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Abstract
Criteria and constructive methods for the completion of an incomplete basis of,
or context in, a four-dimensional Hilbert space by (in)decomposable vectors are
given.
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1. Completion of incomplete contexts

We shall find and analyze orthogonal vectors spanning two-dimensional subspaces of four-
dimensional real or complex Hilbert space that are orthogonal to a given two-dimensional sub-
space. In particular, we are interested whether those vectors are indecomposable—a property
of pure state vectors signifying entanglement of multipartite quantized systems.

In physics, this question is pertinent to a variety of tasks: first, any orthonormal basis can
be, by dyadic or tensor products, rewritten as a system of mutually perpendicular orthogonal
projection operators. This system can be extended to maximal Hermitian operators associated
with maximal quantum observables in terms of their spectral sums containing mutually dis-
tinct eigenvalues. Often these maximal operators are denoted as, and identified with, quantum
mechanical contexts.
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Quantum contexts serve as the basic building blocks of quantum logical and probabilis-
tic certification of quantization. Boole–Bell type arguments consider three or more isolated
contexts and compare classical with quantum predictions of expectation functions. Hardy-
type arguments involve multiple intertwining contexts with two endpoints, such that classical
predictions relate the truth values of these endpoints. Intertwining contexts with ‘scarce’ two-
valued states—featuring classical nonseparability of elementary propositions or nonunital sets
of two-valued states interpretable as classical (truth) value assignments—yield logics that
cannot be homomorphically embedded into ‘larger’ Boolean algebras. And Kochen–Specker-
type arguments demonstrate the total absence of any classical interpretation in terms of the
aforementioned two-valued states.

All of the above tactics to certify quantization need quantum representations of contexts in
terms of (intertwining) orthonormal bases. Often the algebraic structures are formulated and
depicted in terms of (hyper)graphs [1]. These hypergraphs, to be realizable in terms of quan-
tum observables, need to allow a faithful orthogonal representation [2, 3], essentially a vertex
labeling by vectors, such that adjacent vertices correspond to orthogonal vectors. Although in
principle the equations resulting from such relations may be solvable, their direct solution turns
out to be unattainable. Therefore one is left with heuristic methods of parametrization [4] that
yield incomplete orthonormal systems; and therefore the necessity to complete those findings
by supplementing missing base vectors.

In four dimensions, concerning indecomposability—or, in physical terms, entangle-
ment—this task is straightforward for three given mutually orthogonal unit vectors—the
one-dimensional subspace spanned by the missing vector is uniquely defined, and there is no
choice. However, a completion with (in)decomposable vectors is not straightforward for two
given unit vectors. As we shall see there are rather subtle criteria of (in)decomposability if
the four-dimensional Hilbert space is interpreted as a tensor product of two two-dimensional
spaces.

Such analysis is pertinent to the aforementioned task of completing one or more bases or
contexts of a (hyper)graph: find a complete faithful orthogonal representation (aka coordinati-
zation) of a hypergraph when only a coordinatization of the intertwining observables is known.
For instance, for Hardy type arguments, it is significant whether the resulting completion of
the context may comprise (in)decomposable vectors [5].

We shall, in particular, consider a four-dimensional real or complex Hilbert space H ,
where H is either the column space R4 or C4. Suppose further that two unit vectors e1

and e2 are known which are orthogonal, such that 〈e1|e2〉 = 0. An orthogonal basis can be
formed with these two known vectors, as well as with two ‘missing’ vectors a and b. Those
latter missing vectors ought to have additional properties we are interested in; in particular,
for Hilbert spaces which can be considered as tensor products of smaller-dimensional spaces,
(in)decomposability.

One uniform way of finding the general form of the missing vectors is by arranging
a to-be-completed orthonormal basis (aka context) B = {e1, e2, a, b} into a unitary matrix
U =

(
e1, e2, a, b

)
and solving [6, theorem 2]

∣∣det
(
U
)∣∣ = 1

4
Tr
(

UU†
)
= 1, (1)

where ‘†’ stands for transposition and complex conjugation (which, in the real case, reduces
to transposition ‘ᵀ’).
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The subspace M⊥ of the Hilbert space H orthogonal to the subspace M spanned by both e1

and e2 will be two-dimensional and spanned by a and b. This leaves a continuity of freedom
in choosing those latter vectors.

Continuity of choices aside; whether or not the missing vectors can be selected to be
(in)decomposable is not merely a question of choice but depends on the vectors e1 and e2

one started with. For instance, if e1 =
(
1, 0, 0, 0

)ᵀ
and e2 =

(
0, 1, 0, 0

)ᵀ
an elementary calcu-

lation shows that there is no option for both a as well as b not to be decomposable: suppose
a ∝

(
a1, a2, a3, a4

)ᵀ
; then 〈a|e1〉 = 〈a|e2〉 = 0 implies a1 = a2 = 0. Therefore, a must be of

the form
(
0, 0, a3, a4

)ᵀ
. The same argument holds for b. By the criterion of decomposabil-

ity for vectors derived later, by which the scalar product of the two ‘outer’ components of
the vector must be equal to the two ‘inner’ components of the vector, both a as well as b are
decomposable.

For the sake of an example in which a as well as b may either be chosen decompos-
able or indecomposable, consider the instance e1 =

(
1, 0, 0, 0

)ᵀ
and e2 =

(
0, 0, 0, 1

)ᵀ
which

allows either decomposable completions such as a =
(
0, 1, 0, 0

)ᵀ
and b =

(
0, 0, 1, 0

)ᵀ
or

indecomposable completions such as a = 1√
2

(
0, 1, 1, 0

)ᵀ
and b = 1√

2

(
0, 1,−1, 0

)ᵀ
.

The general question therefore remains: given two orthogonal unit vectors e1 and e2, when
is it possible for those missing vectors a and b of a ‘completed’ orthogonal basis (aka context)
B = {e1, e2, a, b} to be (in)decomposable?

2. Nomenclature

Let H 2 and H either denote the real vector spaces R2 and R4 or the complex vector spaces
C2 and C4. The standard inner product 〈·|·〉 makes H 2 and H into a Hilbert space. We iden-
tify the outer or tensor product H 2 ⊗ H 2 with H as follows. Given vectors u =

(
u1, u2

)ᵀ
and v =

(
v1, v2

)ᵀ
in H we let u ⊗ v =

(
u1v1, u1v2, u2v1, u2v2

)ᵀ ∈ H , which is a form of
‘vectorization’ (that is, a flattening) of this tensor product. This product can be compared to the
general form of a vector in four dimensions z =

(
z1, z2, z3, z4

)ᵀ
. Therefore, for z to be decom-

posable z1 = x1y1, z2 = x1y2, z3 = x2y1, and z4 = x2y2, from which, because of commutativity
of scalar multiplication, follows that

z1z4 = x1y1x2y2 = x1x2y1y2 = x1y2x2y1 = z2z3. (2)

That is, the product of the ‘outer components’ z1z4 of z must be equal to the product of its ‘inner
components’ z2z3, or equivalently, z1z4 − z2z3 = 0 [7, p 18]. This condition is also sufficient,
as it renders three equations for the four unknowns x1, x2, y1 and y2.

Criterion (2) for decomposability can be rewritten in terms of a symmetric bilinear form
as follows. The mapping z =

(
z1, z2, z3, z4

)ᵀ 
→ 2(z1z4 − z2z3) is a quadratic form which has
an associated bilinear form (not to be confused with the scalar or inner product denoted
by 〈a|b〉)

(a|b) = (a1b4 − a2b3 − a3b2 + a4b1)

=
(
a1, a2, a3, a4

)
⎛
⎜⎜⎝

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

b1

b2

b3

b4

⎞
⎟⎟⎠

= aᵀ · A · b, (3)

3
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with A :=

⎛
⎜⎜⎝

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

⎞
⎟⎟⎠ .

Therefore,

(z|z) = 2(z1z4 − z2z3) = 0, (4)

characterises z as decomposable.
The (non-degenerate) bilinear form (3) can then be used to define a Gramian matrix of two

vectors a and b by

Gab =

(
(a|a) (a|b)
(b|a) (b|b)

)
. (5)

This definition of the Gramian matrix for two vectors has a straightforward generalization for
an arbitrary finite number of vectors which we shall use later.

Because of symmetry (a|b) = (b|a) the Gram determinant satisfies∣∣∣∣(a|a) (a|b)
(b|a) (b|b)

∣∣∣∣ = (a|a)(b|b) − (a|b)2. (6)

The symmetric matrix A that is defined in (3) coincides with its inverse A−1. Let
x = R x − iI x stand for complex conjugation, so that, for real vector spaces, x = x for all
vectors x. The matrix A−1 defines a bijection

x =
(
x1, x2, x3, x4

)ᵀ 
→A−1 · x =
(
x4,−x3,−x2, x1

)ᵀ
=
(
x4,−x3,−x2, x1

)†
=: x̃, (7)

which is linear in the real case and antilinear in the complex case.

For two vectors x and y, because of A−1 =
(

A−1
)ᵀ

,

〈x|y〉 = x† · y = x† ·
(

A−1 · A
)
· y

= xᵀ ·
(

A−1
)ᵀ

· A · y

=
[(

A−1
)
· x
]ᵀ

· A · y = (x̃|y),

(8)

where x̃ =
(

A−1
)
· x. That is, the inner product can be rewritten in terms of the bilinear form

(3) which enters the Gram matrix (5). This is a central facility for the following classification
of two-dimensional planes in four-dimensional Hilbert space.

As a side note observe that, though a coordinate change in the new coordinates
x 
→ x′ with x1 
→ x′1 = (x1 + x4)/

√
2, x2 
→ x′2 = (x2 − x3)/

√
2, x3 
→ x′3 = (x2 + x3)/

√
2,

and x4 
→ x′4 = (x1 − x4)/
√

2 ‘mixing outer as well as inner components, respectively’, this
symmetric bilinear form can be rewritten in terms of a diagonal matrix A′ = diag(1, 1,−1,−1),
such that (x|y) =

(
x′
)ᵀ · A′ · y′; and, in particular, (z|z) =

(
z′
)ᵀ · A′ · z′. [For a proof, expand(

x′)ᵀ · A′ · y′ in terms of x and y.] In these new coordinates z′ a necessary and sufficient
criterion for z to be decomposable is

(
z′
)ᵀ · A′ · z′ = 0.

Over the complex numbers only, a second coordinate change x′ 
→ x′′ with x′1 
→ x′′1 = x′1,
x′2 
→ x′′2 = x′2, x′3 
→ x′′3 = ix′3, and x′4 
→ x′′4 = ix′′4 yields A′′ = diag(1, 1, 1, 1) as matrix of this
symmetric bilinear form.

4
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We shall make use of the following equality. Let s =
(
s1, s2

)ᵀ
, t =

(
t1, t2

)ᵀ
,

u =
(
u1, u2

)ᵀ
and v =

(
v1, v2

)ᵀ
be arbitrary vectors of H 2. Then

∑2
j,k=1(s jtk)(u jvk) =(∑2

j=1 s ju j

)(∑2
k=1 tkvk

)
implies

〈s ⊗ t|u ⊗ v〉 = 〈s|u〉〈t|v〉. (9)

Equation (9) can be rephrased in the following way. The inner product on H is the second
tensor power of the inner product on H 2; see [7, appendix A, p 164] or [8, section 3.4, pp
47–48].

Likewise, s1t1u2v2 − s1t2u2v1 − s2t1u1v2 + s2t2u1v1 = (s1u2 − s2u1)(t1v2 − t2v1) results
in

(s ⊗ t|u ⊗ v) = det(s, u) det(t, v), (10)

where (s, u) stands for the matrix whose first and second column are s and u, respectively.
That is, the symmetric bilinear form (·|·) on H from (3) is the second tensor power of the
skew-symmetric bilinear form given by the determinant on H 2 [9, section 1.22, pp 30–31].

The (anti)linear transformation of H 2 sending u =
(
u1, u2

)ᵀ
to u× =

(
u2,−u1

)ᵀ
satisfies

〈u|u×〉 = 0. (11)

Furthermore, it allows us to rewrite any inner product in terms of the determinant:

〈u|v〉 = u1v1 + u2v2 =

∣∣∣∣ u2 v1

−u1 v2

∣∣∣∣ = det(u×, v). (12)

We also observe that

〈u×|v×〉 = u2v2 + u1v1 = 〈u|v〉 = 〈v|u〉. (13)

Furthermore, the second tensor power of the (anti)linear transformation u 
→ u× equals the
(anti)linear transformation from equation (7):

u× ⊗ v× =
(
u2v2,−u2v1,−u1v2, u1v1

)ᵀ
= ˜(u ⊗ v). (14)

3. Plane types

Let V be any finite dimensional vector space over the real or complex numbers. Basic
results about symmetric bilinear forms on such a vector space can be found, for example, in
[10, theorems 11.21, 23, 24, 25, 26, pp 283–288]. We briefly recall these results in a form which
is tailored to our needs. That is, we consider a k-dimensional subspace S of H together with
the restriction of (·|·) to S rather than V together with an arbitrary symmetric bilinear form
on V .

Suppose that an arbitrary basis of S is given. Then the Gramian matrix of this basis
with respect to (·|·), which is defined in analogy to (5), is a symmetric (k × k)-matrix. In
a first step, one can switch to a (not necessarily orthogonal) basis {b1, b2, . . . , bk} of S
which has a Gramian matrix in diagonal form. Next, by scaling and reordering the vectors
b j, j = 1, 2, . . . , k, in an adequate way, one obtains a basis {c1, c2, . . . , ck} of S such that its
Gramian matrix with respect to (·|·) takes the form

diag(1, 1, . . . , 1︸ ︷︷ ︸
p�0

,−1,−1, . . . ,−1︸ ︷︷ ︸
r−p�0

, 0, 0, . . . , 0︸ ︷︷ ︸
k−r�0

), (15)

5
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for some p, r in the real case and the form

diag(1, 1, . . . , 1︸ ︷︷ ︸
r�0

, 0, 0, . . . , 0︸ ︷︷ ︸
k−r�0

), (16)

for some r in the complex case. (The need to distinguish between these two cases stems from
the fact that negative real numbers do not admit a real square root.) The numbers r and p
appearing in (15) and (16) are thereby uniquely determined by S and (·|·), that is, they do not
depend on the choice of an appropriate basis of S . We also observe that the radical of S ,
which is defined as

rad(S ) = {x ∈ S |(x|y) = 0 for all y ∈ S },

satisfies

rad(S ) = span{cr+1, cr+2, . . . , ck}. (17)

In particular, letting S = H yields the matrices A′ = diag(1, 1,−1,−1) (real case) and
A′′ = diag(1, 1, 1, 1) (complex case) that we already encountered at the end of section 2.

Let S = M be some plane, defined as a two-dimensional subspace of the Hilbert space
H . Then, by the above, there exists at least one basis {c1, c2} of M such that the Gramian
matrix Gc1c2 defined in (5) with respect to the bilinear form defined in (3) takes on one of the
following forms:

(a) Real (Hilbert space) case:

1 Gc1c2 = diag(0, 0),
2 Gc1c2 = diag(1, 0),
3 Gc1c2 = diag(−1, 0),
4 Gc1c2 = diag(1, 1),
5 Gc1c2 = diag(−1,−1),
6 Gc1c2 = diag(1,−1);

(b) complex (Hilbert space) case:

1 Gc1c2 = diag(0, 0),
2 Gc1c2 = diag(1, 0),
3 Gc1c2 = diag(1, 1).

If, say, the plane M is (uniquely) associated with the Gramian matrix of the form diag(1, 0)
then we shall denote M as a plane of type (1, 0). The other cases are treated accordingly. Our
discussion below will establish the existence of all these possible plane types.

Let us come back to an earlier question: suppose that an arbitrary basis {a, b} of M
has been found. The question then is: does this two-dimensional subspace allow or support
(in)decomposable vectors in four-dimensional space?

The cases (1)–(6) for real four-dimensional Hilbert space H = R4 as well as (7)–(9) for
complex four-dimensional Hilbert space H = C4 discussed earlier present a means to answer
this question. Thereby the Gramian matrix Gab is used for an identification and characterization
of the particular unique plane type of M .

For real four-dimensional Hilbert space H = R4 there are six types of planes, correspond-
ing to the cases (1) to (6) mentioned earlier. In what follows three cases and the respective
subcases will be discussed which characterize those six plane types. We thereby apply results

6
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that provide, for real vector spaces of any finite dimension, necessary and sufficient condi-
tions for the (semi)definiteness of a quadratic form in terms of principal minors of its Gramian
matrix with respect to an arbitrary basis.

In the following analysis, based on the earlier classification (1)–(6) for real four-dimensional
Hilbert space as well as (7)–(9) for complex four-dimensional Hilbert space, the Gram deter-
minant det(Gab) will be denoted by G, and Gi j stands for the element in the ith row and the jth
column of the Gramian matrix Gab.

3.1. Gram determinant G > 0, plane of types (1, 1) or (−1,−1)

G > 0 means that (a|a) as well as (b|b) have the same sign and are both non-zero.

3.1.1. G11 = (a|a) > 0, plane of type (1, 1). In this subcase (a|a) is positive, which indicates
a plane of type (1, 1) [11, theorem 3, p 306]. Consequently, all non-zero vectors of M are
indecomposable.

A typical example is the two-dimensional subspace spanned by a =
(
0, 1,−1, 0

)ᵀ
and

b =
(
1, 0, 0, 1

)ᵀ
. Any element of the span of a and b can be written as

(
x1, x2,−x2, x1

)ᵀ
.

The associated Gramian is of the form Gab = diag(2, 2).

3.1.2. G11 = (a|a) < 0, plane of type (−1,−1). In this subcase (a|a) is negative, which indicates
a plane of type (−1,−1) [11, theorem 5, p 308]. Consequently, all non-zero vectors of M are
indecomposable.

A typical example is the two-dimensional subspace spanned by a =
(
0, 1, 1, 0

)ᵀ
and

b =
(
1, 0, 0,−1

)ᵀ
. Any element of the span of a and b can be written as

(
x1, x2, x2,−x1

)ᵀ
.

The associated Gramian is of the form Gab = diag(−2,−2).

3.2. Gram determinant G = 0, plane of types (0, 0), (1, 0) or (−1, 0)

3.2.1. G11 = (a|a) = G22 = (b|b) = 0, plane of type (0, 0). In this subcase G = (a|b)2 = 0, so
that the Gramian vanishes—that is, Gab = diag(0, 0). Hence, by definition, M is a plane
of type (0, 0). Any plane of this type contains a continuity of decomposable vectors and no
indecomposable vector.

A typical example is the two-dimensional subspace spanned by a =
(
1, 0, 0, 0

)ᵀ
and

b =
(
0, 1, 0, 0

)ᵀ
. Any element of the span of a and b can be written as

(
x1, x2, 0, 0

)ᵀ
.

3.2.2. G11 = (a|a) > 0 or G22 = (b|b) > 0, plane of type (1, 0). In this subcase one of (a|a) and
(b|b), say (a|a), is assumed to be positive. Then the other one, in this case (b|b), needs to
be non-negative, because only then the product (a|a)(b|b) is non-negative and therefore may
‘compensate’ the subtraction of the non-negative term (b|a)2 of the Gram determinant (6).
From [11, theorem 4, p 307], M is a plane of type (1, 0).

Decomposability (4) requires that, for some ξ, (ξa + b|ξa + b) = G11ξ
2 +

2G12ξ + G22 = 0, and thus, ξ =
(
−2G12 ±

√
4G2

12 − 4G11G22

)
/ (2G11) =⎛

⎝−G12 ±
√
−G︸ ︷︷ ︸
=0

⎞
⎠ /G11 = −G−1

11 G12. Note that, in order for the denominator G11 = (a|a)

not to vanish, ξ must be multiplied with the indecomposable vector a. Therefore there exists
(up to scale factors) only a unique decomposable vector in M , namely c = −G−1

11 G12a + b.
All vectors in M that are not in the span of c—indeed, a continuity of vectors—are
indecomposable.

7
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A typical example is the two-dimensional subspace spanned by a =
(
0, 1,−1, 0

)ᵀ
and

b =
(
1, 0, 0, 0

)ᵀ
. Any element of the span of a and b can be written as

(
x1, x2,−x2, 0

)ᵀ
. The

associated Gramian is of the form Gab = diag(2, 0).

3.2.3. G11 = (a|a) < 0 or G22 = (b|b) < 0, plane of type (−1, 0). In this subcase one of (a|a)
and (b|b), say (a|a), is assumed to be negative. Then the other one, in this case (b|b), needs
to be non-positive, because only then the product (a|a)(b|b) is non-positive and therefore may
‘compensate’ the subtraction of the non-negative term (a|b)2 of the Gram determinant (6).

Again, there exists (up to scale factors) only a unique decomposable vector in M , namely
c = −G−1

11 G12a + b.
A typical example is the two-dimensional subspace spanned by a =

(
0, 1, 1, 0

)ᵀ
and

b =
(
1, 0, 0, 0

)ᵀ
. Any element of the span of a and b can be written as

(
x1, x2, x2, 0

)ᵀ
. The

associated Gramian is of the form Gab = diag(−2, 0).

3.3. Gram determinant G < 0, plane of type (1,−1)

In this case (a|a) as well as (b|b) can be anything (positive, negative, zero). By the characteri-
zations in [11, theorem 3, 4, 5, 6, pp 306–308], the plane M has to be of the only remaining
type, that is, of type (1,−1).

There exists (up to scale factors) only two unique distinct decomposable vectors
c±, in accordance with the construction given next. All other vectors—indeed, a con-
tinuity of vectors in the plane spanned by a and b—are indecomposable. This can
again be shown by assuming the case (a|a) 
= 0, and by noting that decomposabil-
ity (4) requires that, for some ξ, (ξa + b|ξa + b) = G11ξ

2 + 2G12ξ + G22 = 0, such that

ξ± =
(
−2G12 ±

√
4G2

12 − 4G11G22

)
/ (2G11) =

⎛
⎝−G12 ±

√
−G︸ ︷︷ ︸

=0

⎞
⎠ /G11. Note that these

two solutions c± =
[(
−G12 ±

√
−G
)
/G11

]
a + b need not be mutually orthogonal. In the

second case one supposes that, instead of (a|a) 
= 0, now (b|b) 
= 0, and carries through an
analogous calculation. In the third case (a|a) = (b|b) = 0 both vectors a as well as b are already
decomposable. Note that, in order for the denominator not to vanish, ξ must be multiplied with
the respective indecomposable vector.

A typical example is the two-dimensional subspace spanned by a =
(
1, 0, 0, 0

)ᵀ
and

b =
(
0, 0, 0, 1

)ᵀ
. Any element of the span of a and b can be written as

(
x1, 0, 0, x2

)ᵀ
. The

associated Gramian is of the form Gab =

(
0 1
1 0

)
.

The main results of those considerations, as it concerns the question of (in)decomposability,
is that, with the exception of type (0, 0) planes which contain only decomposable vectors, all
other five plane types contain (a continuity of) orthogonal bases spanning them whose basis
vectors are both indecomposable: planes of type (1,−1) contain (up to scale factors) a single
orthogonal basis whose elements are decomposable; and planes of types (1, 0) and (−1, 0)
contain (up to scale factors and permutations) a single orthogonal basis with one decomposable
and one indecomposable element. Planes of plane of types (1, 1) and (−1,−1) contain no
decomposable non-zero vectors. This completes the characterisation of the real case.

For complex four-dimensional Hilbert space H = C4, according to the cases (7) to (9)
mentioned earlier, the rank of Gab determines the type of M [10, theorem 11.24, p 287]:

(a) If rank(Gab) = 0 then M is of type (0, 0). Earlier remarks concerning properties of a plane
of real type (0, 0) pertain.

8
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(b) If rank(Gab) = 1 then M is of type (1, 0). This situation parallels that of a plane of real
type (1, 0). In particular, the calculation from there, yielding a unique decomposable vec-
tor c ∈ M , carries over provided that G11 = (a|a) 
= 0. Moreover, there is continuity of
indecomposable vectors in M which are not in the span of c.

(c) If rank(Gab) = 2 then M is of type (1, 1). There is a neat analogy to the case of a plane of
real type (1,−1). Note that any quadratic equation over the complex numbers with non-
vanishing discriminant has precisely two distinct solutions. Therefore, the calculation of
the decomposable vectors c± ∈ M carries over, provided that G11 = (a|a) 
= 0.

All three plane types actually occur. This follows immediately from a reinterpretation of
our various examples in the real case.

The various types of planes admit a geometric interpretation in terms of the projective space
P(H ). We recall that the points of P(H ) are the one-dimensional subspaces of H . A set of
points is called a projective line (projective plane) of P(H ) if it comprises all one-dimensional
subspaces of H that are contained in some fixed two-dimensional (three-dimensional) sub-
space of H ; see, for example, [12, p 122]. All points of P(H ) that are spanned by decompos-
able vectors constitute a ruled quadricΦ, say, with equation z1z4 − z2z3 = 0 [12, pp 143–144].
The type of a projective line is understood to be the type of the associated subspace of H .

In the real case the points off the quadric Φ fall into two classes, namely the sets of points
span{z},z ∈ H , with (z|z) > 0 and (z|z) < 0, respectively. We call these two classes the pos-
itive and the negative side of Φ, respectively. (From a geometric point of view, the attributes
‘positive’ and ‘negative’ are immaterial. Indeed, multiplying the equation of Φ by some nega-
tive real number will change the labeling of the two sides but not the quadric Φ.) A projective
line is of type (0, 0) precisely when it is contained in Φ. A projective line is of type (1, 0)
[of type (−1, 0)] if and only if it meets Φ at a unique point whereas all its other points are
on the positive [negative] side of Φ. The projective lines of type (1, 1) [of type (−1,−1)] are
those which are contained in the positive [negative] side of Φ. Finally, a projective line is of
type (1,−1) precisely when it meets Φ at exactly two distinct points. (Any such line contains
points from either side.)

In the complex case, a projective line is of type (0, 0), (1, 0) or (1, 1) precisely when it is
contained in Φ, it meets Φ at a unique point or it meets Φ at exactly two distinct points.

In order to visualize this situation in the real case, we consider the affine space on R3; its
points are the vectors of R3, an affine line (affine plane) is a translate of a one-dimensional
(two-dimensional) subspace of R3. There is a one–one correspondence between the set of
points of P(H ) that are not contained in the projective plane z4 = 0 and the set of points of
the affine space on R3 as follows:

span {(z1, z2, z3, z4)ᵀ} 
→ (w1,w2,w3)ᵀ =

(
z1

z4
,

z2

z4
,

z3

z4

)ᵀ
.

Under this correspondence a projective line (plane) corresponds to an affine line (plane) unless
it is contained in the projective plane z4 = 0 [12, p 124].

The points (off the plane z4 = 0) of the ruled quadric Φ correspond to the points of a
hyperbolic paraboloid with equation w1 = w2w3, which is depicted in figure 1. The figure
also shows several affine lines together with the type of their associated projective lines. All
affine lines on the paraboloid, among which are the w2-axis and the w3-axis are of type (0, 0).
The points ‘above’ (‘below’) the paraboloid illustrate the positive (negative) side. The w1-axis
thereby is understood to be ‘tending upwards’. Take notice that this picture lacks all points of
P(H ) in the projective plane z4 = 0. Therefore, in some cases, it provides an incomplete illus-
tration. For example, the w1-axis has just one point in common with the paraboloid, namely

9
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Figure 1. Schematic drawing of various plane types.

(0, 0, 0)ᵀ even though it corresponds to a projective line of type (1,−1), which is spanned by
the decomposable vectors (1, 0, 0, 0)ᵀ and (0, 0, 0, 1)ᵀ.

The paraboloid from figure 1 is one way to visualize the ruled quadric Φ comprising
all points that are spanned by decomposable vectors; this can also be found in references
[13, figure 6, p 4687] and [14, figure 16.1, p 438]. For an alternative point of view, from whichΦ
appears as a hyperboloid of one sheet, see references [12, figure 2.17, p 35] and [14, figure 4.3,
p 113].

4. Identification and characterization of (orthogonal) planes

We are now in a position to solve the problem mentioned earlier: suppose we are given
two orthogonal unit vectors e1 and e2 spanning a plane (aka the two-dimensional subspace)
M of a four-dimensional Hilbert space H . One intermediate task—a straightforward [e.g.
via the system of non-linear equations (1)] exercise—is to find an orthogonal basis {a, b}
of the plane M⊥ orthogonal to M . Here we are not concerned with the explicit realiza-
tion of two remaining vectors a and b. We focus instead on the identification and analy-
sis of the plane M⊥, which allows us to decide whether or not a and b can be chosen
indecomposable.

We shall solve this latter problem directly by substitution of the inner product 〈·|·〉 by the
bilinear form (·|·) from (3), as exposed in equation (8).

We start by introducing the plane which is defined as the image of M under the (anti)linear
transformation (7):

M̃ =
{(

A−1
)
· x|x ∈ M

}
= {x̃|x ∈ M} . (18)

The first essential point is as follows. The planes M and M̃ are of the same type regarding(·|·).
In order to prove the assertion, we note that, by a straightforward calculation,

(x̃|ỹ) = (x|y) for all x, y ∈ H . (19)

10
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Now let {c1, c2} be a basis of M such that the Gramian matrix Gc1c2 has the distinguished
form as described in (15) for the real case or as in (16) for the complex case. Then {c̃1, c̃2} is
a basis of M̃ and (19) gives

Gc̃1 c̃2
= Gc1c2 = Gc1c2 , (20)

which establishes the result.
The second essential point is that the type of M⊥ regarding (·|·) is co-determined by the

type of M̃ regarding (·|·). Notice, however, that, as earlier, the real and complex cases have
to be treated separately: whereas in the complex (Hilbert space) case M⊥ and M̃ are of the
same type, in the real (Hilbert space) case

(a) M⊥ is of type (0, 0) ⇔ M̃ is of type (0, 0),
(b) M⊥ is of type (1,−1) ⇔ M̃ is of type (1,−1),
(c) M⊥ is of type (±1,±1) ⇔ M̃ is of type (∓1,∓1),
(d) M⊥ is of type (±1, 0) ⇔ M̃ is of type (∓1, 0).

Our proof is based on the following alternative description of M̃ , which makes
use of equation (18), the identity M = (M⊥)⊥, equation (3) and the bijectivity of the
transformation (7):

M̃ = {x̃ ∈ H |x ∈ M}

= {x̃ ∈ H |x ∈
(
M⊥)⊥}

= {x̃ ∈ H |〈x|y〉 = 0 for all y ∈ M⊥}

= {x̃ ∈ H |(x̃|y) = 0 for all y ∈ M⊥}

= {z ∈ H |(z|y) = 0 for all y ∈ M⊥}.

(21)

Likewise, we also have

M⊥ = {y ∈ H |〈x|y〉 = 0 for all x ∈ M}
= {y ∈ H |(x̃|y) = 0 for all x ∈ M}

= {y ∈ H |(z|y) = 0 for all z ∈ M̃}.

(22)

Equations (21) and (22) imply that

rad(M̃ ) = M̃ ∩ M⊥ = rad(M⊥). (23)

There exist bases {d1, d2} of M̃ and {d3, d4} of M⊥ such that their Gramian matrices have the
distinguished form as described in (15) for the real case or as in (16) for the complex case. Let m
denote the dimension of the subspace appearing in equation (23). Then equation (17), applied to
M̃ and its basis {d1, d2}, together with one of equations (15) and (16) shows that the leading
2 − m diagonal entries of the Gramian matrix Gd1d2 are non-zero, whereas the remaining m
diagonal entries are zero. The same result holds, mutatis mutandis, for the Gramian matrix
Gd3d4 . There are three cases.

11
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In the first case, H is a complex Hilbert space or m = 2. Then, by the above, Gd1d2 = Gd3d4

so that M̃ and M⊥ are of the same type. In particular, for m = 2 both planes are of type (0, 0).
This establishes the result for a complex space as well as (a) for a real space.

In the second case, H is a real Hilbert space and m = 0. The planes M̃ and M⊥

are of types (ε1, ε2) and (ε3, ε4), respectively, where ε1, ε2, ε3, ε4 ∈ {1,−1}. Sincem =

dim(M̃ ∩ M⊥) = 0, the four vectors d1, d2, d3, d4 constitute a basis of M̃ ⊕ M⊥ =
H and Gd1d2d3d4 = diag (ε1, ε3, ε3, ε4). By Sylvester’s law of inertia [11, theorem 1,
p 297], this matrix coincides—up to a permutation of its diagonal entries—with the matrix
A′ = diag(1, 1,−1,−1) from section 2. This establishes (b) and (c).

In the third case, H is a real Hilbert space and m = 1. The planes M̃ and M⊥ are of types
(ε1, 0) and (ε3, 0), respectively, where ε1, ε3 ∈ {1,−1}. In order to verify (d), it remains to show
that ε1 and ε3 have different signs. Assume to the contrary that, for example, ε1 and ε3 are both
positive. From equation (17), applied to M̃ and its basis {d1, d2}, we obtain d1 /∈ rad(M̃ ) and
d2 ∈ rad(M̃ ). The same kind of reasoning for M⊥ and {d3, d4} yields d3 /∈ rad(M⊥) and
d4 ∈ rad(M⊥). Thus, using equation (23), d1, d3 /∈ M̃ ∩ M⊥ whereas d2, d4 ∈ M̃ ∩ M⊥.
The three vectors d1, d2, d3 therefore constitute a basis of M̃ + M⊥ and its Gramian matrix
has the form Gd1d2d3 = diag (ε1, 0, ε3) = diag (1, 0, 1). Therefore (x|x) � 0 for all x ∈ M̃ +

M⊥. On the other hand, there exists a plane N of type (−1,−1), whence (x|x) < 0 for all
non-zero vectors x ∈ N . Due to dim H = 4, the plane N has a non-zero intersection with
the three-dimensional subspace M̃ + M⊥, that is, there exists a vector n ∈ M̃ + M⊥ with
(n, n) < 0, a contradiction.

Summing up, the plane type of M⊥ can be directly obtained by analyzing the Gramian
matrix Ge1e2 of the two given ‘input’ vectors e1 and e2, and, in the complex case, determining
its rank.

5. Orthogonality of decomposable vectors

Throughout this section, M denotes a plane of type (1,−1) (real case) or of type (1, 1)
(complex case). Then there exist vectors s, t, u, v in H 2 such that

{s ⊗ t, u ⊗ v} , (24)

is a basis of M . Since M is not of type (0, 0), we must have, by virtue of equation (10),

(s ⊗ t|u ⊗ v) = det(s, u) det(t, v) 
= 0. (25)

This in turn shows that {s, u} and {t, v} are bases of H 2. Now (25) implies det(s×, u×) =
det(s, u) 
= 0 and det(t×, v×) = det(t, v) 
= 0. Therefore each of the sets {s×, u×} and {t×, v×}
is a basis of H 2. Consequently, we obtain

{s× ⊗ t×, s× ⊗ v×︸ ︷︷ ︸
=: b

, u× ⊗ t×︸ ︷︷ ︸
=: a

, u× ⊗ v×}, (26)

as a basis of H . Furthermore, it is immediate from equations (9) and (11) that each of the
linearly independent vectors a and b is orthogonal to the vectors s ⊗ t and u ⊗ v, that is, {a, b}
is a basis of the plane M⊥.

If the basis vectors of M appearing in (24) are orthogonal, may we then suspect that there
exists a ‘completed’ orthogonal basis of the four-dimensional real or complex Hilbert space

12
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H which (includes these two vectors and) consists solely of decomposable vectors? Stated
pointedly, does the orthogonality of decomposable vectors spanning the given plane M imply
that the corresponding two decomposable vectors in the orthogonal subspace M⊥ [which is
again of the same type] are also orthogonal, and vice versa? In what follows we shall prove that
this is indeed the case; that is, the orthogonality of the two decomposable vectors from (24) is
‘inherited’ by the two decomposable vectors a and b defined in (26). Using equations (9) and
(13) we obtain:

〈s ⊗ t|u ⊗ v〉 = 〈s|u〉〈t|v〉, (27)

and

〈u× ⊗ t×|s× ⊗ v×〉 = 〈u×|s×〉〈t×|v×〉 = 〈s|u〉〈v|t〉. (28)

Therefore s ⊗ t and u ⊗ v are orthogonal if and only if at least one of the inner products 〈s|u〉
and 〈t|v〉 vanishes. This in turn is equivalent to u× ⊗ t× and s× ⊗ v× being orthogonal.

Our considerations from above do not involve the auxiliary plane M̃ that we used before.
We add, for the sake of completeness, that a basis of M̃ is given by{

s× ⊗ t×, u× ⊗ v×} . (29)

This follows from equation (14) applied to the basis vectors of M from (24). Note that
equation (27) and the analogue of (28) (obtained by interchanging s× and u×) establishes that
the orthogonality of the decomposable basis vectors of M̃ from (29) holds precisely when the
decomposable basis vectors of M from (24) are orthogonal.

All things considered, we see that the four decomposable basis vectors from (26) give rise
to six planes. Two of them are M⊥ and M̃ . The remaining four planes are of type (0, 0):
take, for example, the plane spanned by s× ⊗ t× and s× ⊗ v×. An arbitrary linear combination
of these two vectors reads ξ1(s× ⊗ t×) + ξ2(s× ⊗ v×) = s× ⊗ (ξ1t× + ξ2v×) and therefore is
decomposable.

In a geometric language, the four vectors from (26) generate the vertices of a tetrahedron
with three specific properties in the projective spaceP(H ). First, the vertices of the tetrahedron
are on the ruled quadric Φ, whose points are given by all non-zero decomposable vectors.
Second, two edges of the tetrahedron meetΦ at exactly two distinct points. Third, the remaining
four edges lie completely on the quadricΦ. One tetrahedron of this kind is depicted in figure 2,
where we adopted the same affine viewpoint as in figure 1.

It is a straightforward task to obtain all planes of type (1,−1) (real case) and of type
(1, 1) (complex case) by a reverse approach. Given any two bases {s′, u′} and {t′, v′} of H 2

the analogue of (25) holds. This shows that the plane spanned by s′ ⊗ t′ and u′ ⊗ v′ has the
required type. Furthermore, by an appropriate choice of the initial bases, one can assure that
s′ ⊗ t′ and u′ ⊗ v′ are (non-)orthogonal.

6. Consequences for completion of contexts

One of the main results of this categorization exercise is that, as long as the two given vec-
tors e1 and e2 do not span a plane of type (0, 0)—that is, as long as their Gramian does not
vanish such that Ge1e2 = diag(0, 0)—the vectors completing the context (four-dimensional
orthogonal basis) can always be chosen to be indecomposable, and therefore correspond to
entangled states. In the case the Gramian Ge1e2 vanishes the entire context consists of decom-
posable vectors associated with non-entangled states. Moreover, if there exist two orthogonal
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Figure 2. Tetrahedron arising from the basis (26).

Figure 3. ‘Incomplete’ faithful orthogonal representation (aka coordinatization) of the
orthogonality hypergraph of the Hardy gadget, as quoted from figure 1 and the last row
of table I CC BY 4. Reproduced from [5]. CC BY 4.0.

decomposable vectors spanning a plane it is always possible to ‘complete’ the respective
orthogonal basis by adding two orthogonal decomposable vectors spanning the orthogonal
subspace.

For the sake of a concrete example consider the faithful orthogonal representation
(aka coordinatization) of a hypergraph of the Hardy type, as quoted from the last row of table
I of reference [5], as depicted in figure 3.
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It comprises a pasting of two complete (aka orthogonal bases, maximal operators
[15, section 84, theorem 1], Boolean subalgebras or blocks [16], maximal cliques) as well
as six incomplete intertwining contexts

{(
i, 1,−1

2
,−1

2

)ᵀ
,
(
i, 3, 3, 5

)ᵀ
, 2, 3

}
,

{(
5, i, i, i

)ᵀ
,
(
i, 2, 1, 2

)ᵀ
, 8, 9

}
,{(

5, i, i, i
)ᵀ

,
(
i, 1, 2, 2

)ᵀ
, 11, 12

}
,{(

i,−1
2

, 1,−1
2

)ᵀ
,
(
i, 3, 3, 5

)ᵀ
, 16, 17

}
,

{(
1,−i, i, i

)ᵀ
,
(
1, i,−i, i

)ᵀ
, 18, 19

}
,{(

1, i, i,−i
)ᵀ

,
(
i, 3, 3, 5

)ᵀ
, 20, 21

}
,

(30)

arranged in and 21 atoms or vectors, 2 × 6 = 12 thereof undefined, namely (partitions indicate
same contexts) {{2, 3}, {8, 9}, {11, 12}, {16, 17}, {18, 19}, {20, 21}}.

By now it should be clear that all of these undefined vectors can be made to be indecom-
posable: by a parity argument using their even numbers of imaginary units all of the defined
vectors are indecomposable; hence there is no way that these could span a (transformed) type
(0, 0) plane. But in what plane types exactly are those undefined vectors? All we need to know
is the type of the planes spanned by the transformed known vector pairs, which reduces to the
task of computing the rank of their Gramian matrices.

For the sake of an explicit computation, take the context defined by{(
i, 1,−1

2
,−1

2

)ᵀ
,
(
i, 3, 3, 5

)ᵀ
, 2, 3

}
, and identify e1 =

(
i, 1,−1

2
,−1

2

)ᵀ
, e2 =(

i, 3, 3, 5
)ᵀ

, a = 2, b = 3, respectively. Then the associated Gramian matrix is

Ge1e2 = 1
4

(
2 − 2i −3 + 9i
−3 + 9i −36 + 20i

)
. The rank of this matrix is two; therefore the type

of plane spanned by the vectors a = 2 and b = 3 is (1, 1). Analogous computations show that
all planes spanned by the ‘missing’ vectors are of type (1, 1).

Intuitively speaking there exist ‘much less’ decomposable vectors than indecomposable
ones: from all vectors of four-dimensional space only those satisfying condition (4) qualify.
Therefore, the task of finding a faithful orthogonal representation with only decomposable
vectors of a (hyper)graph turns out to be more difficult than, say, by requiring indecom-
posability of the vectors. For some configurations and (hyper)graphs it is impossible to find
faithful orthogonal representations by decomposable vectors; even if there exist ‘plenty’ of
such representations containing also indecomposable vectors.

Consider, for the sake of such an example, a ‘triangle’ subgraph of the hypergraph in
figure 3. Suppose we wish to ‘dress’ this hypergraph with a coordinatization involving only
decomposable vectors. In order to show that this task cannot be accomplished we exhibit
a faithful orthogonal representation of the hypergraph depicted in figure 4(a). Thereby we
merely require decomposability of the vectors b2, b3, . . . , b6 while allowing arbitrary vec-
tors b1, b7, b8, b9. Then there exist non-zero vectors s j, t j ∈ H 2 such that b j = s j ⊗ t j for all
j = 2, 3, . . . , 6.

The plane (span{b1, b7})⊥ contains the two decomposable vectors b5, b6 as well as a third
decomposable vector b4, all of which are two-by-to linearly independent. This forces not only
(span{b1, b7})⊥ but also span{b1, b7} to be of type (0, 0) (otherwise there would exist at most
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Figure 4. (a) Subgraph of the triangle hypergraph depicted in figure 3 with a faithful
orthogonal representation by decomposable vectors b2, b2, . . . , b6 and arbitrary vectors
b1, b7, b8, b9. Even though it turns out that b1 and b7 must be decomposable, the remain-
ing vectors b8 and b9 have to be indecomposable. (b) An explicit example of a non-
faithful orthogonal representation of the triangle hypergraph with only decomposable
vectors resulting in the multiple occurrence of s ⊗ t.

two such vectors). Consequently, there are non-zero vectors sk, tk ∈ H 2 such that bk = sk ⊗ tk

for k = 1, 7. Using equation (10) we arrive at

(b1|b7) = det(s1, s7) det(t1, t7) = 0. (31)

Furthermore, from equations (9) and (12) we obtain

〈b1|b7〉 = 〈s1|s7〉〈t1|t7〉 = det(s×1 , s7) det(t×1 , t7) = 0. (32)

Since s1 and s7 are non-zero, the determinants det(s1, s7) and det(s×1 , s7) cannot vanish simul-
taneously. Likewise, det(t1, t7) and det(t×1 , t7) are not both zero. Consequently, there are two
cases: (i) either det(s1, s7) = det(t×1 , t7) = 0 and, at the same time, det(t1, t7) 
= 0 
= det(s×1 , s7),
(ii) or, alternatively, det(s×1 , s7) = det(t1, t7) = 0 and, at the same time, det(s1, s7) 
= 0 
=
det(t×1 , t7). Therefore, either det(s1, s7) = 0 
= det(t1, t7), or, alternatively, det(s×1 , s7) = 0 
=
det(t×1 , t7). Hence, up to an irrelevant scaling factor, b7 = s7 ⊗ t7 equals one of the following
vectors:

s1 ⊗ t×1 , s×1 ⊗ t1. (33)

Next, we repeat the previous reasoning in view of b2, b3, b7 ∈ (span{b1, b4})⊥. In this way,
we regain the decomposability of b1 and b4 and arrive at precisely the same vectors from (33).
So, one of the vectors from (33) must be proportional to b4 while the other vector needs to
be proportional to b7. The plane span{b4, b7} is of type (1,−1) in the real and of type (1, 1)
in the complex case, since (s1 ⊗ t×1 |s×1 ⊗ t1) = det(s1, s×1 ) det(t×1 , t1) 
= 0. We are therefore in
a position to substitute s by s1, t by t×1 , u by s×1 and v by t1 in (24), so that the vectors b, a
appearing in (26) turn into

s×1 ⊗ t×1 , (−s1) ⊗ (−t1) = s1 ⊗ t1 = b1. (34)

The decomposable vectors from (34) constitute a basis of the plane span{b8, b9}. This plane,
like its orthogonal plane span{b4, b7}, is of type (1,−1) in the real and of type (1, 1) in the
complex case. Thus, up to scaling factors, the vectors appearing in (34) are the only decom-
posable vectors of span{b8, b9}. Also, we established in section 5 that the orthogonality of b4

and b7 forces the vectors from (34) to be orthogonal. Now, since our orthogonal representation
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is faithful, it turns out that b8 is not proportional to s1 ⊗ t1 = b1, which in turn establishes that
b9 is not a multiple of s×1 ⊗ t×1 . The previous statement remains true when interchanging b8

and b9. Our final conclusion therefore is that b8 and b9 have to be indecomposable.
Figure 4(b) displays an explicit example of a non-faithful orthogonal representation of

a ‘triangle’ in terms of decomposable vectors with just one multiplicity. Thereby, it has
to be assumed that {s, u}, {s×, u}, {t, v} and {t×, v} are bases of H 2 in order to avoid
any further multiplicities. Of course the plane span{s× ⊗ t×, s ⊗ t} admits a continuum of
orthogonal bases containing only indecomposable vectors. Replacement of the given basis
{s× ⊗ t×, s ⊗ t} with any such basis yields a faithful orthogonal representation.

7. Steering (in)decomposability

If the physical means are restricted to real spaces the existence of ‘plain’ planes which contain
only non-zero vectors of either one of the two categories—factorizable (aka decomposable)
and indecomposable—and the associated orthogonal planes which are of the same types allows
a sort of ‘steering’ into such ‘plain’ planes. In this way one party controlling the source as well
as the (two elementary) observables spanning the ‘original plane’ can, in a directed manner,
signal factorizable or entangled states toward a second party at the receiving end.

For the sake of an example take two factorizable vectors spanning a type (0, 0) plane, and the
associated orthogonal plane which is also of type (0, 0), containing only factorizable vectors.
To be more explicit consider a four-port generalized beam splitter [17] associated with the out-
put states corresponding to the vectors

(
1, 0, 0, 0

)ᵀ
,
(
0, 1, 0, 0

)ᵀ
,
(
0, 0, 1, 0

)ᵀ
, and

(
0, 0, 0, 1

)ᵀ
,

respectively. Suppose the first party called Alice controls the source and the first two ports
associated with

(
1, 0, 0, 0

)ᵀ
and

(
0, 1, 0, 0

)ᵀ
, and the second party called Bob controls the last

two ports associated with
(
0, 0, 1, 0

)ᵀ
and

(
0, 0, 0, 1

)ᵀ
. If Alice makes sure that she is sending

and receiving no other states then she can be sure that Bob, no matter what he does on ‘his
side’ of the output ports, will end up with a factorizable state.

If, on the other hand, only plane types (1, 1) are involved—say one plane spanned by
(1/

√
2)
(
1, 0, 0, 1

)ᵀ
and (1/

√
2)
(
0, 1, 1, 0

)ᵀ
on Alice’s state emission and her beam splitter

ports, and (1/
√

2)
(
1, 0, 0,−1

)ᵀ
and (1/

√
2)
(
0, 1,−1, 0

)ᵀ
on Bob’s ports—Alice can be sure

that Bob, no matter what he does on ‘his side’ of the output ports, will end up with an entangled
state.

Note that is suffices for Alice to generate the respective states and observe her shares of
the ports. In that way one can imagine a type of BB84 [18] protocol which, instead of random
shared sequences of bits, render shared factorizable and entangled states.

We close this investigation into the (in)decomposability of vectors in planes (aka two-
dimensional subspaces) of four-dimensional Hilbert spaces by noting that their structure
exhibits a richness which might not be obvious at first glance. There exist planes consisting
of purely decomposable vectors. Nevertheless, in general indecomposability and thus physical
entanglement and the encoding of relational properties by quantum states ‘prevails’ and occurs
more often than separability associated with well defined individual, separable states.
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