
Varieties of contextuality based on probability and
structural nonembeddability

Karl Svozil

Institute for Theoretical Physics, TU Wien, Wiedner Hauptstrasse 8-10/136, 1040 Vienna,
Austria

Abstract

Different analytic notions of contextuality fall into two major groups: probabilis-

tic and strong notions of contextuality. Kochen and Specker’s Theorem 0 [1] is a

demarcation criterion for differentiating between those groups. Whereas proba-

bilistic contextuality still allows classical models, albeit with nonclassical proba-

bilities, the logico-algebraic “strong” form of contextuality characterizes collec-

tions of quantum observables that have no faithfully embedding into (extended)

Boolean algebras. Both forms indicate a classical in- or under-determination

that can be termed “value indefinite” and formalized by partial functions of

theoretical computer sciences.
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1. Types of quantum contextuality

The main point of this paper is that there are at least two main types

of contextuality: the first notion is based upon nonclassical phenomenology,

and in particular, on nonclassical probabilities contradicting Boole’s conditions

of physical experience [2]. The second type goes beyond this, and is based5
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upon the absence of a classical logico-algebraic structure in terms of which

the respective observables could be re-interpreted. Formally this amounts to

nonembaddability into Boolean algebras by classical means; that is, in formal

terms, by two-valued measures interpretable as classical truth assignments. The

strongest form of this latter logico-algebraic contextuality is the total absence10

of any such classical truth assignment [1]. Thereby, it is important to keep in

mind that the mere existence of any such classical truth assignment is necessary

but not sufficient to ensure classical representability or embeddability: indeed,

even if there is an apparent “abundance” of classical truth assignments, these

might not provide sufficient means to classically embed a collection of quantum15

observables.

Early synthetic conceptions of contextuality emerged from insights into the

entangled complexion [3] of physical properties retrieved from quantum mea-

surements. As expressed by Bohr [4]: “the impossibility of any sharp separation

between the behavior of atomic objects and the interaction with the measuring20

instruments which serve to define the conditions under which the phenomena

appear.” This yields a “conditionality of phenomena” [5, 6] relative to a “a

complex of conditions under which the measurement is performed” [7, 8].

In this line of thought, observable phenomena appear not as isolated proper-

ties of the object, but as signals from the object-measurement apparatus com-25

posite. (Entanglement may even extend to the observer [9, 10].) Indeed, if

entanglement is involved, these signals are about the relational properties of

the combined entangled system. It makes no sense to refer to a well-defined

property of the individual object alone [3, 11]. Therefore, one should be care-

ful interpreting a statement such as Bell’s observation [12] that “the result of30

an observation may reasonably depend . . . on the complete disposition of the

apparatus”. In general there is no deterministic, one-to-one correspondence,

association, or translation between relevant (counterfactual) well-defined in-

dividual properties of the constituents (one imagined [13] as “object”) of an

entangled quantized system on the one hand, and the signal resulting from ob-35

servation of this entangled state on the other hand. Entanglement evades such
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an association because the constituents of an entangled quantum state have no

well-defined individuality.

Subsequent attempts to specify and quantify contextuality have presumed

that individual objective properties nevertheless exist even for quantized sys-40

tems, and that these properties do not depend on any kind of disposition of the

measurement apparatus; in particular not on some compatible observables that

are measured simultaneously. The latter assumption is usually referred to as

“noncontextual”. The former assumption of the general existence of counterfac-

tual properties or observables can be called omni-existence. Omni-existence is45

the “totality” assertion that, although due to complementarity not all observ-

ables can be measured simultaneously, they are nevertheless value definite; that

is, some of them have a definite counterfactual value that can by no physical

means be measured [14].

Historical attempts to prove contextuality have assumed both omni-existence50

and noncontextuality (thereby disregarding earlier synthetic concepts of contex-

tuality by entanglement mentioned earlier), and have concentrated on the differ-

ences between classical and quantum predictions. Thus, given omni-existence,

any empirically (falsifiable) discrepancies between classical and quantum pre-

dictions are interpreted to signify contextuality. However, one has to be careful55

and keep in mind that, just because omni-existence is often but not always [15]

assumed for the sake of contradiction, a violation of noncontextuality does not

imply or suggest the existence of any contextual hidden variable model. Con-

temporary interpretations of contextuality indicate the non-existence of a non-

contextual model [16].60

Most commonly, experimental violations of Boole-Bell-type inequalities are

identified with quantum contextuality [17, 16]. Other empirical signatures of

quantum contextuality are the experimental violations of ad hoc configurations

whose classical interpretation (i) either merely assume the omni-existence of

unrestricted classical noncontextual value assignments that do not depend on65

the complete disposition of the apparatus [17]; (ii) or, on preselected input,

predict classical functional output that is violated in quantized systems [18].
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Theoretical arguments against omni-existent noncontextual value assign-

ments consider finite configurations of observables forming intertwining con-

texts that have no consistent classical value assignments [14]. Here the term70

“intertwined” is understood as introduced by Gleason [19]: in higher than two

dimensions the orthonormal bases identified with contexts can “share” common

elements—they need not be “isolated”, that is, disjoint. This is not the place

for a historic review but the literature indicates that what is now known as the

Kochen-Specker theorem [1, Theorem 1] has been discussed [20, 21] as a direct75

consequence of Gleason’s theorem [19].

The variety of contextual signifiers has resulted in a great semantic spread of

notions of contextuality that threatens to obscure subtle differences concerning

the quality of anomaly. Because the same collection of observables, taken from

quasi-classical or quantum experimental configurations alike, may still allow80

very different types of probability distributions. The resulting differences in the

prediction may be taken as signatures for contextuality. But this is incomparable

to configurations of observables that do not, by any classical means, support such

probability distributions, either because the existing classical value assignments

that do not depend on the complete disposition of the apparatus are too scarce85

to resolve the logico-algebraic structure of observables at hand, or because this

structure does not allow any such classical value assignment at all.

In what follows I, therefore, suggest refining the notion of contextuality

by differentiating between two cases, depending on whether the collection of

observables90

(i) violates some constraints on classical probabilities but still allows a faithful

embedding into an extended Boolean subalgebra, or

(ii) does not, by any classical means, allow any faithful embedding into some

extended Boolean subalgebra.

For the sake of this analysis note that maximal collections of (finitely many)95

mutually co-measurable observables can be “wrapped up” into contexts (or

blocks or maximal observables) which, from a probabilistic and structural point
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of view, intrinsically behave classically. The respective probability distributions

are in accord with Kolmogorov’s axioms. In particular, the probabilities of

mutually exclusive events add up [19].100

2. Nomenclature

For quantum mechanics we fix a positive integer n ≥ 2. Let O be a nonempty

set of one-dimensional projection observables on the Hilbert space Cn [22]. A

set C ⊂ O is a context of O if C is an orthonormal basis of Cn. An equivalent

definition is in terms of the spectrum of a maximal operator containing one-105

dimensional projection operators onto the subspaces spanned by the vectors in

C. In more general empirical logic terms, a context can be conceptualized by a

set of mutually exclusive observables whose disjunction is a tautology.

Quantum mechanics, as well as partition logics [23] from a generalized urn [24]

or finite automata models [25, 26] featuring complementarity, allow two or more110

distinct contexts which, for more than two mutually exclusive outcomes per con-

text, may intertwine in some observable(s) [27]. The remaining nonintertwining

observables, taken from different contexts, exhibit complementarity. (One con-

venient and compact graphical representation depicts contexts as smooth lines,

and mutually exclusive elementary observables by points on these lines.)115

As has been mentioned earlier, despite exhibiting complementarity, a collec-

tion of contexts may still allow some quasi-classical interpretation in terms of

extreme cases. Such value assignments can be formalized by dispersionless two-

valued states v(x) ∈ {0, 1} (or, logically interpreted, “false” and “true”) that are

binary functions of the respective observables x ∈ X forming the contexts which120

are additive v(x∨ y) = v(x) + v(y) for mutually exclusive observables x∧ y = ∅,

and add up to 1 for all mutually exclusive observables within any context. A

weak and general formalization for quantized systems that allows partial func-

tions and thus value indefiniteness is in terms of admissibility [15]: Let O be a

set of one-dimensional projection observables and let v : O → {0, 1} be a value125

assignment function. Then v is admissible if the following two conditions hold
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for every context C formed by O:

(i) exclusivity: if there exists an x ∈ C with v(x) = 1, then v(x′) = 0 for all

x′ ∈ C \ {x};

(ii) completeness: if there exists an x ∈ C with v(x′) = 0 for all x′ ∈ C \ {x},130

then v(x) = 1.

If the observables on which the aforementioned collections of contexts are

based are quantum, then there is no guarantee that “sufficiently many” clas-

sical value assignments corresponding to dispersionless two-valued {0, 1}-states

exist. Indeed, there are finite configurations of observables with no such classi-135

cal value assignment, or ones that cannot support “sufficiently many” classical

value assignments to allow embeddings preserving the respective logico-algebraic

structure.

Already Kochen and Specker discussed these issues and presented a demar-

cation criterion [1, Theorem 0] that utilizes the (in)separability of the under-140

lying binary elementary propositions by classical value assignments: A set of

observables X forming a collection of contexts is faithfully embeddable into an

extended Boolean algebra if and only if these observables in X contained in

the respective contexts support or allow a separating set of two-valued states

V = {v1, . . . , vn} such that, for any two observables x, y ∈ X, there exists some145

vi ∈ V for which vi(x) 6= vi(y). (In its extreme form the collection of observables

X support no two-valued measure, and V = ∅.)

If the observables in X support a separating set of two-valued states V then

V facilitates three constructions:

(i) It yields all classical probability distributions in the form of a convex150

combination P (x) =
∑n

i=1 λivi(x), such that
∑n

i=1 λi = 1 and λj > 0 for

all j ∈ {1, . . . , n}.

(ii) The values of the value assignments formalized by dispersionless two-

valued states on, say, k observables can be arranged in k-tuples. These
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tuples can be interpreted as extreme points or vertices of a compact con-155

vex subset of Rk, a convex polytope, that has an equivalent representation

in terms of its hull; that is, as a set of half-spaces which are (in)equalities.

In the quantum physical realm, these inequalities are often referred to as

Boole-Bell-type inequalities [28, 29]. We shall later encounter such a hull

computation in deriving the Suppes-Zanotti inequalities (2).160

(iii) A complete set of n two-valued states allows a representation as a partition

logic that explicitly represents a classical embedding into an extended

Boolean algebra 2n [23].

Therefore, as disclosed earlier, it is suggested to adopt Kochen and Specker’s

demarcation criterion of embeddability for a refined definition of contextuality:165

One could speak of strong contextuality if no classical representation of the re-

spective observables, and also no classical probability distribution exists. Strong

contextuality always indicates some “essential” scarcity of two-valued states

associated with classical truth assignments; a deficiency to supply sufficient

“structural information” for a classical embedding of the respective quantum170

observables. As will be discussed later such essential scarcity can be categorized

and quantified by escalating levels of “rarity”, a “shortage” of elements of the

set of two-valued states that may become nonseparating, nonunital, or in its

strongest form empty.

The weaker probabilistic contextuality, while featuring complementarity (be-175

cause more than one context is involved), allows all kinds of classically embed-

dable collections of observables, as well as classical probability distributions—if

only the probability distribution in some way differs from global classical Kol-

mogorovian probabilities that are not restricted to local contexts. That is,

the observables still allow classical probability distributions—as well as “hidden180

variables” in terms of the “larger” extended Boolean algebra in which the ob-

servables can be homomorphically embedded—but those probabilities are not

realized by the probabilistic contextual systems at hand.

Why should one make such a distinction from a physical point of view?

7



Because if there do not exist separating sets of two-valued states and thus no185

faithful classical embeddability then the respective structures do not any longer

support classical probability distributions; and also no “hidden variables” in

terms of the “larger” extended Boolean algebra in which the observables can

be homomorphically embedded. This is quite different from any nonclassical

probability distribution on an otherwise “quasi-classical” empirical logics [30]190

containing complementary observables that can still be imbedded into “larger”

Boolean algebras.

For physical realizations we refer to Wright’s generalized urn models [24] or

the initial state identification problem for finite automata [25, 26], amounting to

partition logics [23]. The resulting empirical logics [30] are identical to a variety195

of quantum propositional structures [31] These logics support both classical as

well as quantum probabilities. Which probability distribution needs to be chosen

depends solely on the respective physical realization [27]. In particular, there is

no structural logical distinction; therefore, classical “hidden variables” cannot

be ruled out, the difference is in the classical-versus-quantum performance: the200

respective quantum contextuality is probabilistic.

In what follows several quantum mechanical examples of probabilistic con-

textuality in n–dimensional Hilbert space will be enumerated. To avoid un-

necessary redundancies they are mentioned with a reference to the concrete

computation. Often two-valued states will be rewritten in terms of the expec-205

tation values of dichotomic outcomes E ∈ {−1, 1} by affine transformations—a

multiplication followed by a subtraction—from classical value assignments en-

coded by two-valued states v ∈ {0, 1}: E = 2v−1, or conversely, v = 1
2 (E + 1).

In quantum mechanics and Hilbert spaces of dimension greater than one, E

generalizes to a unitary Householder transformation Ex = 1 − 2x†x, where x210

is a unit vector and † represents the Hermitian adjoint (aka conjugate). The

resulting eigensystem of Ex has eigenvalues ±1:

−1: x is an eigenvector of Ex with eigenvalue −1.

+1: The remaining n − 1 mutually orthogonal eigenvectors span the n − 1
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dimensional subspace orthogonal to x. Every vector in that subspace has215

eigenvalue +1. (For n > 2 the spectrum is degenerate.)

For any context represented by some orthonormal basis {e1, e2, . . . , en}, the

product of the respective unitary Householder transformations is minus the

identity; that is, Ee1Ee2 · · ·Een = −1.

All such approaches take “a bag of” observables from quantum mechanics—220

some of them complementary—and force a classical interpretation upon them.

This is done in terms of classical value assignments formalized by two-valued

states or expectations of binary observables. Note that there exist classical em-

pirical models featuring complementarity, such as the ones meantioned earlier:

Moore automata [25, 26], or generalized urn models [24], both yielding partition225

logics [23, 27].

3. Examples of probabilistic contextuality

In what follows we shall concentrate on two subtypes of probabilistic con-

textuality; one based on Boole’s “conditions of physical experience” [2], and

another one on the functional behaviour derived from terminal vertices of gad-230

get graphs.

3.1. Boole-Bell type signatures of contextuality by hull computations

As mentioned earlier the hull computation of the convex polytope formed by

vertices that represent the encoded classical value assignments of a given selec-

tion of observables yields inequalities that are identified with optimal Boole-Bell235

type inequalities [28, 29]. Violations of these inequalities by quantum proba-

bilities are interpreted as signifying contextuality relative to the assumptions

discussed earlier, in particular, omni-existence and noncontextuality.

For the sake of concrete examples of historic configurations used for Boole-

Bell type inequalities consider configurations with240

(i) isolated contexts with no common observable, such as
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(i.SZ) Suppes-Zanotti inequalities from three observables [32], as discussed

later;

(i.CHSH) Clauser-Horne-Shimony-Holt (CHSH) inequalities from four observ-

ables in two groups, and their respective tensor products forming four245

isolated contexts [32];

(i.TPB) two-party Bell inequalities from finitely many observables, and their

respective tensor products forming isolated contexts [33];

(ii) intertwining contexts from three-or higher dimensional Hilbert spaces with

common observables, such as250

(ii.SB) for the Specker bug configuration [34] that serves as graph theoretic

true-implies-false gadget [35];

(ii.KCBS) inequalities from five cyclically connected contexts [36]. (The Bub-

Stairs inequality [37] on the same configuration is ad hoc and does

not follow from a hull computation but from a classical probability255

assessment.)

Suppes and Zanotti’s result [32, 38] as well as other bounds on classical prob-

abilities for different configurations of observables still allow single instances of

{−1, 1}-value assignments, as the respective set of two-valued states is not empty

(as for Kochen-Specker configurations). But the classical probabilistic analysis260

of such configurations reveals that the bounds on classical probabilities are vi-

olated by the quantum probabilities of analogous quantized systems. This has

been, for instance, pointed out by tabulations of classical {−1, 1}-value assign-

ments for the CHSH configuration [39] by Asher Peres [40]. Further quantitative

investigations into the “amount”, or a measure, of probabilistic contextuality in265

terms of enumerations and tabellations of classical value assignments have, for

instance, been studied in References [41, 42, 43, 44, 45, 46].

Let us, for the sake of an explicit example, enumerate the classical value as-

signments in the Suppes-Zanotti configuration which consists of measurements

of an Einstein-Podolski-Rosen [47] type configuration of two observables on one
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# X Y Z XY XZ Y Z

v1 +1 +1 +1 +1 +1 +1

v2 +1 +1 −1 +1 −1 −1

v3 +1 −1 +1 −1 +1 −1

v4 −1 +1 +1 −1 −1 +1

v5 +1 −1 −1 −1 −1 +1

v6 −1 +1 −1 −1 +1 −1

v7 −1 −1 +1 +1 −1 −1

v8 −1 −1 −1 +1 +1 +1

Table 1: The eight {−1, 1}-value assignments of the Suppes-Zanotti configuration.

“side”, and one observable on the other “side” (CHSH uses a symmetric 2-2 con-

figuration). It therefore involves 2+1 = 3 binary observables X,Y, Z ∈ {−1,+1}

associated with {−1, 1}-value assignments that can be used to form the second-

order distributions from the three second-order expectations E(X,Y ) = XY ,

E(X,Z) = XZ, E(Y, Z) = Y Z, obtained by just multiplying the binary ob-

servables from their three possible pairs, respectively. Classically this amounts

to 23 = 8 value assignments tabulated in Table 1. These eight classical value

assignments can be used to generate all classical higher-order distributions [48]

by convex summation of these value assignments; in particular, the probabilities

p(x) = λ1v1(x) + · · ·+ λnvn(x),

with λ1 + · · ·+ λn = 1 and λj ≥ 0, j ∈ {1, . . . , n} .
(1)

The second-order distributions can be geometrically characterized by a convex

polytope [28, 29] formed by the “classical vertices” whose coordinates are ar-

ranged in three-tuples
(
XY,XZ, Y Z

)ᵀ
(ᵀ indicates transposition) with respect

to the Cartesian standard basis of R3 are identified with the respective last three

row entries of Table 1: in this case the four vertex vectors (the other four vectors

are duplicates) are
(

1, 1, 1
)ᵀ

,
(

1,−1,−1
)ᵀ

,
(
−1, 1,−1

)ᵀ
, and

(
−1,−1, 1

)ᵀ
.
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The resulting convex polytope has an equivalent representation in terms of its

hull, formed by its half-spaces [49, 50, 51]. In the case of the Suppes-Zanotti

configuration [32, 52, 53] the hull equations are the Suppes-Zanotti inequalities;

in particular, the four half-spaces described by the inequalities [38]

−1 ≤ ±E(X,Y )± E(X,Z)± E(Y,Z) ≤ 1. (2)

Quantization of the Suppes-Zanotti configuration with the associated oper-

ators [54] F(X,Y )± F(X,Z)± F(Y,Z) with the quantum expectation F yields

the much larger quantum bounds

−3 < F(X,Y )± F(X,Z)± F(Y,Z) < 3 (3)

that allows a violation of the classical bounds (2), which is a signature of prob-

abilistic contextuality.

3.2. Functional signatures of contextuality270

There exist configurations of observables that, interpreted classically, serve

all kinds of (logical) functions. (Graph theoretically they are gadgets.) Usu-

ally, they have input and output terminals which, functionally interpreted, serve

as arguments and functional values. Two historic configurations realize either

true-implies-false [34, 18] or true-implies-true functional relations [1, 55]: if a275

particular state is preselected on the input terminal then classical value assign-

ments (implementing omni-existence and noncontextuality) enforce a particular

dependent value assignment—either false or true, respectively—on the output

terminal.

Violations of these dependencies by quantum probabilities are interpreted280

as signifying contextuality relative to the assumptions discussed earlier. In

particular, any classical “hidden variable” model cannot implement both omni-

existence and have noncontextual admissible value assignments [40].

For the sake of examples we refer to (extensions of) the Specker bug [34, 18],

or the examples in Refs. [56, 57] which use finite sets of quantum observables285

in three-dimensional Hilbert space, as well as Hardy type configurations [1, 55]

12



a12

a8 a6

a2

a13

a1

a3 a11

a10

a5a9

a7

a4

p(a12)

p(a8) p(a6)

p(a2)

p(a13)

p(a1) = λ1 + λ2 + λ3

p(a3) p(a11)

p(a10)

p(a5)p(a9)

p(a7) = λ6 + λ13 + λ14

p(a4)

(
0, 1,
√
3
)

(
−2
√
2,
√
2,−3

√
3
) (

2
√
2,−1,−3

√
3
)

(
0,−1,

√
3]
)

(
2,−2

√
2, 0

)

(
1, 0, 0

)
(

0,
√

3, 1
) (

0,
√

3,−1
)(√

2, 1,
√

3
)

(
−2
√

2, 1,−
√

3
)(

−2
√

2, 1,
√

3
)
(

1, 2
√

2, 0
)

(√
2, 1,−

√
3
)

(a) (b) (c)

Figure 1: (a) Configuration of 13 observables in seven bi-intertwining contexts serving as a

symmetric (with respect to horizontal) true-implies-false gadget; (b) the associated classical

probability distributions obtained by the convex sum λ1 + · · ·+ λ14 = 1, λi ≥ 0, 1 ≤ i ≤ 14;

(c) a quantum representation in terms of a faithful orthogonal vertex labeling in terms of

a vertex representation by vectors, preserving orthogonality of adjacent vertices [58] of the

hypergraph that maximizes the probability of a7, given a1.

which use finite sets of quantum observables in four- or higher-dimensional [18]

Hilbert space. All of these gadgets have a classical interpretation in terms

of partition logic, finite automaton models or generalized urn models. Their

respective logico-algebraic structure can be faithfully embedded into extended290

Boolean algebras; for instance, 2n, by identification with the union of elements

of a partition obtained from analyzing a complete set of n two-valued states [23].

For the sake of an example we shall review a configuration of 13 observables

in seven bi-intertwining contexts (maximal Boolean subalgebras 23) introduced

by Kochen and Specker [34]. It hypergraph representing contexts as smooth295

curves (lines) is depicted in Figure 1.

This Specker bug (Specker’s “Käfer” configuration can be employed as a

classical (noncontextual) true-implies-false (TIF) gadget, as the two “terminal

points” a1 and a7 cannot both be “true” (value 1) at the same time: suppose

a1 and a7 are both 1 simultaneously. Then admissibility demands that a3,300

a5, a9 as well as a11 must all be 0 simultaneously. Consequently a4 and a10

must both be 1 simultaneously—a complete contradiction since admissibility of

two-valued {0, 1}-states requires exactly one element of a context to be 1, all

other elements must be 0. Nevertheless one can be true (have value 1) and

the other one false (value 0). Also they can both be false (value 0): their305
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# a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13

v1 1 0 0 1 0 1 0 0 1 0 0 0 0

v2 1 0 0 0 1 0 0 1 0 1 0 0 0

v3 1 0 0 0 1 0 0 0 1 0 0 0 1

v4 0 1 0 1 0 1 0 1 0 0 1 0 0

v5 0 1 0 1 0 1 0 0 1 0 0 1 0

v6 0 1 0 1 0 0 1 0 0 0 1 0 0

v7 0 1 0 0 1 0 0 1 0 1 0 1 0

v8 0 1 0 0 1 0 0 1 0 0 1 0 1

v9 0 1 0 0 1 0 0 0 1 0 0 1 1

v10 0 0 1 0 0 1 0 1 0 1 0 1 0

v11 0 0 1 0 0 1 0 1 0 0 1 0 1

v12 0 0 1 0 0 1 0 0 1 0 0 1 1

v13 0 0 1 0 0 0 1 0 0 1 0 1 0

v14 0 0 1 0 0 0 1 0 0 0 1 0 1

Table 2: The 14 {0, 1}-value assignments of the Specker bug configuration. Boxed values

indicate nonvanishing contributions of the respective two-valued state to the probabilities of

the terminal points a1 and a7 of the gadget.
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respective probabilities, which can be obtained by the convex sum of its 14

two-valued states enumerated in Table 2 and depicted in in Figure 1(b), are

p(a1) = λ1 + λ2 + λ3 and p(a7) = λ6 + λ13 + λ14 are mutually exclusive.

Quantization in terms of faithful orthogonal vertex labeling—a vertex rep-

resentation by vectors, preserving orthogonality of adjacent vertices [58]—as310

for instance, depicted in Figure 1(c), allows the simultaneous preparation by

the pre-selection state a1 and the detection of the post-selected state a7 with

nonvanishing probabilities |a7 · a1|2 ≤ 1
9 , thereby violating the classical predic-

tions of zero chance that a7 occurs if a1 occurred. In this concrete realization

with a1 ≡
(

1, 0, 0
)ᵀ

and a7 ≡ 1
3

(
1, 2
√

2, 0
)ᵀ

the violation with the classical315

prediction is maximal [59, 60, 61].

Also in this case the set of two-valued states allowing a classical co-representation

even of complementary observables. And yet, probabilistic contextuality mani-

fests itself in the functional performance of the respective gadgets at its terminal

points.320

3.3. Ad hoc signatures of contextuality

We just mention without further discussion that there exist other ad hoc

methods, in particular, so-called “state independent quantum contextuality” [17],

to obtain probabilistic contextuality. Often the observables of some Kochen-

Specker configurations without any two-valued state are taken. By relaxing325

the axioms of admissibility mentioned earlier, “classical” (relative to these re-

laxed assumptions) estimates and predictions are obtained which are violated

by experimentally testable quantum predictions [62].

4. Examples of strong contextuality

In what follows we shall deal with (finite) configurations of observable whose330

classical interpretations in terms of its two-valued states is insufficient for an

embedding into any Boolean algebra. Even though there still may exist “many”

two-valued states associated with classical value assignments, these assignments
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Figure 2: The Kochen-Specker “combo of Specker bugs” whose set of classical truth assign-

ments formalized by its two-valued states cannot separate a1 from b1, as well as a7 from b7.

may not be able to resolve the structure of quantum observables supporting

them. There exist escalations of the “smallness” of the set of two-valued states335

in terms of inseparability, nonunitality, or nonexistence that will be briefly re-

viewed next. All these instances go beyond classical embeddability (and preser-

vation of the logico-algebraic structure of the associated observables) as they

do not satisfy Kochen and Specker’s demarcation criterion [1, Theorem 0] for

separability.340

4.1. Nonseparability of classical value assignments

As mentioned there exist finite sets of observables that do not allow separa-

tion by classical value assignments. That is, in such circumstances, no classical

value assignment exists that is capable to differentiate between, or separating,

the individual constituents of some pair of distinct quantum observables.345

For the sake of an example of contextuality based on inseparability, take

Kochen and Specker’s combo [1, Graph Γ3] of intertwining true-implies-true

gadgets [1, Graph Γ1] that contains two pairs of observables that cannot be

classically separated. Its hypergraph is depicted in Figure 2. If a1 is true (has

value 1) then b1 has to be true (has value 1), and vice versa. Likewise, if a7 is true350

(has value 1) then b7 has to be true (has value 1), and vice versa. Therefore, a1

cannot be classically separated from b1, and a7 cannot be classically separated

from b7. For a proof, note that, if a1 is assumed to be true, then the true-
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implies-false Specker bug gadget and admissibility demands a7 as well as c to

be false, and thus b1 to be true. Likewise, whenever b1 is true, b7 as well as c355

needs to be false, and thus a1 to be true. Therefore, a1 cannot be separated

from b1 by any classical means. A symmetric argument (utilizing the symmetry

of the true-implies-false Specker bug gadget) yields nonseparability of a7 from

b7. The Kochen-Specker combo has no faithful embedding into any “larger”

Boolean algebra, because any such faithful embedding would allow a classical360

resolution of the constituents of the pairs a1 and b1, as well as a7 and b7.

A respective four-dimensional example inspired by Hardy’s nonlocal configu-

ration can be found in Figure 5 of Reference [55]. Other explicit experimentally

testable cases of inseparability can be found in a configuration depicted in Fig-

ure 2 of Ref. [63], as well as in Figure 24.2c analyzed in Table 24.1 of Ref. [64],365

based on a configuration introduced in Figure 2 of Ref. [15].

4.2. Nonunitality of classical value assignments

Another, even stronger (because it includes and extends inseparability) form

of logical contextuality are collections of observables with a unital set of two-

valued states: if interpreted classically such structures enforce the nonoccurrence370

(and occurrence) of certain observables.

Two explicit experimentally testable cases of inseparability are the same as

mentioned earlier in a configuration depicted in Figure 2 of Ref. [63], as well

as in Figure 24.2c analyzed in Table 24.1 of Ref. [64], based on a configuration

introduced in Figure 2 of Ref. [15].375

For the sake of demonstration we review this latter configuration depicted

in Figure 3. Analysis of its set of eight two valued states enumerated in Table 3

reveals that eight observables, namely a2, a13, a15, a16, a17, a25, a27, a36 are

always 0 (aka false, or nonoccurring) value because they are connected to a1

which has to be 1 (aka true, or always occurring). As a corollary, those eight380

observables with simultaneous values 0 cannot be separated from one another

with classical means; that is, by two-valued states.

This configuration can, of course, be always subjected to a global rotation,
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Figure 3: A configuration of quantum observables with a nonunital set of classical two-

valued states in three-dimensional Hilbert space [64]. Admissibility demands that proposition

a1 must be true (value 1); and the adjacent propositions a2, a13, a15, a16, a17, a25, a27, a36

sharing hyperedges with a1 must be false (value 0). All other observables are either 0 or 1,

depending on the respective two-valued state enumerated in Table 3.

such that its faithful orthogonal representation, as enumerated in Table I of

Ref. [15], matches a1, or, alternatively, a2. Thereby, given any pure state, we385

can as a corollary construct a complete contradiction. Because given any pure

state a that can be represented as a unit vector of R3, we are free to choose two

faithful orthogonal vertex labelings of the hypergraph depicted in Figure 3: one

that matches a with a1, and another one that matches a with a2. Hence a would

need to be 1 and 0, aka true and false; a complete contradiction. One could call390

this argument “state independent” because it applies to any pure state a.

4.3. Nonexistence of classical value assignments

The most extreme form of strong contextuality occurs if the respective struc-

ture of observables allows no classical interpretation whatsoever. This result

had already been announced by Specker in 1960 [14], and is nowadays called395
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# a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19

1 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1

2 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1

3 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1

4 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0

5 1 0 1 1 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0

6 1 0 1 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0

7 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0

8 1 0 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 0

# a20 a21 a22 a23 a24 a25 a26 a27 a28 a29 a30 a31 a32 a33 a34 a35 a36 a37

1 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 0 1

2 1 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 0 1

3 0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 1 0 1

4 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1

5 1 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 0 0

6 1 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 0

7 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0

8 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0

Table 3: The eight two-valued states on the configuration depicted in Figure 3. Boxes

indicate fixed values.

the Kochen-Specker theorem [1, Graph Γ2]. It has been perceived [20, 21] as a

direct consequence of Gleason’s theorem [19].

One may, in a certain sense and relative to the mathematical means em-

ployed, extend these results by proving that there exist finite configurations of

observables that do not allow any classical value definite existence beyond a sin-400

gle classical value assignment, and the (continuity of) contexts containing this

extreme case. Proofs relative to global and total classical value assignments are

in Refs. [65, 66]. Similar results are obtained with weaker assumptions allowing

partial value assignments in Refs. [67, 68, 15]

5. Further observations405

5.1. Omni-existence

The use of the term “contextual” might imply or implicitly suggest, with-

out direct empirical evidence, a form of omni-existence. But omni-existence
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is a metaphysical concept because it lacks any direct operational test. Those

arguments involve counterfactuals [14].410

A generalized Jaynes’ principle is called “plausible reasoning”: one should

not introduce unnecessary epistemic bias, superficial information, and individual

ontologic projections into empirical evidence but rather stick to the “knowable”

facts. In Jaynes’ words [69, Section 10.11, p. 331], “the onus is always on the

user . . . that the full extent of his ignorance is also properly represented”.415

Therefore, it might be more appropriate to talk about “quantum indeter-

minacy” as Pitowsky did [65, 66], and to allow partial functions and value

indefiniteness. Partial functions have been first conceptualized [70] in theoret-

ical computer science to cope with and formalize computability; in particular,

with the recursive unsolvability of the halting problem. They are essential in420

the theory of recursive functions and indicate lack of capacities that go beyond

certain limits of consistent formal expressibility. It thus might me more ap-

propriate to use the terms “partial functions” and “value indefinite” instead of

“contextuality” [67, 71, 68, 15].

We conjecture that because of Pitowsky’s principle of indeterminism [65, 66]425

and newer theorems allowing partial functions as value assignments [15], the

“message” of the quantum is straightforward: quantum systems are defined in

their frame of preparation, and undefined in directions other than perpendicular

or collinear.

5.2. Is contextuality haunted?430

It should be kept in mind that there exists only indirect empirical tests of

contextuality invoking counterfactuals. Indeed, any experimentally verifiable

contextuality remains indirect (or “haunted”) and not direct, as quantum me-

chanics predicts the absence of direct verifications [72, 73, 74, 75]: if say, two

contexts {a, b, c} and {a, d, e} intertwining at observable a are considered, quan-435

tum mechanics is not ambiguous about the outcome corresponding to a, regard-

less of the context measured. This can be directly experimentally tested on a

single quantized particle, or on entangled particle pairs. A remaining “haunted”
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context-dependence might manifest itself in a hidden and uncontrollable out-

come dependence of the remaining complementary observable pairs {b, c} and440

{d, e}. In four or higher dimensions this applies also to all quantum observables

common to different contexts. For instance, for a configuration {a, b, c, d} and

{a, b, e, f}, quantum mechanics predicts that the observables a and b are non-

contextual, whereas {c, d} and {e, f}might show (hidden and haunted) outcome

dependence.445

5.3. Historic aspects regarding the importance of embeddability for Specker

Let me add some afterthoughts on Kochen and Specker’s demarcation cri-

terion [1, Theorem 0] for structure-preserving (non)embeddability mentioned

earlier as a decisive benchmark or measure for strong contextuality or value

indefiniteness. I consider it not entirely unreasonable to speculate that Specker450

meant the lack of embeddability by announcing [14]: “An elementary geomet-

rical argument shows that such an assignment is impossible and that therefore

(aside from the exceptions noted above) no consistent prediction concerning a

quantum mechanical system is possible.” Indeed, the ‘Comment’ section of the

respective article in Specker’s ‘Selecta’ [76, p. 385] explicitly notes (the refer-455

ences are updated to match the current ones used here): “The impossibility to

embed the lattice of subspaces of R3 into a Boolean algebra, mentioned at the

end of [14], is proved in [1] (theorem 1 and subsequent remarks).”

6. Summary

Numerous notions of contextuality exist in the literature on quantum foun-460

dations. The concept of “contextuality” is often used in ambiguous or contradic-

tory ways. This paper has taken a logic-based approach to clarify, identify, and

categorize these different notions. In particular, we propose to categorize dif-

ferent notions of contextuality into two major groups: probabilistic and strong

notions of contextuality. We suggest using Kochen and Specker’s demarcation465

Theorem 0 [1] as a criterion to differentiate between those groups.

The following review summarises and concentrates the issues raised.
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(i) The supposition of a well-defined physical operationalization of the prop-

erties associated with quantum observables, and, in particular, omni-

existence lies at the basis of current so-called empirical tests of contex-470

tuality. This does not take into account the entanglement between the

object under observation and the measurement apparatus. However, such

a conception of measurement entails that the constituents of the entangled

object-apparatus state are in no definite individual state.

(ii) As long as the explicit functional context-dependence of quantum observ-475

ables common to different contexts is directly tested it is absent in quan-

tized systems. Therefore, it might be “haunted’,’ as such dependence may

only occur indirectly, and without direct experimental testability.

(iii) It might be prudent to differentiate between the logico-algebraic struc-

ture formed by the observables via complementarity and the probability480

distributions such logics can or cannot support.

(iv) Kochen and Specker gave a “demarcation criterion” for nonembeddability

in terms of (in)separability: if the set of two-valued states on the logic

can discriminate between every pair of atomic observables (aka elemen-

tary propositions in the sense of Birkhoff and von Neumann) then it can485

support classical models (and also quantum ones if there exist faithful or-

thogonal representations). If no classical value assignment aka two-valued

state can separate between two observables, then embeddability in some

presumably extended Boolean algebra breaks down. Such situations can

be termed strong contextuality.490

(v) Current empirical corroborations of contextuality associated with Boole-

Bell-type inequalities, as long as they are based on hull computations

of classical value assignments on suitable ensembles of quantum observ-

ables with separating sets of two-valued states encoding these value as-

signments, are merely about probabilistic contextuality. The same is true495

for separable ensembles of quantum observables with functional relations
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on endpoints.

(vi) Strong contextuality implies probabilistic contextuality because the former

always indicates some “essential” scarcity of two-valued states associated

with classical truth assignments. Because, by convex summation, two-500

valued states form the basis for classical probability distributions, any “es-

sential” lack thereof indicates limits to classical physical phenomenology

that provide distinctions from quantized systems. Essential here stands

for nonseparating, nonunital, or in its strongest form not existing.

These matters are pertinent not only to foundational questions but also to505

the computational capacities of quantized systems.
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