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demarcation criterion for differentiating between those groups. Whereas probabilistic
contextuality still allows classical models, albeit with nonclassical probabilities, the logico-
algebraic “strong” form of contextuality characterizes collections of quantum observables
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1. Types of quantum contextuality

The main point of this paper is that there are at least two main types of contextuality: the first notion is based upon
nonclassical phenomenology, and in particular, on nonclassical probabilities contradicting Boole’s conditions of physical
experience [2]. The second type goes beyond this, and is based upon the absence of a classical logico-algebraic structure in
terms of which the respective observables could be re-interpreted. Formally this amounts to nonembeddability into Boolean
algebras by classical means; that is, in formal terms, by two-valued measures interpretable as classical truth assignments.
The strongest form of this latter logico-algebraic contextuality is the total absence of any such classical truth assignment [1].
Thereby, it is important to keep in mind that the mere existence of any such classical truth assignment is necessary but not
sufficient to ensure classical representability or embeddability: indeed, even if there is an apparent “abundance” of classical
truth assignments, these might not provide sufficient means to classically embed a collection of quantum observables.

Early synthetic conceptions of contextuality emerged from insights into the entangled complexion [3] of physical prop-
erties retrieved from quantum measurements. As expressed by Bohr [4]: “the impossibility of any sharp separation between
the behavior of atomic objects and the interaction with the measuring instruments which serve to define the conditions un-
der which the phenomena appear.” This yields a “conditionality of phenomena” [5,6] relative to a “a complex of conditions
under which the measurement is performed” [7,8].

In this line of thought, observable phenomena appear not as isolated properties of the object, but as signals from the
object-measurement apparatus composite. (Entanglement may even extend to the observer [9,10].) Indeed, if entanglement
is involved, these signals are about the relational properties of the combined entangled system. It makes no sense to refer
to a well-defined property of the individual object alone [3,11]. Therefore, one should be careful interpreting a statement

E-mail address: svozil@tuwien.ac.at.
URL: http://tph.tuwien.ac.at/~svozil.

https://doi.org/10.1016/j.tcs.2022.04.039
0304-3975/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).


https://doi.org/10.1016/j.tcs.2022.04.039
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2022.04.039&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:svozil@tuwien.ac.at
http://tph.tuwien.ac.at/~svozil
https://doi.org/10.1016/j.tcs.2022.04.039
http://creativecommons.org/licenses/by/4.0/

K. Svozil Theoretical Computer Science 924 (2022) 117-128

such as Bell’s observation [12] that “the result of an observation may reasonably depend ... on the complete disposition
of the apparatus”. In general there is no deterministic, one-to-one correspondence, association, or translation between rele-
vant (counterfactual) well-defined individual properties of the constituents (one imagined [13] as “object”) of an entangled
quantized system on the one hand, and the signal resulting from observation of this entangled state on the other hand.
Entanglement evades such an association because the constituents of an entangled quantum state have no well-defined
individuality.

Subsequent attempts to specify and quantify contextuality have presumed that individual objective properties never-
theless exist even for quantized systems, and that these properties do not depend on any kind of disposition of the
measurement apparatus; in particular not on some compatible observables that are measured simultaneously. The latter
assumption is usually referred to as “noncontextual”. The former assumption of the general existence of counterfactual
properties or observables can be called omni-existence. Omni-existence is the “totality” assertion that, although due to
complementarity not all observables can be measured simultaneously, they are nevertheless value definite; that is, some of
them have a definite counterfactual value that can by no physical means be measured [14].

Historical attempts to prove contextuality have assumed both omni-existence and noncontextuality (thereby disregarding
earlier synthetic concepts of contextuality by entanglement mentioned earlier), and have concentrated on the differences
between classical and quantum predictions. Thus, given omni-existence, any empirically (falsifiable) discrepancies between
classical and quantum predictions are interpreted to signify contextuality. However, one has to be careful and keep in mind
that, just because omni-existence is often but not always [15] assumed for the sake of contradiction, a violation of noncon-
textuality does not imply or suggest the existence of any contextual hidden variable model. Contemporary interpretations
of contextuality indicate the non-existence of a noncontextual model [16].

Most commonly, experimental violations of Boole-Bell-type inequalities are identified with quantum contextuality [17,
16]. Other empirical signatures of quantum contextuality are the experimental violations of ad hoc configurations whose
classical interpretation (i) either merely assume the omni-existence of unrestricted classical noncontextual value assign-
ments that do not depend on the complete disposition of the apparatus [17]; (ii) or, on preselected input, predict classical
functional output that is violated in quantized systems [18].

Theoretical arguments against omni-existent noncontextual value assignments consider finite configurations of observ-
ables forming intertwining contexts that have no consistent classical value assignments [14]. Here the term “intertwined” is
understood as introduced by Gleason [19]: in higher than two dimensions the orthonormal bases identified with contexts
can “share” common elements—they need not be “isolated”, that is, disjoint. This is not the place for a historic review but
the literature indicates that what is now known as the Kochen-Specker theorem [1, Theorem 1] has been discussed [20,21]
as a direct consequence of Gleason’s theorem [19].

The variety of contextual signifiers has resulted in a great semantic spread of notions of contextuality that threatens
to obscure subtle differences concerning the quality of anomaly. Because the same collection of observables, taken from
quasi-classical or quantum experimental configurations alike, may still allow very different types of probability distribu-
tions. The resulting differences in the prediction may be taken as signatures for contextuality. But this is incomparable to
configurations of observables that do not, by any classical means, support such probability distributions, either because the
existing classical value assignments that do not depend on the complete disposition of the apparatus are too scarce to re-
solve the logico-algebraic structure of observables at hand, or because this structure does not allow any such classical value
assignment at all.

In what follows I, therefore, suggest refining the notion of contextuality by differentiating between two cases, depending
on whether the collection of observables

(i) violates some constraints on classical probabilities but still allows a faithful embedding into an extended Boolean sub-
algebra, or
(ii) does not, by any classical means, allow any faithful embedding into some extended Boolean subalgebra.

For the sake of this analysis note that maximal collections of (finitely many) mutually co-measurable observables can
be “wrapped up” into contexts (or blocks or maximal observables) which, from a probabilistic and structural point of view,
intrinsically behave classically. The respective probability distributions are in accord with Kolmogorov’s axioms. In particular,
the probabilities of mutually exclusive events add up [19].

2. Nomenclature

For quantum mechanics we fix a positive integer n > 2. Let O be a nonempty set of one-dimensional projection ob-
servables on the Hilbert space C" [22]. A set C C O is a context of O if C is an orthonormal basis of C". An equivalent
definition is in terms of the spectrum of a maximal operator containing one-dimensional projection operators onto the
subspaces spanned by the vectors in C. In more general empirical logic terms, a context can be conceptualized by a set of
mutually exclusive observables whose disjunction is a tautology.

Quantum mechanics, as well as partition logics [23] from a generalized urn [24] or finite automata models [25,26]
featuring complementarity, allow two or more distinct contexts which, for more than two mutually exclusive outcomes
per context, may intertwine in some observable(s) [27]. The remaining nonintertwining observables, taken from different
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contexts, exhibit complementarity. (One convenient and compact graphical representation depicts contexts as smooth lines,
and mutually exclusive elementary observables by points on these lines.)

As has been mentioned earlier, despite exhibiting complementarity, a collection of contexts may still allow some quasi-
classical interpretation in terms of extreme cases. Such value assignments can be formalized by dispersionless two-valued
states v(x) € {0, 1} (or, logically interpreted, “false” and “true”) that are binary functions of the respective observables x € X
forming the contexts which are additive v(x v y) = v(x) + v(y) for mutually exclusive observables x A y =@, and add up to
1 for all mutually exclusive observables within any context. A weak and general formalization for quantized systems that
allows partial functions and thus value indefiniteness is in terms of admissibility [15]: Let O be a set of one-dimensional
projection observables and let v : O — {0, 1} be a value assignment function. Then v is admissible if the following two
conditions hold for every context C formed by O:

(i) exclusivity: if there exists an x € C with v(x) =1, then v(x') =0 for all ¥ € C\ {x};
(ii) completeness: if there exists an x € C with v(x') =0 for all x' € C\ {x}, then v(x) = 1.

If the observables on which the aforementioned collections of contexts are based are quantum, then there is no guar-
antee that “sufficiently many” classical value assignments corresponding to dispersionless two-valued {0, 1}-states exist.
Indeed, there are finite configurations of observables with no such classical value assignment, or ones that cannot support
“sufficiently many” classical value assignments to allow embeddings preserving the respective logico-algebraic structure.

Already Kochen and Specker discussed these issues and presented a demarcation criterion [1, Theorem 0] that utilizes
the (in)separability of the underlying binary elementary propositions by classical value assignments: A set of observables X
forming a collection of contexts is faithfully embeddable into an extended Boolean algebra if and only if these observables
in X contained in the respective contexts support or allow a separating set of two-valued states V = {vq, ..., vy} such that,
for any two observables x, y € X, there exists some v; € V for which v;(x) # vi(y). (In its extreme form the collection of
observables X support no two-valued measure, and V = .)

If the observables in X support a separating set of two-valued states V then V facilitates three constructions:

(i) It yields all classical probability distributions in the form of a convex combination P(x) = Z?:l Aivi(x), such that
Yt ii=1land Aj>0forall je{1,...,n}.

(ii) The values of the value assignments formalized by dispersionless two-valued states on, say, k observables can be ar-
ranged in k-tuples. These tuples can be interpreted as extreme points or vertices of a compact convex subset of R¥,
a convex polytope, that has an equivalent representation in terms of its hull; that is, as a set of half-spaces which
are (in)equalities. In the quantum physical realm, these inequalities are often referred to as Boole-Bell-type inequali-
ties [28,29]. We shall later encounter such a hull computation in deriving the Suppes-Zanotti inequalities (2).

(iii) A complete set of n two-valued states allows a representation as a partition logic that explicitly represents a classical
embedding into an extended Boolean algebra 2" [23].

Therefore, as disclosed earlier, it is suggested to adopt Kochen and Specker’s demarcation criterion of embeddability for a
refined definition of contextuality: One could speak of strong contextuality if no classical representation of the respective ob-
servables, and also no classical probability distribution exists. Strong contextuality always indicates some “essential” scarcity
of two-valued states associated with classical truth assignments; a deficiency to supply sufficient “structural information”
for a classical embedding of the respective quantum observables. As will be discussed later such essential scarcity can be
categorized and quantified by escalating levels of “rarity”, a “shortage” of elements of the set of two-valued states that may
become nonseparating, nonunital, or in its strongest form empty.

The weaker probabilistic contextuality, while featuring complementarity (because more than one context is involved),
allows all kinds of classically embeddable collections of observables, as well as classical probability distributions—if only the
probability distribution in some way differs from global classical Kolmogorovian probabilities that are not restricted to local
contexts. That is, the observables still allow classical probability distributions—as well as “hidden variables” in terms of the
“larger” extended Boolean algebra in which the observables can be homomorphically embedded—but those probabilities are
not realized by the probabilistic contextual systems at hand.

Why should one make such a distinction from a physical point of view? Because if there do not exist separating sets
of two-valued states and thus no faithful classical embeddability then the respective structures do not any longer support
classical probability distributions; and also no “hidden variables” in terms of the “larger” extended Boolean algebra in which
the observables can be homomorphically embedded. This is quite different from any nonclassical probability distribution on
an otherwise “quasi-classical” empirical logics [30] containing complementary observables that can still be imbedded into
“larger” Boolean algebras.

For physical realizations we refer to Wright’s generalized urn models [24] or the initial state identification problem for
finite automata [25,26], amounting to partition logics [23]. The resulting empirical logics [30] are identical to a variety of
quantum propositional structures [31] These logics support both classical as well as quantum probabilities. Which proba-
bility distribution needs to be chosen depends solely on the respective physical realization [27]. In particular, there is no
structural logical distinction; therefore, classical “hidden variables” cannot be ruled out, the difference is in the classical-
versus-quantum performance: the respective quantum contextuality is probabilistic.
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In what follows several quantum mechanical examples of probabilistic contextuality in n-dimensional Hilbert space will
be enumerated. To avoid unnecessary redundancies they are mentioned with a reference to the concrete computation.
Often two-valued states will be rewritten in terms of the expectation values of dichotomic outcomes E € {—1, 1} by affine
transformations—a multiplication followed by a subtraction—from classical value assignments encoded by two-valued states
v €{0,1}: E=2v — 1, or conversely, v = %(E 4+ 1). In quantum mechanics and Hilbert spaces of dimension greater than
one, E generalizes to a unitary Householder transformation Ex = 1 — 2x'x, where X is a unit vector and t represents the
Hermitian adjoint (aka conjugate). The resulting eigensystem of Ex has eigenvalues +1:

—1: x is an eigenvector of Ex with eigenvalue —1.
+1: The remaining n — 1 mutually orthogonal eigenvectors span the n — 1 dimensional subspace orthogonal to x. Every
vector in that subspace has eigenvalue +1. (For n > 2 the spectrum is degenerate.)

For any context represented by some orthonormal basis {eq, ey, ..., e,}, the product of the respective unitary Householder
transformations is minus the identity; that is, Ee, Ee, - - - Ee, = —1.

All such approaches take “a bag of” observables from quantum mechanics—some of them complementary—and force a
classical interpretation upon them. This is done in terms of classical value assignments formalized by two-valued states or
expectations of binary observables. Note that there exist classical empirical models featuring complementarity, such as the
ones mentioned earlier: Moore automata [25,26], or generalized urn models [24], both yielding partition logics [23,27].

3. Examples of probabilistic contextuality

In what follows we shall concentrate on two subtypes of probabilistic contextuality; one based on Boole’s “conditions of
physical experience” [2], and another one on the functional behavior derived from terminal vertices of gadget graphs.

3.1. Boole-Bell type signatures of contextuality by hull computations

As mentioned earlier the hull computation of the convex polytope formed by vertices that represent the encoded classical
value assignments of a given selection of observables yields inequalities that are identified with optimal Boole-Bell type
inequalities [28,29]. Violations of these inequalities by quantum probabilities are interpreted as signifying contextuality
relative to the assumptions discussed earlier, in particular, omni-existence and noncontextuality.

For the sake of concrete examples of historic configurations used for Boole-Bell type inequalities consider configurations
with

(i) isolated contexts with no common observable, such as
(i.SZ) Suppes-Zanotti inequalities from three observables [32], as discussed later;
(i.CHSH) Clauser-Horne-Shimony-Holt (CHSH) inequalities from four observables in two groups, and their respective
tensor products forming four isolated contexts [32];
(i.TPB) two-party Bell inequalities from finitely many observables, and their respective tensor products forming iso-
lated contexts [33];
(ii) intertwining contexts from three-or higher dimensional Hilbert spaces with common observables, such as
(ii.SB) for the Specker bug configuration [34] that serves as graph theoretic true-implies-false gadget [35];
(ii.KCBS) inequalities from five cyclically connected contexts [36]. (The Bub-Stairs inequality [37] on the same configu-
ration is ad hoc and does not follow from a hull computation but from a classical probability assessment.)

Suppes and Zanotti’'s result [32,38] as well as other bounds on classical probabilities for different configurations of ob-
servables still allow single instances of {—1, 1}-value assignments, as the respective set of two-valued states is not empty (as
for Kochen-Specker configurations). But the classical probabilistic analysis of such configurations reveals that the bounds on
classical probabilities are violated by the quantum probabilities of analogous quantized systems. This has been, for instance,
pointed out by tabulations of classical {—1, 1}-value assignments for the CHSH configuration [39] by Asher Peres [40]. Fur-
ther quantitative investigations into the “amount”, or a measure, of probabilistic contextuality in terms of enumerations and
tabellations of classical value assignments have, for instance, been studied in References [41-46].

Let us, for the sake of an explicit example, enumerate the classical value assignments in the Suppes-Zanotti configuration
which consists of measurements of an Einstein-Podolski-Rosen [47] type configuration of two observables on one “side”, and
one observable on the other “side” (CHSH uses a symmetric 2-2 configuration). It therefore involves 2+ 1 = 3 binary observ-
ables X,Y,Z € {—1, +1} associated with {—1, 1}-value assignments that can be used to form the second-order distributions
from the three second-order expectations E(X,Y) = XY, E(X, Z) = XZ, E(Y, Z) = YZ, obtained by just multiplying the bi-
nary observables from their three possible pairs, respectively. Classically this amounts to 23 = 8 value assignments tabulated
in Table 1. These eight classical value assignments can be used to generate all classical higher-order distributions [48] by
convex summation of these value assignments; in particular, the probabilities
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Table 1

The eight {—1, 1}-value assignments of the Suppes-Zanotti configuration.
# X Y z XY Xz YZ
Vi +1 +1 +1 +1 +1 +1
v +1 +1 -1 +1 -1 -1
V3 +1 -1 +1 -1 +1 -1
Vg -1 +1 +1 -1 -1 +1
Vs +1 -1 -1 -1 -1 +1
Ve -1 +1 -1 -1 +1 -1
vy -1 -1 +1 +1 -1 -1
vg -1 -1 -1 +1 +1 +1

pX) =Avi(X) + -+ Agvp(X),

(M
withi;+---4+A;=1and1; >0, je{l,...,n}.

The second-order distributions can be geometrically characterized by a convex polytope [28,29] formed by the “classical
vertices” whose coordinates are arranged in three-tuples (X Y,XZ, YZ)T (7 indicates transposition) with respect to the
Cartesian standard basis of R3 are identified with the respective last three row entries of Table 1: in this case the four
vertex vectors (the other four vectors are duplicates) are (1, 1,1)T, (1,1, —])T, (-1,1, —1)T, and (-1, —1,])T. The
resulting convex polytope has an equivalent representation in terms of its hull, formed by its half-spaces [49-51]. In the
case of the Suppes-Zanotti configuration [32,52,53] the hull equations are the Suppes-Zanotti inequalities; in particular, the
four half-spaces described by the inequalities [38]

—1<+EX,Y)*EX,Z)£E(Y,Z)<1. (2)

Quantization of the Suppes-Zanotti configuration with the associated operators [54] F(X,Y) £ F(X, Z) = F(Y, Z) with the
quantum expectation F yields the much larger quantum bounds

—3<F(X,Y)£F(X,Z)£F(Y,Z)<3 (3)

that allows a violation of the classical bounds (2), which is a signature of probabilistic contextuality.
3.2. Functional signatures of contextuality

There exist configurations of observables that, interpreted classically, serve all kinds of (logical) functions. (Graph theoret-
ically they are gadgets.) Usually, they have input and output terminals which, functionally interpreted, serve as arguments
and functional values. Two historic configurations realize either true-implies-false [34,18] or true-implies-true functional
relations [1,55]: if a particular state is preselected on the input terminal then classical value assignments (implementing
omni-existence and noncontextuality) enforce a particular dependent value assignment—either false or true, respectively—
on the output terminal.

Violations of these dependencies by quantum probabilities are interpreted as signifying contextuality relative to the
assumptions discussed earlier. In particular, any classical “hidden variable” model cannot implement both omni-existence
and have noncontextual admissible value assignments [40].

For the sake of examples we refer to (extensions of) the Specker bug [34,18], or the examples in Refs. [56,57] which
use finite sets of quantum observables in three-dimensional Hilbert space, as well as Hardy type configurations [1,55]
which use finite sets of quantum observables in four- or higher-dimensional [18] Hilbert space. All of these gadgets have
a classical interpretation in terms of partition logic, finite automaton models or generalized urn models. Their respective
logico-algebraic structure can be faithfully embedded into extended Boolean algebras; for instance, 2", by identification
with the union of elements of a partition obtained from analyzing a complete set of n two-valued states [23].

For the sake of an example we shall review a configuration of 13 observables in seven bi-intertwining contexts (maximal
Boolean subalgebras 23) introduced by Kochen and Specker [34]. It hypergraph representing contexts as smooth curves
(lines) is depicted in Fig. 1.

This Specker bug (Specker’s “Kafer” configuration can be employed as a classical (noncontextual) true-implies-false (TIF)
gadget, as the two “terminal points” a; and a; cannot both be “true” (value 1) at the same time: suppose a; and a; are
both 1 simultaneously. Then admissibility demands that as, as, ag as well as a;; must all be 0 simultaneously. Consequently
a4 and ajp must both be 1 simultaneously—a complete contradiction since admissibility of two-valued {0, 1}-states requires
exactly one element of a context to be 1, all other elements must be 0. Nevertheless one can be true (have value 1) and
the other one false (value 0). Also they can both be false (value 0): their respective probabilities, which can be obtained by
the convex sum of its 14 two-valued states enumerated in Table 2 and depicted in Fig. 1(b), are p(a;) = A1 + A2 + A3 and
p(az) = re + A13 + 14 are mutually exclusive.

Quantization in terms of faithful orthogonal vertex labeling—a vertex representation by vectors, preserving orthogonality
of adjacent vertices [58]—as for instance, depicted in Fig. 1(c), allows the simultaneous preparation by the pre-selection
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Fig. 1. (a) Configuration of 13 observables in seven bi-intertwining contexts serving as a symmetric (with respect to horizontal) true-implies-false gadget;
(b) the associated classical probability distributions obtained by the convex sum Ay +---+Xx14 =1, 1; >0, 1 <i < 14; (c) a quantum representation in terms
of a faithful orthogonal vertex labeling in terms of a vertex representation by vectors, preserving orthogonality of adjacent vertices [58] of the hypergraph
that maximizes the probability of ay, given a;. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 2
The 14 {0, 1}-value assignments of the Specker bug configuration. Boxed values indicate nonvanishing contributions of the respective two-valued state to
the probabilities of the terminal points a; and a7 of the gadget.

# aip az as a4 as ag az ag ag aio an a2 ais
Vi 0 0 1 0 1 0 0 1 0 0 0 0
Vo 0 0 0 1 0 0 1 0 1 0 0 0
V3 0 0 0 1 0 0 0 1 0 0 0 1
Vs 0 1 0 1 0 1 0 1 0 0 1 0 0
Vs 0 1 0 1 0 1 0 0 1 0 0 1 0
Ve 0 1 0 1 0 0 0 0 0 1 0 0
V7 0 1 0 0 1 0 0 1 0 1 0 1 0
vg 0 1 0 0 1 0 0 1 0 0 1 0 1
Vo 0 1 0 0 1 0 0 0 1 0 0 1 1
V1o 0 0 1 0 0 1 0 1 0 1 0 1 0
Vit 0 0 1 0 0 1 0 1 0 0 1 0 1
Viz 0 0 1 0 0 1 0 0 1 0 0 1 1
Vi3 0 0 1 0 0 0 0 0 1 0 1 0
Via 0 0 1 0 0 0 0 0 0 1 0 1

state a; and the detection of the post-selected state a; with nonvanishing probabilities |a7 - a;|2 < %, thereby violating
the classical predictions of zero chance that a; occurs if a; occurred. In this concrete realization with a; = (l, 0, O)T and
a; = % (1, 242, 0)T the violation with the classical prediction is maximal [59-61].

Also in this case the set of two-valued states allowing a classical co-representation even of complementary observables.
And yet, probabilistic contextuality manifests itself in the functional performance of the respective gadgets at its terminal
points.

3.3. Ad hoc signatures of contextuality

We just mention without further discussion that there exist other ad hoc methods, in particular, so-called “state inde-
pendent quantum contextuality” [17], to obtain probabilistic contextuality. Often the observables of some Kochen-Specker
configuration without any two-valued state are taken. By relaxing the axioms of admissibility mentioned earlier, “classical”
(relative to these relaxed assumptions) estimates and predictions are obtained which are violated by experimentally testable
quantum predictions [62].

4. Examples of strong contextuality

In what follows we shall deal with (finite) configurations of observable whose classical interpretations in terms of its
two-valued states are insufficient for an embedding into any Boolean algebra. Even though there still may exist “many”
two-valued states associated with classical value assignments, these assignments may not be able to resolve the structure
of quantum observables supporting them. There exist escalations of the “smallness” of the set of two-valued states in
terms of inseparability, nonunitality, or nonexistence that will be briefly reviewed next. All these instances go beyond
classical embeddability (and preservation of the logico-algebraic structure of the associated observables) as they do not
satisfy Kochen and Specker’s demarcation criterion [1, Theorem 0] for separability.
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bs

ai by

Fig. 2. The Kochen-Specker “combo of Specker bugs” whose set of classical truth assignments formalized by its two-valued states cannot separate a; from
by, as well as a7 from b.

4.1. Nonseparability of classical value assignments

As mentioned there exist finite sets of observables that do not allow separation by classical value assignments. That
is, in such circumstances, no classical value assignment exists that is capable to differentiate between, or separating, the
individual constituents of some pair of distinct quantum observables.

For the sake of an example of contextuality based on inseparability, take Kochen and Specker’s combo [1, Graph I'3]
of intertwining true-implies-true gadgets [1, Graph I'1] that contains two pairs of observables that cannot be classically
separated. Its hypergraph is depicted in Fig. 2. If a; is true (has value 1) then b; has to be true (has value 1), and vice
versa. Likewise, if a; is true (has value 1) then b7 has to be true (has value 1), and vice versa. Therefore, a; cannot be
classically separated from b1, and a7 cannot be classically separated from by. For a proof, note that, if a; is assumed to be
true, then the true-implies-false Specker bug gadget and admissibility demands a; as well as c¢ to be false, and thus b to
be true. Likewise, whenever b is true, b7 as well as ¢ needs to be false, and thus a; to be true. Therefore, a; cannot be
separated from by by any classical means. A symmetric argument (utilizing the symmetry of the true-implies-false Specker
bug gadget) yields nonseparability of a; from b;. The Kochen-Specker combo has no faithful embedding into any “larger”
Boolean algebra, because any such faithful embedding would allow a classical resolution of the constituents of the pairs a;
and b1, as well as a7 and b7.

A respective four-dimensional example inspired by Hardy’s nonlocal configuration can be found in Fig. 5 of Refer-
ence [55]. Other explicit experimentally testable cases of inseparability can be found in a configuration depicted in Fig. 2
of Ref. [63], as well as in Fig. 24.2c analyzed in Table 24.1 of Ref. [64], based on a configuration introduced in Fig. 2 of
Ref. [15].

4.2. Nonunitality of classical value assignments

Another, even stronger (because it includes and extends inseparability) form of logical contextuality are collections of
observables with a unital set of two-valued states: if interpreted classically such structures enforce the nonoccurrence (and
occurrence) of certain observables.

Two explicit experimentally testable cases of inseparability are the same as mentioned earlier in a configuration depicted
in Fig. 2 of Ref. [63], as well as in Fig. 24.2c analyzed in Table 24.1 of Ref. [64], based on a configuration introduced in Fig. 2
of Ref. [15].

For the sake of demonstration we review this latter configuration depicted in Fig. 3. Analysis of its set of eight two
valued states enumerated in Table 3 reveals that eight observables, namely ay, a3, ais, ais, a17, azs, a7, asg are always 0
(aka false, or nonoccurring) value because they are connected to a; which has to be 1 (aka true, or always occurring). As a
corollary, those eight observables with simultaneous values 0 cannot be separated from one another with classical means;
that is, by two-valued states.

This configuration can, of course, be always subjected to a global rotation, such that its faithful orthogonal representation,
as enumerated in Table I of Ref. [15], matches aq, or, alternatively, a,. Thereby, given any pure state, we can as a corollary
construct a complete contradiction. Because given any pure state a that can be represented as a unit vector of R3, we are
free to choose two faithful orthogonal vertex labelings of the hypergraph depicted in Fig. 3: one that matches a with aq,
and another one that matches a with a;. Hence a would need to be 1 and 0, aka true and false; a complete contradiction.
One could call this argument “state independent” because it applies to any pure state a.
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aq as

a21

a9 ®

a3z a2 as

Fig. 3. A configuration of quantum observables with a nonunital set of classical two-valued states in three-dimensional Hilbert space [64]. Admissibility
demands that proposition a; must be true (value 1); and the adjacent propositions ay, a3, ais, aie, a17, dzs, a7, asg sharing hyperedges with a; must be
false (value 0). All other observables are either 0 or 1, depending on the respective two-valued state enumerated in Table 3.

Table 3

The eight two-valued states on the configuration depicted in Fig. 3. Boxes indicate fixed values.
# a a as asq as as az as ag aio an a2 a3 ai4 ais aie ar7 aig aig
1 O] [o] o 1 0 0 0 0 0 0 1 1 o] o o] [o] [o] o 1
2 1] [o] o 1 0 0 0 0 0 0 1 1 o] o o] [o] [o] o 1
3 1] [o] o 0 1 0 0 0 0 1 0 o [o] 1 o] [o] [o] o 1
4 [1] o] o 0 1 0 0 0 0 1 0 0 0] 1 o] [o] [o] 1 0
5 [1] [o] 1 1 0 1 0 1 0 0 1 1 o] o o] [o] [o] 1 0
6 [1] [o] 1 1 0 1 0 0 1 0 0 1 o] 1 o] [o] [o] 1 0
7 [1] [o] 1 0 1 1 0 1 0 1 0 o [o] 1 o] [o] [o] 1 0
8 [1] [o] 1 0 1 0 1 1 0 0 0 1 0] 1 o] [o] [0 1 0
# a0 a1 a a3 a24 axs a6 a7 azg a9 aso as1 asz as3 as4 ass ase asy
1 0 1 0 0 1 o] 1 0] o 1 1 0 1 1 1 1 0] 1
21 0 0 1 1 o] o o] o 0 1 1 1 1 1 1 o] 1
3 0 1 0 0 1 o] 1 o] 1 0 0 1 1 1 1 1 o] 1
4 0 1 1 0 0 0] 1 o] o 0 1 1 1 1 1 1 o] 1
5 1 0 0 0 1 o] 1 o] o 1 1 0 0 0 1 1 o] o
6 1 0 0 0 1 o] 1 o] o 1 1 0 1 0 1 0 o] o
7 1 0 0 0 1 o] 1 o] 1 0 0 1 0 0 1 1 o] o
8 1 0 0 0 1 [0] 1 0] 1 0 0 1 0 1 0 1 o] o

4.3. Nonexistence of classical value assignments

The most extreme form of strong contextuality occurs if the respective structure of observables allows no classical in-
terpretation whatsoever. This result had already been announced by Specker in 1960 [14], and is nowadays called the
Kochen-Specker theorem [1, Graph I';]. It has been perceived [20,21] as a direct consequence of Gleason’s theorem [19].

One may, in a certain sense and relative to the mathematical means employed, extend these results by proving that
there exist finite configurations of observables that do not allow any classical value definite existence beyond a single
classical value assignment, and the (continuity of) contexts containing this extreme case. Proofs relative to global and total
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classical value assignments are in Refs. [65,66]. Similar results are obtained with weaker assumptions allowing partial value
assignments in Refs. [67,68,15]

5. Further observations
5.1. Omni-existence

The use of the term “contextual” might imply or implicitly suggest, without direct empirical evidence, a form of omni-
existence. But omni-existence is a metaphysical concept because it lacks any direct operational test. Those arguments involve
counterfactuals [14].

A generalized Jaynes’ principle is called “plausible reasoning”: one should not introduce unnecessary epistemic bias,
superficial information, and individual ontologic projections into empirical evidence but rather stick to the “knowable” facts.
In Jaynes’ words [69, Section 10.11, p. 331], “the onus is always on the user ... that the full extent of his ignorance is also
properly represented”.

Therefore, it might be more appropriate to talk about “quantum indeterminacy” as Pitowsky did [65,66], and to allow
partial functions and value indefiniteness. Partial functions have been first conceptualized [70] in theoretical computer
science to cope with and formalize computability; in particular, with the recursive unsolvability of the halting problem. They
are essential in the theory of recursive functions and indicate lack of capacities that go beyond certain limits of consistent
formal expressibility. It thus might me more appropriate to use the terms “partial functions” and “value indefinite” instead
of “contextuality” [67,71,68,15].

We conjecture that because of Pitowsky’s principle of indeterminism [65,66] and newer theorems allowing partial func-
tions as value assignments [15], the “message” of the quantum is straightforward: quantum systems are defined in their
frame of preparation, and undefined in directions other than perpendicular or collinear.

5.2. Is contextuality haunted?

It should be kept in mind that there exist only indirect empirical tests of contextuality invoking counterfactuals. Indeed,
any experimentally verifiable contextuality remains indirect (or “haunted”) and not direct, as quantum mechanics predicts
the absence of direct verifications [72-75]: if say, two contexts {a, b, c} and {a, d, e} intertwining at observable a are consid-
ered, quantum mechanics is not ambiguous about the outcome corresponding to a, regardless of the context measured. This
can be directly experimentally tested on a single quantized particle, or on entangled particle pairs. A remaining “haunted”
context-dependence might manifest itself in a hidden and uncontrollable outcome dependence of the remaining comple-
mentary observable pairs {b, c} and {d, e}. In four or higher dimensions this applies also to all quantum observables common
to different contexts. For instance, for a configuration {a, b, c,d} and {a, b, e, f}, quantum mechanics predicts that the ob-
servables a and b are noncontextual, whereas {c,d} and {e, f} might show (hidden and haunted) outcome dependence.

5.3. Historic aspects regarding the importance of embeddability for Specker

Let me add some afterthoughts on Kochen and Specker’s demarcation criterion [1, Theorem 0] for structure-preserving
(non)embeddability mentioned earlier as a decisive benchmark or measure for strong contextuality or value indefiniteness.
I consider it not entirely unreasonable to speculate that Specker meant the lack of embeddability by announcing [14]: “An
elementary geometrical argument shows that such an assignment is impossible and that therefore (aside from the exceptions
noted above) no consistent prediction concerning a quantum mechanical system is possible.” Indeed, the ‘Comment’ section
of the respective article in Specker’s ‘Selecta’ [76, p. 385] explicitly notes (the references are updated to match the current
ones used here): “The impossibility to embed the lattice of subspaces of R? into a Boolean algebra, mentioned at the end
of [14], is proved in [1] (theorem 1 and subsequent remarks).”

6. Summary

Numerous notions of contextuality exist in the literature on quantum foundations. The concept of “contextuality” is often
used in ambiguous or contradictory ways. This paper has taken a logic-based approach to clarify, identify, and categorize
these different notions. In particular, we propose to categorize different notions of contextuality into two major groups:
probabilistic and strong notions of contextuality. We suggest using Kochen and Specker’s demarcation Theorem 0 [1] as a
criterion to differentiate between those groups.

The following review summarizes and concentrates the issues raised.

(i) The supposition of a well-defined physical operationalization of the properties associated with quantum observables,
and, in particular, omni-existence lies at the basis of current so-called empirical tests of contextuality. This does not take
into account the entanglement between the object under observation and the measurement apparatus. However, such
a conception of measurement entails that the constituents of the entangled object-apparatus state are in no definite
individual state.
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(ii) As long as the explicit functional context-dependence of quantum observables common to different contexts is directly
tested it is absent in quantized systems. Therefore, it might be “haunted’,’ as such dependence may only occur indirectly,
and without direct experimental testability.

(iii) It might be prudent to differentiate between the logico-algebraic structure formed by the observables via complemen-
tarity and the probability distributions such logics can or cannot support.

(iv) Kochen and Specker gave a “demarcation criterion” for nonembeddability in terms of (in)separability: if the set of two-
valued states on the logic can discriminate between every pair of atomic observables (aka elementary propositions in
the sense of Birkhoff and von Neumann) then it can support classical models (and also quantum ones if there exist
faithful orthogonal representations). If no classical value assignment aka two-valued state can separate between two
observables, then embeddability in some presumably extended Boolean algebra breaks down. Such situations can be
termed strong contextuality.

(v) Current empirical corroborations of contextuality associated with Boole-Bell-type inequalities, as long as they are based
on hull computations of classical value assignments on suitable ensembles of quantum observables with separating sets
of two-valued states encoding these value assignments, are merely about probabilistic contextuality. The same is true
for separable ensembles of quantum observables with functional relations on endpoints.

(vi) Strong contextuality implies probabilistic contextuality because the former always indicates some “essential” scarcity
of two-valued states associated with classical truth assignments. Because, by convex summation, two-valued states
form the basis for classical probability distributions, any “essential” lack thereof indicates limits to classical physical
phenomenology that provide distinctions from quantized systems. Essential here stands for nonseparating, nonunital,
or in its strongest form not existing.

These matters are pertinent not only to foundational questions but also to the computational capacities of quantized
systems.
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