each of the eight rows corresponds to a particular GHZ 
game that is in complete discord with its classical predictions

GHZ state �
y
�
y
�
x

�
y
�
x
�
y

�
x
�
y
�
y

�
x
�
x
�
x

�Υ
1
⟩ = 1√

2

(1, 0, 0, 0, 0, 0, 0, 1)⊺ − − − +

�Υ
2
⟩ = 1√

2

(1, 0, 0, 0, 0, 0, 0,−1)⊺ + + + −

�Υ
3
⟩ = 1√

2

(0, 1, 0, 0, 0, 0, 1, 0)⊺ − + + +

�Υ
4
⟩ = 1√

2

(0, 1, 0, 0, 0, 0,−1, 0)⊺ + − − −

�Υ
5
⟩ = 1√

2

(0, 0, 1, 0, 0, 1, 0, 0)⊺ + − + +

�Υ
6
⟩ = 1√

2

(0, 0, 1, 0, 0,−1, 0, 0)⊺ − + − −

�Υ
7
⟩ = 1√

2

(0, 0, 0, 1, 1, 0, 0, 0)⊺ + + − +

�Υ
8
⟩ = 1√

2

(0, 0, 0, 1,−1, 0, 0, 0)⊺ − − + −
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4.3 � Selection for GHZ Discord

For the sake of the original GHZ discord, and thereby to produce a contradiction 
with the classical predictions (5), we shall desire—and choose, if possible, a “suit-
able” element �Υi⟩ of Cq,GHZ which by construction is one of the eigenstates of the 
operators in (7)—for which

Because in this case the product of the eigenvalues (−1)3(+1) becomes negative 
we obtain a complete discord or contradiction with any classical prediction (5), as 
desired.

As mentioned earlier, the eigenvalues associated with the eigenvectors for dif-
ferent contexts differ from each other but are highly multiplicitous: four eigenvec-
tors are associated with the same eigenvalues +1 and −1 , with multiplicities equal to 
four, respectively.

Table 1 enumerates these degenarcies. By contemplating this tabulation it is not 
too difficult to single out the state [23] of the GHZ basis which satisfies the discord 
criterium (10): it is �Υ1⟩ =

1√
2

�
�z+z+z+⟩ + �z−z−z−⟩

�
=

1√
2

�
1, 0, 0, 0, 0, 0, 0, 1

�⊺.

4.4 � General Preselection State

Let us, for the sake of completeness and for later use, write all eight eigenstates (9) 
as well as all coherent superpositions thereof into a single closed form:

with 
∑8

i=1
��i�2 = 1 . All such states—in particular, the “original” GHZ state �Υ1⟩ or 

any coherent superposition such as �Ω⟩ = 1

2
√
2

∑8

i=1
�Υi⟩ =

1

2

�
1, 1, 1, 1, 0, 0, 0, 0

�⊺—

(9)

�Υ1⟩ =
1√
2

�
�z+z+z+⟩ + �z−z−z−⟩

�
, �Υ2⟩ =

1√
2

�
�z+z+z+⟩ − �z−z−z−⟩

�
,

�Υ3⟩ =
1√
2

�
�z+z+z−⟩ + �z−z−z+⟩

�
, �Υ4⟩ =

1√
2

�
�z+z+z−⟩ − �z−z−z+⟩

�
,

�Υ5⟩ =
1√
2

�
�z+z−z+⟩ + �z−z+z−⟩

�
, �Υ6⟩ =

1√
2

�
�z+z−z+⟩ − �z−z+z−⟩

�
,

�Υ7⟩ =
1√
2

�
�z+z−z−⟩ + �z−z+z+⟩

�
, �Υ8⟩ =

1√
2

�
�z+z−z−⟩ − �z−z+z+⟩

�
.

(10)
�y�y�x�Υi⟩ = �y�x�y�Υi⟩ = �x�y�y�Υi⟩ = −�Υi⟩, and
�x�x�x�Υi⟩ = +�Υi⟩.

(11)
�Υ⟩ =

8�

i=1

�i�Υi⟩ =
1√
2

�
�1 + �2, �3 + �4, �5 + �6,

�7 + �8, �7 − �8, �5 − �6, �3 − �4, �1 − �2
�⊺
,
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produce a complete discord or contradiction with any classical prediction  (5) [35, 
Appendix]. The particular form of those discords will be discussed later.

What has happened to the four classical contexts “in transit” to the quantum 
configurations? Not very much: the chosen state or share is in a single quantum 
context depicted in Fig. 2a. This context can be “expanded” into the four known 
classical contexts discussed earlier by rewriting its atoms in terms of the eigen-
states (eigenvalues) relevant observables (operators) �y�y�x , �y�x�y , �x�y�y , and 
�x�x�x . The quantum GHZ argument never “leaves” those contexts.

Indeed, one might maintain that the single context of GHZ states associated 
with the GHZ basis, whose atomic propositions have a faithful orthogonal rep-
resentation [41–44] enumerated in Eq.  (9), is “viewed” from different “projec-
tive angles” represented in terms of the eigenstates of �y�y�x , �y�x�y , �x�y�y , and 
�x�x�x as depicted in Fig.  2b by the four contexts enumerated in Eq.  (7). This 
amounts to a state partitioning or filters [36, 45, 46]. Explicitly, the eigenvectors 
are

(a)

(b)

Fig. 2   Hypergraphs representing a GHZ states forming a single quantum mechanical GHZ state context 
represented by the GHZ basis of the eigenstates of �

z
�
z
�
z
 , and b the four nonintertwining GHZ contexts 

in the four bases of the eigenstates of �
y
�
y
�
x
 , �

y
�
x
�
y
 , �

x
�
y
�
y
 , and �

x
�
x
�
x
 with eight atoms each. Filled 

circles indicate states “allowed” by—that is, are equal to or occur in the coherent superposition of—the 
original GHZ game state �Υ

1
⟩ = �z+z+z+⟩ + �z−z−z−⟩ as enumerated in Eqs. (9) and (14), yielding a dis-

cord with classical means and predictions. A comparison of the classical {x, x, x} context drawn on top 
of Fig. 1b yields an “inverted” situation: the “allowed” states are classically “disallowed”, and vice versa
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Another, algebraic, way of perceiving this is in terms of the mutual commutativ-
ity of the four operators �y�y�x , �y�x�y , �x�y�y , and �x�x�x in Eq.  (7), which thus 
can be written as real-valued functions of a maximal operator [15, § 84, pp. 171, 
172]

with mutually different �i and �Υi⟩ defined in Eq. (9). As can be readily read off from 
Table  1, and with fyyx(�) = �y�y�x , fyxy(�) = �y�x�y , fxyy(�) = �x�y�y , and 
fxxx(�) = �x�x�x these four functions need to obey −fyyx(�1) = fyyx(�2) =

−fyyx(�3) = fyyx(�4) = fyyx(�5) = −fyyx(�6) = fyyx(�7) = −fyyx(�8) = −fyxy(�1) = fyxy(�2) =

fyxy(�3) = −fyxy(�4) = −fyxy(�5) = fyxy(�6) = fyxy(�7) = −fyxy(�8) = −fxyy(�1) = fxyy(�2) =

fxyy(�3) = −fxyy(�4) = fxyy(�5) = −fxyy(�6) = −fxyy(�7) = fxyy(�8) = f
xxx
(�

1
) = −f

xxx
(�

2
)

= f
xxx
(�

3
) = −f

xxx
(�

4
) = f

xxx
(�

5
) = −f

xxx
(�

6
) = f

xxx
(�

7
) = −f

xxx
(�

8
) = 1.

4.5 � Verification of the Original Quantum GHZ Game

Let us review our solution to the original GHZ game. It can be won with quan-
tum resources from the GHZ basis enumerated in (8) and (9). If the prisoners 

(12)

�x+x+x+⟩ =
�
1, 1, 1, 1, 1, 1, 1, 1

�⊺
,

�x+x−x−⟩ =
�
1,−1,−1, 1, 1,−1,−1, 1

�⊺
,

�x−x+x−⟩ =
�
1,−1, 1,−1,−1, 1,−1, 1

�⊺
,

�x−x−x+⟩ =
�
1, 1,−1,−1,−1,−1, 1, 1

�⊺
,

�x−y−y−⟩ =
�
1,−i,−i,−1,−1, i, i, 1

�⊺
,

�x−y+y+⟩ =
�
1, i, i,−1,−1,−i,−i, 1

�⊺
,

�x+y−y+⟩ =
�
1, i,−i, 1, 1, i,−i, 1

�⊺
,

�x+y+y−⟩ =
�
1,−i, i, 1, 1,−i, i, 1

�⊺
,

�y−x−y−⟩ =
�
1,−i,−1, i,−i,−1, i, 1

�⊺
,

�y−x+y+⟩ =
�
1, i, 1, i,−i, 1,−i, 1

�⊺
,

�y+x−y+⟩ =
�
1, i,−1,−i, i,−1,−i, 1

�⊺
,

�y+x+y−⟩ =
�
1,−i, 1,−i, i, 1, i, 1

�⊺
,

�y−y−x−⟩ =
�
1,−1,−i, i,−i, i,−1, 1

�⊺
,

�y−y+x+⟩ =
�
1, 1, i, i,−i,−i, 1, 1

�⊺
,

�y+y−x+⟩ =
�
1, 1,−i,−i, i, i, 1, 1

�⊺
,

�y+y+x−⟩ =
�
1,−1, i,−i, i,−i,−1, 1

�⊺
.

(13)� =

8�

i=1

�i�Υi⟩⟨Υi�,
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share a particular quantum state representable by Eq.  (11), namely 
�Υ1⟩ =

1√
2

�
�z+z+z+⟩ + �z−z−z−⟩

�
 prepared in one direction, say z, prior to being 

separated, this goal can be achieved. Because the prisoners measure, on their 
respective sides and constituents particles (the share includes three constituents 
because it is a three-partite state), �Υ1⟩ either in the x basis 
�x±⟩ =

1√
2

�
�z+⟩ ± �z−⟩

�
=

1√
2

�
1,±1

�
 [conversely, �z±⟩ =

1√
2

�
�x+⟩ ± �x−⟩

�
 ] when-

ever their slip says “x”, or in the y basis �y±⟩ =
1√
2

�
�z+⟩ ± i�z−⟩

�
=

1√
2

�
1,±i

�
 

[conversely, �z+⟩ =
1√
2

�
�y+⟩ + �y−⟩

�
 and �z−⟩ = −

i√
2

�
�y+⟩ + �y−⟩

�
 ] whenever their 

slip says “y”.
That this goal can be perfectly—ideally at all instances and configurations—

reached can be demonstrated by rewriting the GHZ state �Υ1⟩ in terms of the 
basis vectors of the four configurations or contexts, one of which is singled out 
(but not disclosed to the prisoners) by the prison ward [see also the filled states 
in the contexts depicted in Fig. 2b]:

For every individual experimental run, the share “produces” or “selects” one of the 
four outcomes from the coherent superpositions.

Note that there is a “hidden cost” in this game: to make sure that the quan-
tum xxx realization conforms with the other three choices xyy, yxy, and yyx of 
the ward, one needs to either believe in this counterfactual supposition or make 
additional experiments to verify the latter three. But more experimental runs are 
added which are “hidden” away by acknowledging that first checks of xyy, yxy, 
and yyx have to be performed; and, as stated in Ref. [20, p. 517], “if the results 
obtained are in agreement with the predictions for a GHZ state, then for an xxx 
experiment, our expectations using a local-realist theory are exactly the oppo-
site of our expectations using quantum physics.” Confidence about whether one 
is dealing with a GHZ state �Υ1⟩ (by checking the outcomes of the xyy, yxy, and 
yyx and finally xxx configurations) requires additional experimental runs.

The GHZ scenario can be interpreted as some nonlocal form of Hardy-type 
true-implies-true scenario with “maximal aperture” �

2
 . This can, for example, 

be achieved by serial composition [47] of such true-implies-true gadgets [13]; a 
procedure already performed by Kochen and Specker [6, 7], as they move from 
Γ1 to Γ2.

(14)

�Υ1⟩ =
1

2

�
�x+x+x+⟩ + �x+x−x−⟩ + �x−x+x−⟩ + �x−x−x+⟩

�

=
1

2

�
�x−y−y−⟩ + �x−y+y+⟩ + �x+y−y+⟩ + �x+y+y−⟩

�

=
1

2

�
�y−x−y−⟩ + �y−x+y+⟩ + �y+x−y+⟩ + �y+x+y−⟩

�

=
1

2

�
�y−y−x−⟩ + �y−y+x+⟩ + �y+y−x+⟩ + �y+y+x−⟩

�
.
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5 � Generalization of GHZ Games

Table 1 enumerates the eight variations of GHZ games with viable winning strategies 
for the prisoners. Those strategies are based on modified GHZ states as assets. By the 
earlier parity argument, it is again impossible for the prisoners employing classical 
means to win for all such paper slip configurations the ward might issue. These vari-
ations can be translated into experimental protocols analogous to the ones executed in 
Refs. [19, 20].

Suppose, for the sake of an example, the prison ward requires the respective prod-
ucts of xyy, yxy, and yyx to turn out positive and xxx to turn out negative. This can be 
won by the prisoners with a �Υ2⟩ =

1√
2

�
�z+z+z+⟩ − �z−z−z−⟩

�
 share.

Or suppose, for the sake of another example, the prison ward requires the respective 
products of xyy to turn out positive and yyx, yxy, and xxx to turn out negative. The pris-
oners can win this with a �Υ8⟩ =

1√
2

�
�z+z−z−⟩ − �z−z+z+⟩

�
 share. The respective game 

components are

Because of symmetry, we may expect that not much changes regarding gambling 
if we permute �1 ↔ �2 . Here we need to form a modified GHZ basis serving as 
eigenstates, with the first “1” component of the vectors of the original GHZ basis 
substituted by the imaginary unit “i”. With those eigenstates Table 1 is reproduced.

6 � Games That can be Won by Classical but Not by Quantum GHZ 
Means

It should also be mentioned what the prisoners cannot achieve with GHZ type quantum 
resources. Table 1 does not allow a perfect winning strategy for the aforementioned 
games in which the ward requests from the prisoners to produce only positive or nega-
tive outcomes. They can win these games with the classical strategies or shares men-
tioned earlier. Table 2 enumerates the configurations and some of the (eight per con-
figuration) classical winning strategies.

(15)

�Υ8⟩ = −
1

2

�
�x+x+x−⟩ + �x+x−x+⟩ − �x−x−x−⟩ − �x−x+x+⟩

�

=
1

2

�
�x−y+y−⟩ + �x−y−y+⟩ − �x+y−y−⟩ − �x+y+y+⟩

�

= −
i

2

�
�y−x−y−⟩ − �y+x+y−⟩ + �y−x+y+⟩ − �y+x−y+⟩

�

= −
i

2

�
�y−y−x−⟩ − �y+y−x+⟩ + �y−y+x+⟩ − �y+y+x−⟩

�
.
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7 � Classical Contextuality or Context Dependence

An examination of the subgraph of the GHZ logic hypergraph, depicted in Fig. 2b 
“covered” by �Υ1⟩ shows that this (sub)logic has a separating set of 84 admissi-
ble two-valued states satisfying completeness (every context contains a red or 1 
value) and exclusivity (every context contains only one red or 1 value, all other 
vertices are green or 0 value).

For the sake of demonstration, this propositional structure can further be 
“tightened” by introducing four additional “vertical” and four additional “diago-
nal” contexts as depicted in Fig. 3. The resulting tightened GHZ (sub)logic com-
prising 12 contexts supports eight two-valued states which are separating any two 
different propositions. They are enumerated in Fig.  4. (In this presentation the 
two-valued states appear like 0–1 entries in permutation matrices.) Consequently, 
this configuration has a classical representation by a partition logic {1, 2,… , 8} of 
eight elements, as drawn in Fig. 3.

From this partition logic, given by

Table 2   Enumeration of the eight configurations that cannot be won with quantum GHZ type shares, and 
one (of the eight per configuration) classical winning strategies

First prisoner Second prisoner Third prisoner yyx yxy xyy xxx

x = −1 y = −1 x = −1 y = −1 x = −1 y = −1 − − − −
x = −1 y = −1 x = −1 y = +1 x = +1 y = −1 − − + +

x = −1 y = −1 x = −1 y = −1 x = −1 y = +1 − + + −
x = −1 y = −1 x = −1 y = +1 x = +1 y = +1 − + − +

x = −1 y = −1 x = −1 y = +1 x = −1 y = −1 + − + −
x = −1 y = −1 x = −1 y = −1 x = +1 y = −1 + − − +

x = −1 y = −1 x = −1 y = +1 x = −1 y = +1 + + − −
x = +1 y = +1 x = +1 y = +1 x = +1 y = +1 + + + +

Fig. 3   Hypergraphs represent-
ing 12 tightly intertwined 
“tightened” GHZ contexts in a 
partition logic representation
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one can immediately derive the classical probability distributions, as well as a clas-
sical winning strategy for a GHZ-type game that is context-dependent but requires 
knowledge of the configuration or context involved. All that is needed is the iden-
tification of the respective vertices in the original configuration and the partition 

(16)

{{{1, 2}, {3, 4}, {5, 6}, {7, 8}}, {{5, 7}, {6, 8}, {1, 3}, {2, 4}},

{{3, 8}, {2, 5}, {4, 7}, {1, 6}}, {{4, 6}, {1, 7}, {2, 8}, {3, 5}},

{{1, 2}, {6, 8}, {4, 7}, {3, 5}}, {{7, 8}, {1, 3}, {2, 5}, {4, 6}},

{{5, 6}, {2, 4}, {3, 8}, {1, 7}}, {{3, 4}, {5, 7}, {1, 6}, {2, 8}}},

Fig. 4   Enumeration of the eight 
two-valued states of the “tight-
ened” GHZ logic
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logic (any other variation within the horizontal contexts would also suffice); e.g., 
{1, 2} ↦ x+x+x+ , {3, 4} ↦ x+x−x− , … , {2, 8} ↦ y+y+x− . The associated generalized 
urn model might match important aspects of the quantum mechanical predictions 
such as expectation values and distributions of order one, two, and three.

A typical experimental run would comprise a generalized urn “loaded” with (tri-
ples of identical) balls of eight types and four colors, associated with the ward’s 
potential choice of configurations or contexts. Upon drawing such a ball triple the 
prisoners take their share of the triple—exactly one ball from the triple per pris-
oner—and, in accordance with the ward’s choice, read the pairs of numbers (from 
one to eight) in that respective color. Their choice must then be their position of the 
identified answer. More explicitly, if they read “3, 4” in the color associated with the 
first context, the first prisoner writes or shouts “ +”1, the second prisoner writes or 
shouts “−”1, the third prisoner writes or shouts “−”1. As has been mentioned ear-
lier, any such value assignment is contextual in at least one observable x or y; that is, 
for example, the first prisoner writes or shouts different values for x or y for different 
contexts.

8 � Stranger‑than‑Quantum GHZ Games

What if the prisoners would be given a “magic filter” or share capacity—say, a 
“nonlocal” (NL) or Popescu Rohrlich (PR) box [48, 49]—to go beyond quantum 
capacities of the GHZ game? Suppose, for instance, that there are merely two pris-
oners involved, and four two-partite configurations or contexts xx, xy, yx, and yy; 
with the ward requesting as goal to achieve a negative product for y ⋅ y and else—
that is, for x ⋅ x , x ⋅ y , and y ⋅ x—positive products, as depicted in Fig. 5. Then again, 

Fig. 5   Hypergraphs representing 
a the four disconnected classical 
single-particle contexts—two 
contexts per particle—represent-
ing the observables of the first 
and second particle, respec-
tively; b the four separated, non-
intertwined two-partite contexts, 
with four atoms each, that are 
the Cartesian products of these 
single-particle contexts. Filled 
circles indicate states which are 
involved in a stranger-than-GHZ 
game requesting positivity for 
all products xx = xy = yx = +1 
and negativity for yy = −1

(a)

(b)
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by a parity argument such configurations cannot exist classically, because the 
observables x and y on either side contribute to the overall product in pairs x2 and y2 
which are always positive for real-valued x and y; but the ward requests a negative 
joint product (x ⋅ x)

⏟⏟⏟
+1

(x ⋅ y)
⏟⏟⏟

+1

(y ⋅ x)
⏟⏟⏟

+1

(y ⋅ y)
⏟⏟⏟

−1

=
[
x2y2

]2
= (xy)4 = −1 for real valued x 

and y.
For a proof that this configuration has no quantum realization we 

take (overline indicates complex conjugation) �x+⟩ =
�
x+,1, x+,2

�⊺ , 
�x−⟩ =

�
x+,2,−x+,1

�⊺ , �y+⟩ =
�
y+,1, y+,2

�⊺ , �y−⟩ =
�
y+,2,−y+,1

�⊺ , and 
��⟩ =

�
�1,�2,�3,�4

�⊺ . The stranger-than-GHZ game rules require that 
⟨��x+x+⟩ = ⟨��x−x−⟩ = ⟨��x+y+⟩ = ⟨��x−y−⟩ = ⟨��y+x+⟩ = ⟨��y−x−⟩ = ⟨��y+y−⟩ = ⟨��y−y+⟩ = 0  . 
Without loss of generality we may fix x+,2 = 0 , and, because of symmetry, 
y+,1 = y+,2 = 1∕

√
2 , which admits only the trivial solution ��⟩ =

�
0, 0, 0, 0

�⊺.
The situation is “contextual” as any realization involves context-dependence of 

either the x or the y-observables. Suppose the prisoners have at their disposal a NL 
PR box of the following capacity: if i1 and i2 stand for the inputs of the box, and o1 
and o2 for its outputs, then i1i2 = o1 ⊕ o2 = o1 + o2 mod 2 . Now if both prisoners 
“translate their in- and outputs” as follows: they input 0 on an “x” input, and 1 on 
a “y” input, as well as identify “ + ”1 with output 0 and “−”1 with output 1, respec-
tively. Then, if the in- and outputs are ordered by prisoner,

This perfect winning strategy can be further specified [50] by the joint outcome 
probabilities P

(
o1, o2|i1, i2

)
=

1

2
 for i1i2 = o1 ⊕ o2 = o1 + o2 and vanishing other-

wise. For a game requiring (x ⋅ x)
⏟⏟⏟

−1

(x ⋅ y)
⏟⏟⏟

−1

(y ⋅ x)
⏟⏟⏟

−1

(y ⋅ y)
⏟⏟⏟

+1

= −1 one of the prisoners 

would need to switch the output behaviour + ⟷ − . Indeed the NL PR box appears 
to be a direct realization of a winning strategy for the stranger-than-GHZ game.

9 � Some Afterthoughts

From a quantum logical point of view the GHZ argument differs from the KS 
argument in its fairly simplistic geometric and algebraic structure involving only 
four isolated contexts instead of a collection of intertwining contexts. Indeed, 
it might be amazing how much quantum-versus classical discord can be gained 
from such configuration. Unlike the KS configuration which is based on the total 
absence of two-valued states interpretable as classical truth assignments, the 

(17)

x, x ↦ 0 ⋅ 0 = 0

NL PR

�����������������������→{0⊕ 0 or 1⊕ 1} ↦ {++,−−},

x, y ↦ 0 ⋅ 1 = 0

NL PR

�����������������������→{0⊕ 0 or 1⊕ 1} ↦ {++,−−},

y, x ↦ 1 ⋅ 0 = 0

NL PR

�����������������������→{0⊕ 0 or 1⊕ 1} ↦ {++,−−},

y, y ↦ 1 ⋅ 1 = 1

NL PR

�����������������������→{0⊕ 1 or 1⊕ 0} ↦ {+−,−+}.
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observables involved in GHZ allow a plethora (namely 84 ) of such states which 
are separating [6, 7, Theorem 0].

The strength of the GHZ argument lies not in the scarcity of two-valued states 
but in the proper—that is, suitable for, and adapted to, the particular task—reduc-
tion or “filtering” the respective eigenstates, which serve as elements of the con-
texts, by the state preparation or selection. Thereby some nonclassical features 
can be claimed relative to the assumptions.

This is not dissimilar to “Hardy-type” configurations in which a particular par-
ticle or a multi-partite state is prepared and—by the classical interpretation of a 
configuration of observables forming intertwining contexts—“viewed” by another 
observable or proposition [11]. In particular, if such a configuration with a true-
implies-true set of two-valued states (TITS) [13] has “orthogonal arperture” (that 
is, orthogonality between the prepared and the measured state) the classical pre-
diction is in direct contradiction with the quantum expectation of nonoccurence 
because of orthogonality. This has already been realized by KS as subgraphs of 
their Γ2—they render the orthogonal aperture by a serial composition of TITS 
(their Γ1 ) with less than �

2
 between the states prepared and measured [6].

Another difference to KS and Hardy-type arguments comes from the fact that 
its predictions are obtained by multiplying nonvanishing values in {−1,+1} of the 
experimental outcomes instead of working with dispersionless {0, 1} two-valued 
states which include the value 0. Taking nonvanishing values {−1,+1} preserves 
much more information and structure about the joint observables than in the 
{0, 1} case. Because while for a single two-state particle any {−1,+1}-observable 
� can be considered an affine transformation of the two-valued state s ∈ {0, 1} 
by � = 2s − 1 (that corresponds to the negative of a quantum Householder trans-
formation U = 1 − 2��⟩⟨�� for a unit vector ��⟩ ), there is no loss of information 
due to this linear transformation, this is in general not true in the multi-partite 
situation; in particular, with three particles involved: whereas in the {0, 1} case 
all products vanish except in the case for which the outcome is 1 on all three par-
ticles simultaneously, the products of possible {−1,+1} cases show a much more 
balanced partitioning: parity dictates that there is equidistribution (50:50) of joint 
negative and positive outcomes. Formally, in terms of entropy, the {0, 1} case 
results in H{0,1}3 = −(1∕8) log2(1∕8) − (7∕8) log2(7∕8) ≈ 0.54 as compared to the 
{−1,+1} case which yields H{−1,+1}3 = −(1∕2) log2(1∕2) − (1∕2) log2(1∕2) = 1 . 
Therefore, the latter three-partite {−1,+1} outcome case results in an aver-
age rate of “information” inherent in the variable’s potential outcomes which is 
almost twice as high as in the {0, 1} case. One straightforward way of enhancing 
the “contrast” or violation between classical and quantum predictions would be 
to consider Operators with eigenvalues {−�,+�} larger that in the ones chosen 
for the GHZ argument; that is, 1 ≪ 𝜆 . The respective observables correspond to 
operators whose spectral sum includes the same orthogonal projection operators 
as the operators (7) involved in the GHZ case. These orthogonal projection opera-
tors are formed by the dyadic products of the vectors (9).

This review is the continuation of an ongoing effort [11, 51] to transcribe and 
(de)construct well-known arguments from the foundations of quantum mechan-
ics into a logico-algebraic context. The operators of the GHZ argument had to 
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be delineated in terms of their spectral form, revealing the propositional struc-
ture in terms of the orthogonal projection operators. Since the argument is state 
dependent, the valuations of these elementary propositional observables had to be 
taken for the particular state involved. My aim has been to obtain insights into the 
structural properties of the arguments, as well as transparent and effective pres-
entations and derivations of the predictions and probabilities supported by the 
respective configurations.

Following the aforementioned effort, the conceptual take-home message of the 
paper is this: the GHZ argument can be readily “embedded” into, or translated 
and presented, in terms of the quantum logical framework of Birkhoff and von 
Neumann [52] as well as partial algebras [7, 53, 54] and orthomodular structures 
[30, 55]. From a formal point of view, this allows its uniform presentation and 
comparison to “competing” and related arguments, such as Hardy-type or KS 
arguments. From an empirical point of view, the operator-based approach facili-
tates operational extensions and generalizations of the original argument.
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