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We discuss representations and colorings of orthogonality hypergraphs in terms of their

two-valued states interpretable as classical truth assignments. Such hypergraphs, if they al-

low for a faithful orthogonal representation, have quantum mechanical realizations in terms

of intertwined contexts or maximal observables that are widely discussed as empirically

testable criteria for contextuality. Reconstruction is possible for the class of perfectly sep-

arable hypergraphs. Colorings can be constructed from a minimal set of two-valued states.

Some examples from exempt categories are presented that either cannot be reconstructed by

two-valued states or whose two-valued states cannot yield a chromatic number that is equal

to the maximal clique number.
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I. RECONSTRUCTABILITY AND COLORING OF QUANTUM CONTEXTS

Current arguments validating quantum contextuality start with configurations of quantum ob-

servables whose intertwined contexts can be structurally expressed as (hyper)graphs. These struc-

tures, when interpreted classically, exhibit features and predictions that contradict the outcome of

the respective quantum observables. Therefore, (hyper)graph techniques proved to be a useful tool

for quantum-vs-classical modeling. In what follows we shall pursue a related question: when is
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it still possible to characterize those (hyper)graphs by purely classical means? That is, given all

two-valued states interpretable as classical truth assignments, is it possible to reconstruct the (hy-

per)graphs that, up to isomorphisms, characterize those observables? Inspired by and extending

Theorem 0 of the 1967 paper of Kochen and Specker [1] we shall present demarcation criteria for

(hyper)graph reconstructability.

We shall also explore the connection of two-valued states and coloring of (hyper)graphs,

thereby presenting criteria for (re)construction of colorings and the chromatic number of a (hy-

per)graph from the set of its two-valued states. Thereby two-valued states may yield a systematic,

constructive way to both colorings and/neither the reconstruction of (hyper)graphs.

The chromatic properties of such (hyper)graphs are directly related to their (non)classical as-

pects. For instance, in quantum logic [2] certain colorings—with the number of colors equal to

the clique number that can be identified with the Hilbert space dimension—can be “reduced” to

or “collapsed” into two-valued dispersionless states, which in turn are interpretable as noncon-

textual classical truth assignments of the elementary propositions represented by vertices of such

graphs. If the chromatic number exceeds the Hilbert space dimension then no uniform, global

two-valued state and also no corresponding uniform, global classical truth value assignment exist.

Thereby, the chromatic number signifies important properties and (non)existence of classical in-

terpretations of the aforementioned configurations of observables; in particular, arrangements of

observables realizable by quantum means.

One example of the usefulness of these reduction techniques is the construction of a dense yet

discontinuous coloring of the rational sphere [3]—with the resulting states and propositions rep-

resented by unit vectors with rational coordinates—based on Pythagorean triples [4]. Thereby, a

two-valued dispersionless state can be straightforwardly obtained by identifying all but one colors

of colorings of the sphere [5].

The usefulness of colorings is not restricted to reductions of the colors but can be extended to

certain properties of operators. The chromaticity of observables within a given context—which in

quantum mechanics can be essentially identified with an orthonormal basis of the associated finite-

dimensional Hilbert space—can be associated with particular types of spectral forms of maximal

operators [6, § 84] formed by the elements of the contexts. Thereby, unit vectors are interpreted as

the orthogonal projection operators formed by the respective dyadic products. Those orthogonal

projection operators within any given context are mutually orthogonal and can be inserted into

the spectral sum of a (normal, or, more specifically) self-adjoint operator. The respective (real)
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eigenvalues can be identified with some real-valued encoding of the color or chromaticity of the

element of the context. Thereby a uniform way of defining (intertwining) context identifiable with

maximal quantum operators representing quantum observables is obtained.

If the chromatic number equals the dimension of the Hilbert space—which is, at the same

time, identical to the clique number of the graph—this yields a uniform way of defining (maxi-

mal) observables even among complementary observables and physical properties (associated with

nonidentical contexts). However, if the chromatic number exceeds the dimension of Hilbert space,

the construction yields entirely new potential features of observables: if one insists on the uni-

form global simultaneous (yet counterfactual [7]) existence of observables within such structures,

then consistency dictates the abandonment of uniform eigenvalues associated with observables

within such contexts. This holds even though the chromatic number of a (hyper)graph and its

respective encoding by real values for the spectral sum within a single such context cannot exceed

the dimension of the pertinent Hilbert space. As of today, neither such “omni-realistic” escape

nor generalization of the Kochen-Specker theorem has been discussed or observed—so we might

assume that it is an inapplicable option. In addition, yet it is feasible in principle.

In what follows, we shall first develop the necessary nomenclature and then present some crite-

ria and results with regard to the reconstruction of (hyper)graphs representing logics—aka, collec-

tions of (intertwined) contexts containing a uniform number of elementary, atomistic propositions.

We shall also find criteria for the algorithmic (constructive) generation of colorings by the set of

two-valued states on such (hyper)graphs or logics.

II. NOMENCLATURE

A. Hypergraphs

The following terms are used by authors synonymously: context, block, (maximal Boolean)

subalgebra, (maximal) clique, complete subgraph and hyperedge. The same is applied to the terms

atom, element and vertex.

Greechie has suggested [8] to (amendments are indicated by square brackets “[. . .]”)

[. . .] present [. . .] lattices as unions of [contexts] intertwined or pasted together in

some fashion [. . .] by replacing, for example, the 2n elements in the Hasse diagram of

the power set of an n-element set with the [context aka] complete [sub]graph [Kn] on
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n elements. The reduction in numbers of elements is considerable but the number of

remaining “links” or “lines” is still too cumbersome for our purposes. We replace the

[context aka] complete [sub]graph on n elements by a single smooth curve (usually a

straight line) containing n distinguished points. Thus we replace n(n+ 1)/2 “links”

with a single smooth curve. This representation is propitious and uncomplicated pro-

vided that the intersection of any pair of blocks contains at most one atom.

In what follows, we shall refer to such a structure as Greechie diagram [9] (References [10–

15] contain variants thereof). The Greechie diagrammatical representation of such, possibly inter-

twined, collection of blocks, is a hypergraph, which is a well-known structure in discrete mathe-

matics. We shall briefly introduce the required terms here, but an interested reader might take a

look at Ref. [14] for further theory of hypergraphs.

A hypergraph H is an ordered pair H = (V ;E) where V =V (H) is the set of vertices and E =

E(H) is a family of subsets of V called the hyperedges. It depicts a collection of quantum contexts

faithfully represented in an n-dimensional Hilbert space, whereby the vertices are identified with

elementary quantum propositions whose label assignments are in terms of vectors (or with their

respective one-dimensional orthogonal projection operators), and the hyperedges are identified

with quantum contexts. An n-subset of atoms forms a hyperedge if its elements are mutually

orthogonal.

Let H = (V ;E) be a hypergraph. The 2-section of H is a graph, denoted by [H]2, whose vertices

are the same as V (H), and two distinct vertices form an edge if and only if they are on the same

hyperedge of H. One may think of the 2-section of a hypergraph as the graph associated with

the hypergraph. A hypergraph H is called conformal if any maximal clique (with respect to the

inclusion) of its 2-section [H]2 is on a hyperedge of H. If all the hyperedges of a hypergraph H

consist of exactly n elements, then H is called n-uniform [14].

Quantum orthogonality hypergraphs are conformal n-uniform. Often these hypergraphs are

referred to and depicted by their associated graphs; that is, by their 2-sections. Quantum contexts

are represented by hyperedges of these quantum hypergraphs, that is, by the maximal cliques of

their 2-sections. We also reserve the letter n for the clique number of those 2-sections, so we

always mean n = ω([H]2), which is a constant integer.

To represent orthogonality hypergraphs, we shall concentrate on Greechie diagrams which are

pasting [10] constructions [16, Chapter 2] of a homogeneous single type of contexts Kn where the

clique number n is fixed. This means that every hyperedge is shown by a straight line segment
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or, more general, by a smooth curve which has exactly n elements as vertices on it; that is, the

hypergraphs are conformal n-uniform.

B. Vertex labeling by vectors

A vertex labeling of an orthogonality (hyper)graph H is a function f : V (H)−→ L that assigns

labels from a set L to vertices of H.

Criterion 1. There is a vertex labeling xxx : V (H)−→ L that assigns a set of k mutually non-colinear

vectors in an n-dimensional Hilbert space L to vertices of H such that any pair of vertices a and b

are adjacent if and only if xxx(a) is orthogonal to xxx(b).

Such a vertex labeling is called an n-dimensional faithful orthogonal representation [17–19]

(FOR) for H. Any vertex labeling corresponds to a quantum realization in terms of the elemen-

tary propositions corresponding to its vector labels: every unit vector xxx spans a one-dimensional

subspace of Hilbert space that is the orthogonal projection onto that subspace of the Hilbert space.

C. Coloring

A hypergraph coloring of H is a proper vertex coloring which associates colors to vertices

of H so that every two vertices lying on a hyperedge receive different colors. That is, the n

distinguished points of any single smooth curve in the hypergraph have n different colors. The

coloring is noncontextual; that is, the coloring of atomic elements common to two or more contexts

(intertwining there) is independent of the context.

For a hypergraph H, the chromatic number m = χ(H) is the minimum number of colors re-

quired for a proper coloring of vertices of H. Obviously the clique number n = ω([H]2) is a

lower bound. If these numbers are the same, that is, if m = χ(H) = ω([H]2) = n, then one could

obtain two-valued measures from colorings by “projecting” one of the colors into the value 1, and

all the other n− 1 colors into the value 0 [3–5]. A hypergraph H, whose chromatic and clique

numbers are equal, is called here semi-perfect.

Finite examples for which the chromatic number exceeds the clique number, that is, m > n, are

the logical structures involved in proofs of the Kochen-Specker theorem. Explicit constructions

are, for instance, Γ2 of Ref. [1], and the configurations enumerated in Figure 9 of [11], Figure 1–3
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of [20], Ref. [21], and Table I and Figure 2 of Ref. [22], among numerous others which have a

faithful orthogonal representation [17–19] in “small dimensions” greater than two.

D. Two-valued states

A state t on a conformal n-uniform orthogonality hypergraph H is a mapping t : V (H)→ [0,1]

such that for any hyperedge h, we have ∑v∈h t(v) = 1. A two-valued state is a state with values in

{0,1}.

A conformal n-uniform orthogonality hypergraph has a separable set of two-valued states if

for any distinct pair of vertices u and v, there is at least one two-valued state, say t, such that

t(u) 6= t(v) [11]. A hypergraph H has a unital set of two-valued states if for each vertex v ∈V (H)

there is a state t for which we have t(v) = 1. A hypergraph H is said to be separable (respectively,

unital) if it has a separable (respectively, unital) set of two-valued states on its vertices.

A “true implies false set” (a,b)-TIFS (gadget [23–25]) is a conformal n-uniform orthogonality

hypergraph H containing two vertices a and b such that for all two-valued states of H, we have

that b is true only if a is false. We call a the “head” and b the “tail” of H.

Similarly, a “true implies true set” (c,d)-TITS (gadget) is a conformal n-uniform orthogonality

hypergraph H ′ containing two vertices c and d such that for all two-valued states of H ′, we have

that d is true whenever c is true [15] (in this case the converse need not be true as both c and d

could be false, or d could be true and c false). That is, c true implies d true.

E. Completion criterion

The hypergraphs considered here are assumed to be on k vertices, and all their hyperedges

(contexts) uniformly contain exactly n vertices. Equivalently, we can assume that our objects are

connected graphs such as G on k vertices with clique number ω(G) = n, with the assumption that

every vertex v ∈ V (G) lies on at least one maximal clique (context) of size n. This assumption

is not always necessary, but it is not harmful to our argument, as we can always add vertices to

those contexts that have less number of vertices. Therefore, we can state the completion criterion

as follows:

Criterion 2. If a and b are adjacent in an orthogonality hypergraph H, then there is a hyperedge

that contains a and b along with n−2 other vertices.
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In other words, the completion criterion says that there must be no hyperedge with less than n

vertices. The importance of this simple criterion becomes clear in Section III B. Note that for any

two-valued state of the hypergraph H, exactly one of these n vertices is assigned true.

F. Separability, set representability and reconstructability

Another important criterion is about classical structure-preserving representability of quantum

observables—that is, the classical representability of quantum logics—in terms of two-valued

states. According to Theorem 0 of Kochen and Specker [1, p. 67] the possibility to “separate”

and make a distinction between two arbitrary vertices of a (hyper)graph by at least one of its two-

valued states is equivalent to homomorphic—that is, structure-preserving—embedability of the

quantum observables into a “larger” classical Boolean algebra.

An early example of a nonseparable (hyper)graph that is not reconstructable from its set of

two-valued states is Γ3 introduced by Kochen and Specker [1, p. 70]. There is another hypergraph,

depicted in Figure 5 of Ref. [26] sharing the same Travis [27] matrix [16]—i. e., the same set of

two-valued states—which is not isomorphic to the hypergraph corresponding to Γ3.

However, separability does not imply graph theoretic reconstructibility. One reason for this

is that end points of TIFS gadgets might not be separable from orthogonal vertices. We shall

explicitly present an example (depicted in Figure 3) of such a configuration, although we are not

able to present a hypergraph that has a faithful orthogonal representation in terms of vertex labeling

by vectors.

In general a (hyper)graph is reconstructable if the Travis matrix—that is, the set of two-valued

states—determines or encodes it completely. More explicitly, a reconstructable (hyper)graph is, up

to isomorphism, determined by its Travis matrix—that is, effectively, by permutation of its vertices

(the column vectors of the Travis matrix) or the ordering of two-valued states (the row vectors of

the Travis matrix). Equivalently, a hypergraph H is reconstructable from its Travis matrix TH if,

for any hypergraph G whose Travis matrix TG is equivalent to TH — that is, TG can be obtained

from TH by permutations of rows and columns — the (hyper)graphs H and G are isomorphic.

The only connected conformal 1-uniform orthogonality (hyper)graph is the trivial singleton

whose two-valued states consists of only one state that assigns true to the only vertex. In addition,

the only connected conformal 2-uniform orthogonality hypergraph — which is actually a graph

— is K2 whose Travis matrix is equivalent to the 2× 2 identity matrix. This is because all other
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connected graphs have a vertex, say a, adjacent to at least two other vertices, say b and c, and

therefore any representation of the graph into a 2-dimensional Hilbert space has to assign collinear

vectors to b and c. Hence, hereinafter, we suppose that the dimension of our space n, which is the

uniform number of vertices on hyperedges, is greater than 2.

III. STRUCTURE RECONSTRUCTION FROM TWO-VALUED STATES

Suppose that we have a table of all two-valued states of a hypergraph H. Under what condi-

tion(s) can we reconstruct the graph theoretical structure of H from the set of its two-valued states?

This is what we are going to examine next.

A. Perfectly separable hypergraphs

Let H be a hypergraph with V (H) = {a1,a2, . . . ,ak}, and its set of two-valued states contains s

elements [which can be shown by saying that nT S(H) = s]. Its Travis matrix T (H) = [ti j]s×k enu-

merates all two-valued states which are represented by row vectors on the vertices of H, arranged

in the columns, such that each vertex corresponds to one column. Then, separability of H can be

extended to the following statement:

Definition 3. The hypergraph H is perfectly separable if and only if for all pairs ai and a j of

vertices of H we obtain the following:

1. There is r1 ∈ {1, . . . ,s} such that tr1i = 0 and tr1 j = 1.

2. There is r2 ∈ {1, . . . ,s} such that tr2i = 1 and tr2 j = 0.

3. If ai and a j are not adjacent in H, then there is an r3 ∈ {1, . . . ,s} such that tr3i = 1 and

tr3 j = 1.

It might seem that an additional condition like “If ai and a j are not adjacent in H, then there is

an r4 ∈ {1, . . . ,s} such that tr4i = 0 and tr4 j = 0” would make a difference and be independent of

conditions 1–3. However, this additional condition can be deduced from condition 1 or 3 because

n ≥ 3 and so there is another vertex ak which is adjacent to a j, and if ai is also adjacent to ak,

condition 1 implies it, and if ai and ak are not adjacent, condition 3 implies it. Thus, we did not

include it in Definition 3.
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Note that a hypergraph is separable if item 1 or 2 of Definition 3 holds. Therefore, every

perfectly separable orthogonality hypergraph is also separable, but the converse is not always true.

Elementary counterexamples are true-implies-false gadgets such as the Specker bug depicted in

Figure 8.

B. Reconstruction of perfectly separable hypergraphs

We know that whenever ai and a j are adjacent in H (or, equivalently, they are on the same

context), then tri = 1 implies tr j = 0 for r = 1, . . . ,s. We want to know under what conditions the

converse is true as well, i.e., the following adjacency criterion holds:

Criterion 4. For all r = 1, . . . ,s, if tri = 1 implies tr j = 0 then ai and a j are adjacent.

The next theorem asserts that when H is a perfectly separable hypergraph, we can always recon-

struct H from the information presented in its Travis matrix T (H) and the adjacency criterion. In

addition, conversely, a reconstructable hypergraph using Criterion 4 has to be a perfectly separable

hypergraph. In other words, Conjecture 6 is true for perfectly separable hypergraphs.

Theorem 5. Let H be a hypergraph on {a1,a2, . . . ,ak} whose Travis matrix T (H) is available

and ω([H]2) = n ≥ 3. Moreover, suppose that H ′ is the hypergraph on {a1,a2, . . . ,ak} whose

adjacency is defined by Criterion 4. Then H = H ′ if and only if H is perfectly separable.

Proof. First suppose that H is perfectly separable. Then, because of item 3 of Definition 3, for

all ai and a j that are not adjacent in H there is a row r in T (H) such that tri = 1 and tr j = 1.

Therefore, Criterion 4 in H ′ can only be satisfied for those vertices that are already adjacent in H.

Consequently, H = H ′.

Conversely, suppose that H = H ′ and ai and a j are two distinct non-adjacent vertices. Then the

adjacency criterion does not meet for ai and a j. As a result, there is r, 1 ≤ r ≤ s such that tri = 1

and tr j = 1, i.e., item 3 of Definition 3 already holds for ai and a j. Moreover, if item 1 (or 2) of

Definition 3 does not hold for i and j, then the adjacency criterion makes ai adjacent to all vertices

already adjacent to a j, which cannot happen unless ai = a j, or ai is colinear with a j, which is a

contradiction.

Therefore, for every pair of non-adjacent vertices of H, items 1 to 3 of Definition 3 hold. If for

any pair of adjacent vertices in H, namely ai and a j, both items 1 and 2 of Definition 3 are also

true, then it can be inferred that H must be perfectly separable.
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Figure 1. Reconstruction of the Specker bug using Criterion 4 which gives the gray snake-shaped extra

hyperedge that contains only two (the red and green) vertices. This extra hyperedge can be easily eliminated

if we use Criterion 2.

To see this, first notice that if one of items 1 or 2 does not hold for adjacent vertices ai and a j,

then one of them, say a j, is always assigned 0. Therefore, because H = H ′, and H ′ is constructed

via Criterion 4, a j must be adjacent to any vertex that is assigned 1 at least once. Hence, we can

distinguish the following two cases:

Case 1. The vertex a j belongs to all contexts of H. Then there is a two-valued state that assigns 1 to

a j and 0 to all other vertices, a contradiction to our assumption that a j is always assigned 0.

Case 2. There is at least one context, A , which does not contain a j. Since H = H ′, only one vertex

of A , say ap, can be assigned always 0. Then a j is adjacent to at least n−1 vertices of A

other than ap, and consequently, a j and ap are colinear, a contradiction.

Therefore, items 1 and 2 of Definition 3 also hold for every pair of adjacent vertices of H. Now

the conclusion is evident.

From the proof of Theorem 5 we see that, for a reconstructable hypergraph H, the most im-

portant factor is that at least item 1 or 2 is true for every pair of non-adjacent vertices. It should

be noted that item 2 is actually the contraposition for item 1. Yet conversely, if we only want to

imply Criterion 4, we see that for separable hypergraphs which are not perfectly separable, the

reconstruction produces some extra hyperedges for H ′ and makes it different from H. For exam-

ple, when we try to reconstruct the Specker bug from its two-valued states using the adjacency

criterion, we produce an extra hyperedge on two vertices, as depicted in Figure 1.

However, one might think that we may be able to reconstruct H from H ′ by finding the extra

hyperedge(s) that must be eliminated. To do this, suppose that ω([H]2) = n≥ 3 and every vertex
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is on a hyperedge of size n. Then the reconstructed H ′ must have the same property, i.e., we must

have Criterion 2 for all hyperedges of H ′, and if a hyperedge does not meet this criterion, then

it has to be eliminated. This “unwanted” adjacency between ai and a j in H ′ appear only when

these two are not on the same context but whenever one is assigned 1 the other has to be 0 and vice

versa—a typical situation in a TIFS gadget—like what is happening when we try to reconstruct the

Specker bug from its two-valued states. However, we show in Sec. III C that this method cannot

always guarantee that we can identify these unwanted hyperedges from the table of two-valued

states.

C. Examples of non-reconstructable hypergraphs using Criteria 2 and 4

Knowing that an orthogonality hypergraph is reconstructable from its two-valued states gives

us the opportunity to find perpendicular pairs of propositions without actually measuring angles

between them. Recall that, for two-valued states, whenever a vertex is assigned true, all other

vertices adjacent to it have to be assigned false. This adjacency criterion (Criterion 4) is the most

evident property that every pair of adjacent vertices has.

For a nonseparable hypergraph, however, this does not let us to reconstruct the hypergraph

because for two distinct vertices a and b with t(a) = t(b) for every two-valued state t, it cannot be

understood whether or not a is adjacent to all the neighbors of b. Therefore, it might be tempting to

speculate that separability is a “good” criterion for reconstructability. Indeed, it might be tempting

to claim the following general conjecture, against which we shall shortly present a counterexample.

Conjecture 6. A hypergraph H is reconstructable from the table of its two-valued states if and

only if H is separable.

From Theorem 5 we know that for perfectly separable hypergraphs Conjecture 6 holds. Can

we generalize this to separability?

In what follows, we present a counterexample: a hypergraph that is separable but not perfectly

separable. For the sake of a contradiction with Conjecture 6 we introduce a configuration for

which adjacency of vertices cannot be determined by the enumeration of all two-valued states (the

Travis matrix) alone. The argument uses a maximal clique number n = 3, but can be generalized

to higher clique numbers.

A counterexample to Conjecture 6 is an orthogonality hypergraph H that has some non-adjacent

vertices but Criteria 2 and 4 detect and identify their adjacency “as if” they were on a hyperedge
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G1

G2G3

a1b3 a2b1

a3b2

Figure 2. A layer hypergraph serving as a quasi-block for the construction of a counterexample to Con-

jecture 6. For i = 1,2,3, the snake-shaped edges are distinct copies of an arbitrary separable (ai,bi)-TIFS

gadget G such that whenever ai is assigned true by a two-valued state, bi has to be false: their respective

ends have been “cyclically folded” on each other, eg., a1 from G1 is identified with b3 from G3. Note that

vertices a1b3, a2b1 and a3b2 are not adjacent.

in the reconstructed hypergraph H ′. Consequently these two hypergraphs H and H ′ are not the

same. Note that, up to permutations of rows and columns, their Travis matrices are the same.

Since our dimension is 3, we must have at least three vertices a, b, and c, which are not adjacent

in H, but whenever one is assigned true by a two-valued state, the other two have to be assigned

false. Moreover, there must not be a two-valued state that simultaneously assigns a, b, and c false.

Suppose that G is an (a,b)-TIFS gadget such that whenever a is assigned true by a two-valued

state, b has to be false. As mentioned earlier, the reverse is also true; that is, whenever b is assigned

true by a two-valued state, a has to be false. This means that a and b cannot be assigned true at the

same time (but they can both be false). Therefore, if we make a triangle, using a true implies false

set (TIFS) as its edges, then we have the desired property that whenever one end is true, the other

two are false. However, this hypergraph might have several two-valued states that assign false to

all its three ends a, b and c. Figure 2 depicted this layer hypergraph, with a = a1b3, b = a2b1 and

c = a3b2.

For an (ai,bi)-TIFS gadget G, Criteria 2 and 4 do not detect a hyperedge containing a1b3, a2b1

and a3b2 from the two-valued states of a hypergraph such as in Figure 2. This is because usually

there are some two-valued states that assign false to all of these three vertices. Therefore, the layer

hypergraph of Figure 2 must become a part of a larger hypergraph so that in every two-valued

state, exactly one of the vertices a, b or c be assigned true.

To do so, one possibility is to use three copies of the layer hypergraph of Figure 2 and use three
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G1

G2G3

G4

G5G6

G7

G8G9

a b

c

a′ b′

c′

a′′ b′′

c′′

Figure 3. A hypergraph B(G) depicting a counterexample to Conjecture 6. For i = 1, . . . ,9, the snake-

shaped curves indicate different copies of an (ai,bi)-TIFS gadget G with their terminals suitably identified,

that is, a1 from G1 is identified with b3 from G3 as the vertex a. Straight lines are ordinary hyperedges, i. e.,

vertices a, a′ and a′′ are on a context, drawn in brown.

extra contexts to bind them together; a configuration drawn in Figure 3. When we use G as an

(ai,bi)-TIFS gadget the resulting hypergraph of this construction is denoted by B(G).

Since G is a TIFS gadget, in every two-valued state of B(G), exactly one of a, b or c has

to be assigned true while the other two have to be false. This is because {a,a′,a′′}, {b,b′,b′′},

and {c,c′,c′′} are contexts and need to have exactly one true value in every two-valued states.

Consequently, if for example b and c are assigned false by a two-valued state tr, then one of b′ and

b′′, and one of c′ and c′′ have to be assigned true by tr. Without loss of generality, let b′ be the true

one and b′′ be false. Then, since G4 and G5 are TIFS gadgets, it can be inferred that a′ and c′ have

to be assigned false by tr. Therefore, c′′ has also to be assigned true because c and c′ are false.

Again, since G9 is a TIFS gadget, a′′ has to be false. Now, a has to be assigned true by tr because

a′ and a′′ are both false.

Therefore, for nonadjacent vertices a, b and c we have that exactly one of them has to be

assigned true, and the other two are false. This is just like if these three vertices are on the same

context. It means that if one tries to reconstruct B(G) from its table of two-valued states using

criteria 2 and 4, extra hyperedges of {a,b,c}, {a′,b′,c′} and {a′′,b′′,c′′} are found. This implies

that B(G) is not reconstructable using these criteria.
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One question that arises in this regard is the following: suppose we know that G is separable,

then does this imply that B(G) is also separable? This is not too hard to answer, and it is always

“yes” if it does not contain a true implies true set (TITS) gadget.

To proceed, we need one more thing. A function f : S−→ T defined on a subset S ( X is said to

be lifted to f̃ : X −→ T if f̃ (a) = f (a) for each a ∈ S. It must be mentioned that when f possesses

a property, like if f is a proper coloring [28] or a two-valued state, there might not always be a lift

with the same property.

Lemma 7. Let G be a separable unitary TIFS gadget which does not contain a TITS gadget and

ω([G]2) = 3. Then B(G) is also separable.

Proof. Since G is unitary, there is no vertex that has to be assigned 0 by all the two-valued states

of G. On the other hand, there is no vertex that is given 1 by all the two-valued states of G because

else it must lie on at least one hyperedge with two other vertices, those that have to be always

assigned 0, a contradiction to separability (and being unitary) of G. Thus, it can be inferred that

for a vertex u of G, there are states ϕ and ψ such that ϕ(u) = 0 and ψ(u) = 1.

For an (a,b)-TIFS gadget G, the set of two-valued states are nonempty. Let s1 be the set of

those states in which a is true, s2 be the set of those states that b is true and s3 be the set of those

states in which both a and b are false. Then these sets s1 , s2 and s3 partition the set of two-

valued states of G. For an (a,b)-TIFS gadget copy Gi, these sets are shown here by si1, si2 and si3.

Therefore, if for example a two-valued state is in s1, it is a two-valued state of G so that its head,

i. e. a, is assigned 1.

To show that B(G) is separable, we show that for any pair of distinct vertices x and y, there is a

two-valued state of it that gives them different values. There are the following cases:

Case 1. x and y belong to the same copy of G, say Gi. Because of the symmetry, we can assume

without loss of generality that i = 1. Since G is separable, there must be a two-valued state,

say t on G, such that t(x) 6= t(y). We know that t ∈ s1∪ s2∪ s3. If t ∈ sl for l = 1,2,3, then

there is a two-valued state for the underlying hypergraph of B(G) in Section A 4 such that it

agrees with the values of t(a) and t(b). Now, using this two-valued state we define t̃ for the

end vertices a, b, c, a′, b′ ,c′, a′′, b′′ and c′′. Then using appropriate two-valued states of G,

we can find a suitable two-valued state for internal vertices of G2, . . . ,G9. Therefore, there

are two-valued states such as t̃ of B(G) which is a lifting for t and t̃(x) 6= t̃(y).
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Case 2. x and y lie on different copies of G, say Gi and G j respectively. Then there are three other

cases.

Case 2.1. Gi and G j lie on the same layer of B(G). Without loss of generality, suppose that it is

the layer consisting of the vertices a, b, and c. Then Gi and G j have a common vertex

that, again without loss of generality, we can assume it is a. Let Gi’s head and tail be

a and b, and G j’s head and tail be c and a, respectively [see Figure 4 (a)]. Therefore,

every two-valued state of the induced subhypergraph Gi∪G j in B(G) is a member of

si1∪ s j2, si2∪ s j3 or si3∪ s j1. Suppose on contrary that x and y receive the same value

by all two-valued states of B(G). Then, since there is a two-valued state of B(G) that

assigns 1 to x, at least one of the following statements holds:

1. If x is assigned 1 by a two-valued state of si1, then y has to be assigned 1 by all

two-valued states of s j2. This means that G j (and therefore G) is a (a,y)-TITS

gadget, a contradiction to our assumption.

2. If x is assigned 1 by a two-valued state of si2, then y has to be assigned 1 by all

two-valued states of s j3. Consequently, x cannot be assigned 0 by si2 because else,

it can be lifted to the required separation of x and y. Hence, Gi (and therefore G)

is a (b,x)-TITS gadget, a contradiction to our assumption.

3. If x is assigned 1 by a two-valued state of si3, then y has to be assigned 1 by all

two-valued states of s j1. This means that G j (and therefore G) is a (c,y)-TITS

gadget, again a contradiction to our assumption.

Case 2.2 Gi and G j lie on different layers of B(G), and both ends of Gi and G j lie on the same

contexts of B(G). Without loss of generality suppose that Gi has a and b and G j has a′

and b′ as their heads and tails, respectively [see Figure 4 (b)]. Therefore, every two-

valued state of the induced subhypergraph Gi∪G j in B(G) is a member of si1∪s j2∪s j3,

si2∪ s j1∪ s j3 or si3∪ s j1∪ s j2 (or s j1∪ si2∪ si3, s j2∪ si1∪ si3 or s j3∪ si1∪ si2 which are

completely similar). Suppose on contrary that x and y receive the same value by all

two-valued states of B(G). Then, since there is a two-valued state of B(G) that assigns

1 to x, at least one of the following statements holds:

1. If x is assigned 1 by a two-valued state of si1, then y has to be assigned 1 by all

two-valued states of s j2 ∪ s j3. This means that G j (and therefore G) is a (b′,y)-

TITS gadget, a contradiction to our assumption.
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2. If x is assigned 1 by a two-valued state of si2, then y has to be assigned 1 by

all two-valued states of s j1 ∪ s j3. Consequently, x cannot be assigned 0 by a si2

because else, it can be lifted to the required separation of x and y. Hence, Gi (and

therefore G) is a (b,x)-TITS gadget, a contradiction to our assumption.

3. If x is assigned 1 by a two-valued state of si3, then y has to be assigned 1 by all two-

valued states of s j1∪ s j2. This means that G j (and therefore G) is a (b′,y)-TITS

gadget (and also a (c′,y)-TITS gadget), again a contradiction to our assumption.

Case 2.3 Gi and G j lie on different layers of B(G), but only one end from Gi and one end from

G j lie on the same context. Again without loss of generality, suppose that Gi has a

and b and G j has b′ and c′ as their heads and tails, respectively [see Figure 4 (c)].

Therefore, every two-valued state of the induced subhypergraph Gi∪G j in B(G) is a

member of si1∪s j1∪s j2∪s j3, si2∪s j2∪s j3, or si3∪s j1∪s j2∪s j3 (or s j1∪si1∪si2∪si3,

s j2∪si2∪si3, or s j3∪si1∪si2∪si3 which can be treated similarly). Suppose on contrary

that x and y receive the same value by all two-valued states of B(G). Then, since there

is a two-valued state of B(G) that assigns 1 to x, at least one of the following statements

holds:

1. If x is assigned 1 by a two-valued state of si1, then y has to be assigned 1 by all

two-valued states of s j1∪ s j2∪ s j3, a contradiction to the fact that no vertex of G

can be assigned 1 by all the two-valued states.

2. If x is assigned 1 by a two-valued state of si2, then y has to be assigned 1 by all

two-valued states of s j2∪s j3. Consequently, G j (and therefore G) is a (c′,y)-TITS

gadget, a contradiction to our assumption.

3. If x is assigned 1 by a two-valued state of si3, then y has to be assigned 1 by all

two-valued states of s j1∪ s j2∪ s j3, a contradiction to the fact that no vertex of G

can be assigned 1 by all the two-valued states.

We showed that in any case, x and y can be separated by a two-valued state of B(G) (or else

there is a contradiction) which concludes the proof.

We can go further by calculating the number of two-valued states of B(G) based on G’s. Sup-

pose that G is an (a,b)-TIFS and has, respectively, na, nb, and nn two-valued states that give a

true, b true, and none of a and b true. In other words, na = |s1|, nb = |s2|, and nn = |s3|. Then, by
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G j
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G j
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b c

a

(a) (b) (c)

Figure 4. Illustrations of cases 2.1 (a), 2.2 (b) and 2.3 (c) in the proof of Lemma 7.

the elementary methods of counting, the number of two-valued states of B(G) is

nT S(B(H)) = (3+2+1) ·n3
a ·n3

b ·n
3
n. (1)

For the sake of an example take the Specker bug G discussed in the Appendix Section A 3 of

Appendix A. From its Travis matrix A3 we know that na = 3, nb = 3 and nn = 8. Therefore,

Formula 1 implies that B(G), which is a separable hypergraph on 108 vertices and 66 contexts,

has

6 ·33 ·33 ·83 = 2,239,488

two-valued states, a number that can easily be checked via an ordinary computer.

However, it is not difficult to show that this hypergraph B(G), when G is the Specker bug, does

not meet our requirements. This is because the two ends of the Specker bug cannot be orthogonal

in the 3-space [29]. It can also be discussed using graph theoretical terminology; one orthogonality

hypergraph cannot have a cycle of length 4 because else any pair of antipodal vertices of the cycle

of length 4 have to be colinear. Therefore, even if B(G) is an orthogonality hypergraph, the

reconstructed hypergraph with an extra context of {a,b,c} is certainly not.

We have to find a TIFS gadget H, other than the Specker bug, in which the distance between its

two ends is not 3 (so the two ends can be orthogonal in the reconstructed hypergraph). A candidate

for such a hypergraph is shown in Figure 5, which is a TIFS on 43 vertices whose end points (say

a and b) are far enough, so that it is not only separable, but also probably a FOR. This hypergraph

has 2589 two-valued states, 45 of which assign a true, 504 give b true and 2040 give both a and b

false. In other words, for the hypergraph H we have na = 45, nb = 504 and nn = 2048.
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a

c

b

d

Figure 5. An (a,b)-TIFS gadget whose distance between its two terminal points a and b is at least five

contexts. The snake-like decorated curves indicate Specker bugs, so this hypergraph has 43 vertices.

If we construct B(H), then Lemma 7 implies that the resulting hypergraph on 378 vertices is

separable and there would be enough space for the three end vertices to be perpendicular.

The hypergraph B(H) is on 378 vertices and 228 contexts, and by Formula 1 it has

6 ·453 ·5043 ·20403 = 594,252,343,817,330,688,000,000

two-valued states. This huge number makes it hard to quickly check by using an ordinary com-

puter.

Another pertinent problem is to show that these hypergraphs—namely B(H) and also its coun-

terpart, the reconstructed hypergraph B(H)′ from B(H)’s table of two-valued states—have a faith-

ful orthogonal representation; and to enumerate an explicit example of such a representation.

However, it seems that Criterion 1 is independent of Criteria 2 and 4, having an example such

as B(H) on 378 vertices raises the possibility that Conjecture 6 is false for separable hypergraphs

that are not perfectly-separable.

One challenge is to find either TIFS that allows for FORs—that is, vertex labellings by

vectors—with end points that are orthogonal (that is, their relative angle is π/2) and at the same

time have a separating set of two valued states; or a proof of nonexistence thereof. Note that since,

unlike TIFS, TITS gadgets in general perform asymmetric, it is not possible to employ a serial

composition strategy similar to the one of Kochen and Specker [1] for a construction of their Γ2:

to concatenate a couple of TITS with a single TIFS at their respective end points and thereby to
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obtain a TIFS with a “larger aperture”: the TITS relationship “one-implies-one” in general works

only one way (with respect to exchange of the end points), and not the other way around. A related

challenge is to construct a symmetrical TITS, realizing the “one-implies-one” relation at both end

points.

IV. TWO-VALUED STATES VS COLORING

A. Coloring vs independent partitions

A hypergraph [whose vertices all lie on at least one hyperedge of size ω([H]2) = n] is called

to have “an n-partition system” if there is a vertex partition S = {S1, . . . ,Sn} of H (into exactly n

cells) with the following properties:

1. whenever v,w ∈ Si for an i = 1, . . . ,n, we have that v and w are not adjacent, and

2. for each i = 1, . . . ,n and every v ∈V (G), there is a vertex w ∈ Si such that either v = w or v

and w are adjacent.

When a hypergraph H has an n-partition system, we might simply say that H is n-partitionable.

While S is a partition, every Si is non-empty and
⋃n

i=1 Si = V (G). With Property 1, we can be

sure that if we assign the true value to all the vertices in Si and the false value to the rest of vertices,

then no two true vertices are adjacent, and consequently, every context has at most one true valued

vertex. Moreover, Property 2 assures us that there is no context without a true-valued vertex.

(Using graph theoretical terminology, these two properties mean that every Si is an independent

dominating set for H.) Therefore, an n-partition system actually induces n two-valued states on

H.

We have the following theorem.

Theorem 8. A hypergraph H is n-colorable if and only if it is n-partitionable.

Proof. It is evident that if σ is a proper vertex coloring of G with {1, . . . ,n}, we can easily find

S = {S1, . . . ,Sk} by putting

Si = {v ∈V (G) : σ(v) = i}.

It is also clear that Property 1 holds because σ is a proper coloring. Moreover, we also have

Property 2 because of the assumption we made that, in [H]2, every vertex is on a maximal clique

of size n.
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To prove the converse, suppose that we have a partition S = {S1, . . . ,Sn} of vertices of H

which satisfies Properties 1 and 2 above. Define, σ : V (G)−→ {1, . . . ,n} such that

σ(v) = i if v ∈ Si.

While Property 2 implies that every Si is non-empty, for i = 1 . . . ,n, it also shows that every

hyperedge contains a vertex v such that σ(v) = i. In other words, every color i = 1, . . . ,k is used

in each hyperedge. Furthermore, Property 1 implies that every Si is an independent set. Hence σ

is a proper coloring of H and consequently, H is n-colorable.

As a result, we can say that for each proper n-coloring of H we have n different two-valued

states on vertices of H. Conversely we can construct exactly n! proper n-colorings for H from an

available n-partition system on vertices of H. Therefore, the following corollary (Corollary 9) is a

consequence of Theorem 8.

Corollary 9. The following statements are equivalent:

(i) The hypergraph H is semi-perfect, i.e., its chromatic number and 2-section clique number

are equal.

(ii) The set of two-valued states contains n members which correspond to, or induce, a parti-

tioning of all elements of the partition logic; the equivalence relation defined by each one of

these n states evaluating to 1 on some element of every context. That is, those n states are 1

on different atoms of every context.

This does not exclude the existence of partition logics which are not semi-perfect. Indeed, in

general, their chromatic number can exceed their 2-section’s clique number. A concrete example

is Greechie’s G32 [8, Figure 6, p. 121] mentioned in Appendix B, and depicted in Figure 11.

B. Reconstructing coloring from logical assignments

From Theorem 8 we know that when there is an n-coloring for an orthogonality hypergraph

H, there are n two-valued states corresponding to it so that they induce a partition logic. In other

words, there are n rows in the Travis matrix of H such that when one of them assigns 1 to a vertex
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u, the rest of them assign 0 to u. Consequently, ts1, . . . , tsn are the rows of the Travis matrix T (H)

corresponding to an n-coloring. This yields the |V (H)|–tuple whose entries are one.

n

∑
i=1

tsi =
(

1,1,. . . ,1︸ ︷︷ ︸
|V (H)| times

)
=
(

11×|V (H)|

)
. (2)

Therefore, when H is n-colorable, there is at least one set of n two-valued states that induce a

partition logic on H.

Algorithm 1 searches for such states when T (H) is available.

(1) It takes the Travis matrix T (H) and the clique number n, and

(2) It gives a list of rows, A, from which we can retrieve an n coloring for H.

Variables of this algorithm are as follows:

(1) AvailableRows which is a list of active rows in T (H), with each such row representing a

two-valued state of H:

(2) i, which runs from 1 to the clique number n,

(3) j, which runs from 1 to the number of two-valued states nT S(H), which is the number of

rows of the Travis matrix; and

(4) RemovedRows which is a list of lists, whose ith element is the rows of T (H) that become

inactive at the ith step of filling A.

If the output of Algorithm 1 has less than n elements, then H has no admissible n-coloring—

because else Theorem 8 guarantees that there are n two-valued states partitioning the logic, in

which case Algorithm 1 would have given |A| = n. If |A| = n, then A is a list of n rows in T (H),

each of which corresponds to a color class of an n-coloring of H. In other words, when s ∈ A, the

two-valued state ts presents the color class consisting all the vertices it assigns, or maps to, 1. It

is evident that the resulting color classes are independent sets while Formula 2 implies that they

cover all the vertices. Consequently, A induces a proper n-coloring on vertices of H.

Algorithm 1 is not highly efficient in finding an n-coloring for H. The main reason is that in

the worst case study it has to check all the two-valued states of H whose number, i.e. nT S(H), can

grow exponentially in terms of the clique number and number of vertices and hyperedges.
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Algorithm1 Finding an n-coloring for H from its set of two-valued states encoded by the Travis

matrix

Input: T (H), n . Travis matrix, clique number

Output: A . a list of n rows of T (H)

1: i← 1 . start of variable initialization

2: AvailableRows← (1, . . . ,nT S(H))

3: A← ( )

4: RemovedRows← ( ) . end of variable initialization

5: while i≤ n and (i 6= 1 or AvailableRows 6= /0) do . try all colors

6: if AvailableRows = /0 then . start over again if all two-valued states are exhausted

7: Append RemovedRows[i] to AvailableRows

8: Remove RemovedRows[i] from RemovedRows

9: Remove A[i] from A

10: i← i−1

11: else . try to identify a new color assignment by the next available two-valued state

12: j← first available cell in AvailableRows

13: A[i]← AvailableRows[ j]

14: Append AvailableRows[ j] to RemovedRows[i]

15: Remove AvailableRows[ j] from AvailableRows

16: i← i+1

17: Append to RemovedRows[i] all AvailableRows[s] for which there is a vertex u

such that the state of rows AvailableRows[s] and AvailableRows[ j] both assign 1 to u

18: Remove all elements of RemovedRows[i] from AvailableRows

19: end if

20: end while

Moreover, one could conjecture that Algorithm 1 could be modified to render a coloring even if

the (hyper)graph is not n-partitionable, in which case Theorem 8 does not apply. Because even if

one has exhausted all combinations of two-valued states one could still attempt to “complete” the
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coloring by identifying the missing colors with “suitable segments” of the remaining two-valued

states (if there are any leftovers). Of course, in this way, the column sums of all the respective

two valued states cannot be 1, and hence Formula (2) is no longer valid. In any case, Brooks’

theorem [30, 31]—stating that for any connected undirected graph G, the chromatic number of G

is at most its maximum degree (the maximal number of edges that are incident to some vertex) ∆

unless G is a complete graph or an odd cycle, in which case the chromatic number is ∆+1—and its

generalization to hypergraphs [14, page 45, Theorem 3.2] yield an upper bound for the chromatic

number of such (hyper)graphs.

V. SUMMARY AND CONCLUDING REMARKS

We have presented a constructive, algorithmic way to generate a coloring of a (hyper)graph

from its set of two-valued states. The only criterion for the success of this approach is the assertion

that the respective hypergraph is semi-perfect, that is, its chromatic number equals the clique

number of its 2-section. We have been able to find a “compact” partition logic within the logical

states of the hypergraph by showing that n-colorability is equivalent to finding a partition logic

based on exactly n two-valued states. We also presented a detailed algorithm for constructively

finding this partition logic and its associated coloring.

With regard to representing and reconstructing (hyper)graphs or logics in terms of their two-

valued states, in particular, regarding separability of vertices or elementary propositions, we con-

jecture that there exist quantum logics with a separable set of two-valued states that cannot be

reconstructed from these states. We have presented a hypergraph, namely B(G) depicted in Fig-

ure 3 of Section III C with a TIFS gadget such as the one depicted in Figure 5, that has this

characteristic but we could not find a faithful orthogonal representation in a Hilbert space.

Yet, stronger forms of separability, in particular, perfect separability, can be identified that

allow (hyper)graphs or logics to be represented and reconstructed in terms of their two-valued

states (that is, by their Travis matrices). In addition, while the conditions on perfectly separable

(hyper)graphs are rather strong, one can be certain that such a reconstruction exists.

Indeed, such a reconstruction helps to directly identify mutually perpendicular elementary

propositions, and thus the contexts corresponding to the maximal operators they form: if an or-

thogonality (hyper)graph is reconstructible from its set of two-valued states we can deduce the

mutual orthogonality of the elementary quantum propositions by just looking at these two-valued
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states. This facilitates the construction of the (mutually perpendicular) orthogonal operators in the

spectral sums associated with the contexts, and thus supports finding a global faithful orthogonal

representation, i. e., the assignment of vectors to vertices, of (hyper)graphs.

Stated differently, we showed that there is a class of hypergraphs, namely perfectly separable

ones, that are always reconstructable from their two-valued states. However, not all separable

graphs are guaranteed to be reconstructible by these means.

Hence, while for perfectly separable (hyper)graphs we can be certain that they can be recon-

structed; and for Kochen-Specker type (hyper)graphs that they cannot be reconstructed because

there is no two-valued state associated with any classical value assignment, for the remaining

(hyper)graphs reconstructability remains an open question.

Appendix A: Examples

1. Triangle logic

The coloring procedure of the triangle hypergraph is depicted in Figure 6. Consider the set of all

four two-valued states on the six atoms which can be tabulated by a (compactified) Travis matrix

Ti j whose rows indicate the ith state si and whose columns indicate the atoms a j, respectively; that

is, Ti j = si(a j):

Ti j =


1 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 0 1 0 1

 . (A1)

It is not too difficult to see that the first three measures, represented by the first three row vectors

of the Travis matrix, add up to
(

1,1,1,1,1,1
)

. They can thus be taken as the basis of a coloring.
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a1

a2

a3a4a5

a6 s1

a1

a2

a3a4a5

a6 s2

a1

a2

a3a4a5

a6 s3

a1

a2

a3a4a5

a6 s4

(a) (b) (c) (d)

a1 = {1}

a2 = {3,4}

a3 = {2}a4 = {1,4}a5 = {3}

a6 = {2,4}

{1}

{3,4}

{2}{1,4}{3}

{2,4}

(e) (f)

Figure 6. One (nonunique) coloring (f) construction of the triangle hypergraph of the logic: first compose

a (nonunique) canonical partition logic (e) from enumerating the set of all 4 two-valued states depicted in

(a)–(d). Then choose the context {a1,a2,a3}, and from this context choose the atom a1 = {1}. Now identify

the first color (red) with the index 1, thereby identifying a1 = {1} and a4 = {1,4} with red. Then, delete

the index number 4 from every atom; that is, a2 = {3,4} → {3} and a6 = {2,4} → {2}. Finally, identify

3 with the second color (green) and 2 with the third color (blue), thereby identifying a2 and a5 with green,

and a3 and a6 with blue, respectively. Note that s1, s2, and s3 “generate” a 3-partitioning of the set of atoms

{a1, . . . ,a6} of this logic.



26

{1,2,3}

{4,5,6,7,8}

{9,10,11} {1,2,4,5,6} {3,7,8}

{1,4,5,9,10}

{2,6,11}

{1,3,4,7,9}

{5,8,10}

{4,6,7,9,11}

Figure 7. Coloring scheme of the house or pentagon or pentagram logic from the set of two-valued states.

2. House or pentagon or pentagram logic

The Travis matrix of the house or pentagon or pentagram logic depicted in Fig. 7 is a matrix

representation of its 11 dispersion free states [32]

Ti j =



1 0 0 1 0 1 0 1 0 0

1 0 0 1 0 0 1 0 0 0

1 0 0 0 1 0 0 1 0 0

0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 0 1 0

0 1 0 1 0 0 1 0 0 1

0 1 0 0 1 0 0 1 0 1

0 1 0 0 1 0 0 0 1 0

0 0 1 0 0 1 0 1 0 1

0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 0 1 0 0 1



. (A2)

A coloring can be obtained from the earlier mentioned construction which results in three states

partitioning all 10 atoms. The associated 1st, the 8th and the 11th row vectors of Ti j are partitioning

the 10 atoms.
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3. Specker bug gadget

The hypergraph depicted in Figure 8 is a minimal [15] true-implies false gadget introduced by

Kochen and Specker [33, Fig. 1, p. 182] (reprinted in [34], see also [35, Figure 1, p. 123], among

others). It is a subgraph of G32 introduced later in Figure 11. Its Travis matrix is

Ti j =



1 0 0 1 0 1 0 0 1 0 0 0 0

1 0 0 0 1 0 0 1 0 1 0 0 0

1 0 0 0 1 0 0 0 1 0 0 0 1

0 1 0 1 0 1 0 1 0 0 1 0 0

0 1 0 1 0 1 0 0 1 0 0 1 0

0 1 0 1 0 0 1 0 0 0 1 0 0

0 1 0 0 1 0 0 1 0 1 0 1 0

0 1 0 0 1 0 0 1 0 0 1 0 1

0 1 0 0 1 0 0 0 1 0 0 1 1

0 0 1 0 0 1 0 1 0 1 0 1 0

0 0 1 0 0 1 0 1 0 0 1 0 1

0 0 1 0 0 1 0 0 1 0 0 1 1

0 0 1 0 0 0 1 0 0 1 0 1 0

0 0 1 0 0 0 1 0 0 0 1 0 1



. (A3)

4. The underlying hypergraph of B(G)

All the two-valued states of the structure introduced in Figure 3 have to assign the vertices a,

b, c, a′, b′, c′ and a′′, b′′, c′′ the same combination of two-valued states as for the hypergraph of

Figure 9.

The Travis matrix of this tightly bi-connected hypergraph is as follows (columns from left to
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{1,2,3}

{4,5,6,7,8,9}

{10,11,12,13,14} {1,4,5,6} {2,3,7,8,9}

{1,4,5,10,11,12}

{6,13,14}

{2,4,7,8,10,11}

{1,3,5,9,12}{2,7,10,13}{4,6,8,11,14}

{5,7,9,10,12,13}

{3,8,9,
11,12,14}

Figure 8. Coloring scheme of the “Specker bug” gadget [33, 35] from two-valued states. The set-theoretic

representation is in terms of the canonical partition logic as an equipartitioning of the set {1,2, . . . ,14}

obtained from all 14 two-valued states on this gadget.

a b c

a′
b′

c′

a′′ b′′ c′′

Figure 9. From the point of view of two-valued states, for which all the nine Gi’s in Figure 3, 1 ≤ i ≤ 9

are TIFS, the three “new” contexts {a,b,c}, {a′,b′,c′} and {a′′,b′′,c′′} are formed through three triples of

TIFS {G1,G2,G3}, {G4,G5,G6}, and {G7,G8,G9}, respectively; thereby rendering a tightly bi-connected

hypergraph underlying the one depicted in Figure 3. Note that the vertices of each row in the original graph

of B(G) do not lie on a context, but here in the underlying hypergraph they are.
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right correspond to a, b, c, a′, b′, c′, a′′, b′′ and c′′):

Ti j =



1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 0 1 0

0 1 0 1 0 0 0 0 1

0 1 0 0 0 1 1 0 0

0 0 1 1 0 0 0 1 0

0 0 1 0 1 0 1 0 0


. (A4)

5. “Tight GHZ” logic

The hypergraph depicted in Figure 10 is a sublogic of the observables in the Greenberger-Horn-

Zeilinger setup [36]. Its Travis matrix is

Ti j =



1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0

1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0

0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0

0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1

0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0

0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0



. (A5)

The coloring is depicted in Figure 10.

Appendix B: A counterexample: Greechie’s G32

It is quite straightforward to demonstrate that the logic G32 introduced by Greechie [8, Figure 6,

p. 121] (see also Refs. [35, 37–39]) whose hypergraph is depicted in Figure 11(a) has a chromatic

number larger than three; and, in particular, while having a separating and a unital set of two-

valued states, cannot be colored by two-valued states in the algorithmic way proposed earlier.
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{1,2} {3,4} {5,6} {7,8}

{5,7}

{6,8}

{1,3}

{2,4}

{3,8}

{2,5}

{4,7}

{1,6}

{4,6} {1,7} {2,8} {3,5}

Figure 10. Coloring scheme of the “tight GHZ” logic [36] from two-valued states. The set-theoretic

representation is in terms of the canonical partition logic as an equipartitioning of the set {1,2, . . . ,8}

obtained from all eight two-valued states on this gadget.

Consider the set of all six two-valued states which can be tabulated by the Travis matrix

Ti j =



1 0 0 1 0 1 0 0 1 0 0 0 0 0 1

1 0 0 0 1 0 0 1 0 1 0 0 0 1 0

0 1 0 1 0 0 1 0 0 0 1 0 0 1 0

0 1 0 0 1 0 0 0 1 0 0 1 1 0 0

0 0 1 0 0 1 0 1 0 0 1 0 1 0 0

0 0 1 0 0 0 1 0 0 1 0 1 0 0 1


. (B1)

There is no way how three of these six row vectors add up to a vector whose components

are all one; that is,
(

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
)

. “Completing” the partition logic and

“extending” G32 by adding five more contexts {{1,2},{3,6},{4,5}}, {{1,4},{2,3},{5,6}},

{{1,3},{2,5},{4,6}}, {{1,5},{2,6},{3,4}}, and {{1,6},{2,4},{3,5}} does not change the set

of two-valued states and thus the Travis matrix.

Another way of seeing this is to associate a color to, say, the first state. As a consequence, all

other states, namely states number 2, 3, 4, 5, and 6, need to be eliminated, leaving no state which

can be associated with another color.

One possibility for finding a proper coloring is to drop “exclusivity”, or rather, the unique asso-
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{1,2}

{3,4}

{5,6} {1,3} {2,4}

{1,5}

{3,6}

{2,5}

{1,4}{2,6}{3,5}

{4,6}

{4,5}

{2,3}

{1,6}

{1,2}

{3,4}

{5,6} {1,3} {2,4}

{1,5}

{3,6}

{2,5}

{1,4}{2,6}{3,5}

{4,6}

{4,5}

{2,3}

{1,6}

(a) (b)

Figure 11. (a) Greechie diagram of G32 introduced by Greechie [8, Figure 6, p. 121]. The overlaid

set theoretic representation is in terms of the canonical partition logic as an equipartitioning of the set

{1,2,3,4,5,6} obtained from all 6 two-valued states on G32; (b) a nonunique coloring by four colors.

ciation of two-valued states with colors; but not entirely. This can be achieved by not eliminating

two-valued states if they appear in association with previous colors. A construction identifying

state numbers 1 with red, 3 with green, 5 with blue, and then 2 or four with cyan is depicted in

Figure 11(b).

Because of the following proof by contradiction, G32 cannot have a faithful orthogonal repre-

sentation: Suppose G32 has a faithful orthogonal representation. Then each one of the nine bicon-

nected contexts of G32 can be uniformly represented by a maximal operator [6, § 84, p. 171,172].

In order for a faithful orthogonal representation to exist the spectral decomposition of two “in-

tertwining” maximal operators must have (i) (at least) one common projector (ii) with identical

eigenvalues which can be identified with identical colors. If the logic can be consistently “cov-

ered” or colored by three colors then the eigenvalues associated with the maximal operators can be

the same–that is, these three values (or colors) would occur uniformly in all nine contexts. How-

ever, this is not the case for G32. Therefore, a uniform representation cannot be be given in terms

of nine maximal operators with just three eigenvalues per context (that is, maximal operator). This

is a form of nonclassicality based on a chromatic number exceeding the 2-section’s clique number.

In this case Brooks’ theorem [30, 31] yields an upper bound of 4 for the chromatic number of G32.
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