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Extensions of Hardy-type true-implies-false gadgets to classically obtain indistinguishability
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In quantum logical terms, Hardy-type arguments can be uniformly presented and extended as collections of
intertwined contexts and their observables. If interpreted classically, those structures serve as graph-theoretic
“gadgets” that enforce correlations on the respective preselected and postselected observable terminal points.
The method allows the generalization and extension to other types of relational properties, in particular, to novel
joint properties predicting classical equality of quantum mechanically distinct observables. It also facilitates
finding faithful orthogonal representations of quantum observables.
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I. CERTIFICATION OF NONCLASSICALITY

When it comes to certifying nonclassical observance of
quantized systems, at least three types of approaches have
been suggested: (i) Bell-type theorems, related to Boole’s
“conditions of possible experience” for observables in dis-
joint [1–3] or intertwined [4–7] contexts (also known as the
maximal collection of compatible observables organized in
a Boolean subalgebra), present empirical evidence involving
statistical terms which (due to complementarity) cannot be
obtained simultaneously, but are obtained from sequential
“one term at a time” measurements: whatever the sampling,
the events contributing to each term need to be temporally
(mutually) apart from the other terms. (ii) Kochen-Specker-
type theorems [8–12] are theoretical proofs by contradiction
employing finite sets of intertwined quantum observables
[13] which have no classical interpretation in terms of two-
valued (truth) assignments. Indirect empirical corroborations
of Kochen-Specker-type theorems (and, thereby, quantum
contextuality) amount to violations of local Bell-type classical
predictions [6]. (iii) A third, statistical method [7,14] is based
on preselected (prepared) quantum states which are sequen-
tially measured or postselected in terms of suitably chosen
quantum observables: prepare one state, measure another.
Thereby, pre- and postselection (and their respective observ-
ables) are imagined to be logically connected by suitable finite
collections of hypothetical counterfactual [15] intertwined
contexts, with their choice being motivated by their predictive
capacities and yet remaining arbitrary [16]. In particular, parti-
cles are prepared in such states and observable properties, and
are logically connected to other observables in certain ways,
such that their (non)occurrence is classically mandatory, but
quantum mechanically unrestricted, and occasionally violates
the respective classical predictions. By choosing different pat-
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terns of connection, this method could be strengthened to
the point that any singular outcome contradicts the respective
classical predictions. With this (counterfactual) adaptive mod-
ification, any such stochastic argument turns definite [16].

Common to all these cases is their reliance on com-
plementary counterfactuals [15] because they suppose the
simultaneous existence of more than one context: Except for
common observables of intertwining [13] contexts, all observ-
ables in any such context are mutually complementary to all
observables in a different context, and there is no physically
feasible way of simultaneously measuring them.

For the sake of obtaining discrepancies between classical
and quantum predictions, these conglomerates of contexts,
and thereby the quantum observables they consist of, are inter-
preted “as if” they could have a classical interpretation. That
is, a classical interpretation is forced upon such collections
of (intertwining) observables. In quantum logic, a classical
interpretation amounts to a two-valued (also known as 0 − 1,
false-true) state (frame function [13]), which is context in-
dependent; that is, its value on observables does not depend
on the particular context (also known as maximal observable
[17], orthonormal basis) in which it occurs.

Kochen-Specker-type theorems employ configurations of
intertwining contexts for which these classical interpretations
(in terms of two-valued measures interpreted as dichotomic
observables) fail: There does not exist any consistent classical
interpretation for these conglomerates of contexts and the
observables they hold.

Type-(iii) configurations exhibiting finite collections of
observables (in intertwining contexts) may still allow clas-
sical interpretations, but the predictions based upon them
statistically directly contradict the quantum predictions and
without the need of type-(i) inequalities [18]. Indeed, Kochen
and Specker used the latter [19] and constructed the former,
stronger result [8] without explicitly mentioning the empirical
opportunities of such configurations. Appendix B in Ref. [20],
and Ref. [21], provide early discussions [7] of type-(iii)
nonclassicality.

In what follows, we shall extend a particular type-
(iii) instance involving two two-state particles, proposed by
Hardy [18,22], to configurations that contain distinct quan-
tum observables that cannot be “resolved” or distinguished
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classically. En route, we shall study configurations [14] of
contexts enforcing classical predictions which are the “in-
verse” of the original relational properties resulting from
Hardy-type arguments. The latter are often synonymously
referred to as “Hardy’s theorem” [10,23], “Hardy’s proof”
[14,24–26], or “Hardy’s paradox” [27,28]. “Hardy’s wonder-
ful trick” [29], also called “Hardy’s beautiful example” [30],
and attempts to make it accessible to a wider audience abound
[31,32]. Nevertheless, a detailed account in terms of the quan-
tum logical structure of the counterfactual argument results
in a better comprehension of the resources and assumptions
involved; in particular, when it comes to related proposals.
Such an account suggests extensions to other type-(iii) con-
figurations with different relational properties, and also allows
empirical predictions by yielding a systematic way of finding
quantum realizations, in particular, in regard to desiderata
such as (in)distinguishability of the associated quantized
entities.

II. HYPERGRAPH NOMENCLATURE

The counterfactual arguments (ii) and (iii) mentioned ear-
lier can be depicted structurally transparent by the use of
hypergraphs [7,14,33,34] introduced by Greechie, drawing
contexts as smooth lines. [In what follows, we shall use
the following terms synonymously, thereby having in mind
the different areas in which they occur: context, maximal
observable, orthonormal basis, block, (Boolean) subalge-
bra, (maximal) clique, and complete graph.] In particular,
Greechie has suggested to (amendments are indicated by
square brackets) [35, p. 120] “[. . .] present [. . .] lattices as
unions of [contexts] intertwined or pasted together in some
fashion [. . .] by replacing, for example, the 2n elements in
the Hasse diagram of the power set of an n-element set with
the context complete graph [Kn] on n elements. The reduc-
tion in numbers of elements is considerable but the number
of remaining ‘links’ or ‘lines’ is still too cumbersome for
our purposes. We replace the context complete graph on n
elements by a single smooth curve (usually a straight line)
containing n distinguished points. Thus we replace n(n + 1)/2
‘links’ with a single smooth curve. This representation is
propitious and uncomplicated provided that the intersection
of any pair of blocks contains at most one atom.”

In what follows, we shall refer to such a general repre-
sentation of observables as the (orthogonality) hypergraph
[33]. The term should be understood in the broadest possible
consistent sense. Most of our arguments will be in four-
dimensional state space. An exception will be our mentioning
the gadget1 [36–38], called “Käfer” (German for “bug”) by
Specker, which was introduced in 1965 [19] and used in the
Kochen-Specker proof [8], serving as a true-implies-false con-
figuration. The Specker bug is the three-dimensional analog of
the four-dimensional Hardy configuration [14]. Its hypergraph
is depicted in Fig. 1(b).

1A clarification with regards to the use of the technical term “gad-
get” seems in order: this denomination is frequently used in graph
theory to indicate “useful subgraphs.” It is not meant to be polemic.

FIG. 1. Orthogonality hypergraphs of (a) the Hardy gadget
with 8 contexts and 21 atoms {{dd, 8, 9, cv}, {dd, 11, 12, vc},
{cv, vu, uu, dv}, {vc, uv, uu, vd}, {vu, 18, 19, uv}, {vd, 2, 3, �},
{uu, 20, 21, �}, {dv, 16, 17, �}}; (b) rendition of the true-implies-
false Specker bug gadget with 7 contexts and 13 atoms {{a8, . . . , a6},
{a8, . . . , a7}, {a6, a4, a3}, {a7, a5, a2}, {a4, . . . , a5}, {a2, . . . , a1},
{a3, . . . , a1}}. Small circles indicate “auxiliary” observables which
can be chosen freely, subject to orthogonality constraints: all smooth
lines indicate respective contexts representing orthonormal bases.
Larger circles indicate observables common to two or more inter-
twining contexts.

We shall concentrate on orthogonality hypergraphs which
are pasting [39] constructions [40] of a homogeneous single
type of contexts Kn, where the (maximal) clique number n
is fixed. (Note that other authors use related definitions for
Greechie diagrams [41] and McKay-Megill-Pavicic (MMP)
diagrams [42].) If interpreted as representing some configu-
ration of mutually orthogonal vectors, the (maximal) clique
number n equals the dimension of the Hilbert space.

III. FAITHFUL ORTHOGONAL REPRESENTATIONS
OF (HYPER)GRAPHS

In what follows, ket vectors, which are usually represented
by column vectors, will be represented by the respective
transposed row vectors. In all our examples, hypergraphs
have a faithful orthogonal representation [43–46] in terms
of vectors which are mutually orthogonal within (maximal)
cliques or contexts. The phrases faithful orthogonal represen-
tation, coordinatization [47], or vector encoding will be used
synonymously.

When drawing hypergraphs, some of the atomic propo-
sitions will be omitted (or only drawn lightly) if they are
not essential to the argument. In particular, in three and four
dimensions, given two orthogonal (in general, noncollinear)
vectors, it is always possible to “complete” this partially de-
fined context by a Gram-Schmidt process [34,48]. Indeed,
given two (orthogonal) noncollinear vectors, in three dimen-
sions the span of the “missing” vector is uniquely determined
by the span of the cross product of those two vectors. (A
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generalized cross product of n − 1 vectors in n-dimensional
space can be written as a determinant; that is, in the form of a
Levi-Civita symbol.) This “lack of freedom” is in one dimen-
sion; in particular, whenever the missing vector is collinear
to some vector occurring in the faithful orthogonal represen-
tation of the incomplete hypergraph that one is attempting
to complete. The most elementary such counterexample is a
triangular hypergraph with three cyclically connected contexts
{{1, 2, 3}, {3, 4, 5}, {5, 6, 1}}. Consider any incomplete faith-
ful orthogonal of its intertwining atoms such as 1 = (0, 0, 1),
3 = (0, 1, 0), 5 = (1, 0, 0): any conceivable completion fails
because the missing vectors would result in duplicities in the
faithful orthogonal representation, that is, in 2 = 5, 4 = 1, and
6 = 3.

Nevertheless, in four dimensions, given at least two
(orthogonal) noncollinear vectors, the two-dimensional or-
thogonal subspace is spanned by a continuity of (e.g., rotated)
bases. Therefore, in such a case, there is always “enough room
for breathing”; that is, for accommodating the basis vectors
and thereby transforming them if necessary such that any
hypergraph can be properly completed without duplicities.
I encourage the reader to try to find a faithful orthogo-
nal representation of the cyclic triangular shaped hypergraph
{{1, . . . , 4}, {4, . . . , 7}, {7, . . . , 1}} in four dimensions.

Whether or not such faithful orthogonal representations
can be given in terms of decomposable or indecomposable
vectors associated with factorizable or entangled states is an
entirely different issue. In four dimensions, a careful analysis
[49] yields a no-go theorem for four-dimensional coordina-
tizations of the triangle hypergraph by allowing a maximal
number seven of nine decomposable vectors.

In general and for arbitrary dimensions, as long as there
are two or more “free” (without any strings and intertwining
contexts attached) vectors per context missing from a faithful
orthogonal representation of a hypergraph, its completion is
always possible. Stated differently, any faithful orthogonal
representation of an incomplete hypergraph can be straightfor-
wardly extended (without reshuffling of vector components)
to a faithful orthogonal representation in a completed hyper-
graph (e.g., by a Gram-Schmidt process) if at least two or
more nonintertwining vectors per context in that hypergraph
are missing. Indeed, one may even drop an already existing
vector “blocking” a faithful orthogonal representation of an
entire (hyper)graph if the associated atom is not intertwining
in two or more contexts, and if the new freedom facilitates
continuous bases instead of a single vector whose addition
may result in duplicities through collinear vectors (we shall
mention such an instance later).

In the case of two or more “missing” vectors, any com-
pletion involves a two- or higher-dimensional subspace. Any
such subspace Rk�n−2 or Ck�n−2 of the n-dimensional con-
tinua Rn or Cn is spanned by a continuity of (orthogonal)
bases. A typical example is an incomplete faithful orthog-
onal representation of a basis of R4 rotated into a form
{(1, 0, 0, 0), (0, 1, 0, 0)}. Its completion is then given by the
continuity of bases {(0, 0, cos θ, sin θ ), (0, 0,− sin θ, cos θ )},
with 0 � θ < π .

A completion should even be possible if one merely al-
lows sets of bases which are denumerable—or even finitely
but “sufficiently” many bases with respect to the hyper-

graph encoded. From this viewpoint, four dimensions offer
a much wider variety of completions as compared to the
three-dimensional case—indeed, the difference results from
the abundance offered by a continuum of bases versus a single
vector spanning the respective subspaces, a fact which is very
convenient for all kinds of constructions. However, as has
been mentioned earlier, the completion of coordinatizations
of hypergraphs by (in)decomposable vectors—in particular,
if one desires to maintain (non)decomposability—is an alto-
gether different issue [49].

This possibility to complete incomplete contexts is also the
reason why practically all papers introducing and reviewing
Hardy’s configuration operate not with the complete eight
contexts including 21 atomic vertices, but merely with the
nine vectors or vertices in which those eight contexts inter-
twine. Nevertheless, for tasks such as determining whether a
particular configuration of observables supports or does not
allow a classical two-valued state, as well as for determin-
ing the set of two-valued states and their properties (e.g.,
separable, unital), the nonintertwining atomic propositions
matter.

IV. QUANTUM LOGICAL FORMULATION OF HARDY’s
ARGUMENT

For the sake of being able to delineate Hardy’s rather in-
volved original derivation [22], let us stick to his nomenclature
as much as possible. We shall, however, drop the particle
index as it is redundant. So, for instance, Hardy’s |+〉1|+〉2

will be written as |+〉|+〉 = | + +〉. Later, we shall be very
explicit and identify the respective entities in terms of Hardy’s
Ansatz, but let us study Hardy’s schematics in some generality
first:

(i) It begins with a specific entangled state of two two-state
particles |�〉.

(ii) Then the argument suggests measuring two dichotomic
(i.e., two-valued) observables Û (exclusive) or D̂ on each one
of the two particles. This results in four measurement con-
figurations Û ⊗ Û , Û ⊗ D̂D̂ ⊗ Û D̂ ⊗ D̂—that is, effectively,
the two-particle observable Û ⊗ D̂ is measured “in Einstein-
Podolsky-Rosen (EPR) terms of” Û ⊗ I2 and I2 ⊗ D̂.

(iii) As both of these dichotomic observables Û and D̂ have
two possible outcomes called u and v for Û and c and d for D̂,
respectively, there are 22 × 22 = 24 = 16 different outcomes
that are denoted by the ordered pairs uu, uv, uc, ud , vu, vv,
vc, vd , cu, cv, cc, cd , du, dv, dc, and dd .

(iv) From these 16 outcomes, 5 groups of (incomplete if not
all atoms or vertices are specified—yet, as discussed earlier, a
completion is straightforward if desired) contexts, which con-
sist of simultaneously measurable and mutually exclusive ob-
servables, can be formed, namely, {dd, . . . , cv}, {dd, . . . , vc},
{cv, vu, uu, dv}, {vc, uv, uu, vd}, and {vu, . . . , uv}.

(v) Finally, this collection of five contexts are “bundled
with” or “tied to” the (projection) observable corresponding
to the original entangled state |�〉 introduced in (i) by the
three (incomplete) contexts {vd, . . . , �}, {uu, . . . , �}, and
{dv, . . . , �}.

As a result, these (incomplete) contexts, if pasted [39]
together at their respective intertwining observables, result in
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TABLE I. Partition logic representing classical probabilities of the Hardy configuration [22], whose intertwined contexts are enumerated
in Eq. (1), obtained from the separating or distinguishing set of all 186 two-valued states it supports. Note that the intersection of � ∩
dd = {1, 2, 3, 4, 5, 6} ∩ {11, 16, 21, 26, 55, 60, 73, 78, 83, 88, 117, 122, 135, 140, 145, 150, 155, 164, 173, 182} = ∅ is empty, yielding true-
implies-false relations among � and dd , and vice versa, respectively.

� = {1, 2, 3, 4, 5, 6},
2 = {7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,

40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68},
3 = {69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100, 101,102,103,104,105,106,

107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130},
vd = {131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,

161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186},
uu = {7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88},
vu = {1,2,35,36,39,40,43,44,47,48,97,98,101,102,105,106,109,110,151,152,

153,154,155,160,161,162,163,164,169,170,171,172,173,178,179,180,181,182},
cv = {3,4,5,6,37,38,41,42,45,46,49,50,61,62,63,64,65,66,67,68,99,100,103,104,107,108,111,112,123,124,125,126,

127,128,129,130,156,157,158,159,165,166,167,168,174,175,176,177,183,184,185,186},
8 = {1,7,8,12,13,17,18,22,23,27,29,31,33,35,39,43,47,51,52,56,57,69,70,74,75,79,80,84,85,89,91,93,95,97,101,105,109,113,

114,118,119,131,132,136,137,141,142,146,147,151,152,160,161,169,170,178,179},
9 = {2,9,10,14,15,19,20,24,25,28,30,32,34,36,40,44,48,53,54,58,59,71,72,76,77,81,82,86,87,90,92,94,96,98,102,106,110,115,

116,120,121,133,134,138,139,143,144,148,149,153,154,162,163,171,172,180,181},
dd = {11, 16, 21, 26, 55, 60, 73, 78, 83, 88, 117, 122, 135, 140, 145, 150, 155, 164, 173, 182},
11 = {5,7,9,12,14,17,19,22,24,51,53,56,58,61,63,65,67,69,71,74,76,79,81,84,86,113,115,118,120,123,125,127,129,131,133,136,138,

141,143,146,148,151,153,156,158,160,162,165,167,169,171,174,176,178,180,183,185},
12 = {6,8,10,13,15,18,20,23,25,52,54,57,59,62,64,66,68,70,72,75,77,80,82,85,87,114,116,119,121,124,126,128,130,132,134,137,139,

142,144,147,149,152,154,157,159,161,163,166,168,170,172,175,177,179,181,184,186},
vc = {1,2,3,4,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,89,90,91,92,93,94,95,96,97,

98,99,100,101,102,103,104,105,106,107,108,109,110,111,112},
uv = {5,6,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,113,114,115,116,

117,118,119,120,121,122,123,124,125,126,127,128,129,130},
dv = {27,28,29,30,31,32,33,34,51,52,53,54,55,56,57,58,59,60,89,90,91,92,93,94,95,96,113,114,115,116,117,118,119,120,121,122,

131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150},
16 = {7,8,9,10,11,12,13,14,15,16,35,36,37,38,39,40,41,42,61,62,63,64,69,70,71,72,73,74,75,76,77,78,97,98,99,100,101,

102,103,104,123,124,125,126,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168},
17 = {17,18,19,20,21,22,23,24,25,26,43,44,45,46,47,48,49,50,65,66,67,68,79,80,81,82,83,84,85,86,87,88,105,106,107,108,109,

110,111,112,127,128,129,130,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186},
18 = {3,7,8,9,10,11,17,18,19,20,21,27,28,31,32,37,41,45,49,69,70,71,72,73,79,80,81,82,83,89,90,93,94,99,103,107,111,

131,132,133,134,135,141,142,143,144,145,156,157,165,166,174,175,183,184}

a collection of eight (incomplete) contexts,

{{dd, . . . , cv} = {dd, 8, 9, cv},
{dd, . . . , vc} = {dd, 11, 12, vc},

{cv, vu, uu, dv} = {cv, vu, uu, dv},
{vc, uv, uu, vd} = {vc, uv, uu, vd},

(1){vu, . . . , uv} = {vu, 18, 19, uv},
{vd, . . . , �} = {vd, 2, 3, �},
{uu, . . . , �} = {uu, 20, 21, �},
{dv, . . . , �} = {dv, 16, 17, �}},

whose orthogonality hypergraph is depicted in Fig. 1(a).

A. Classical realization and predictions

In what follows, we shall prove the following:
(i) Hardy’s configuration (1) allows a classical interpreta-

tion as it supports a distinguishing (often termed “separable”)

set of two-valued states. A “canonical” classical representa-
tion will be explicitly enumerated.

(ii) All classical interpretations of Hardy’s configuration
(1) enumerated in (i) predict that if the system is prepared in
state �, then the observable dd never occurs. That is, Hardy’s
setup is a gadget graph [36–38] with a “true-implies-false
(classical) set of two-valued states” (TIFS). Indeed, it is one
out of three minimal nonisomorphic true-implies-false config-
urations in four dimensions [14, Fig. 4(a)].

Hardy’s configuration (1) allows a classical interpretation
because it supports a set of 186 two-valued states that distin-
guishes different observables from one another. This means
that the elements of every pair of distinct observables can be
“separated” or “distinguished” by (at least) one two-valued
state such that the respective state values of these elements
are different. Therefore, by Kochen and Specker’s Theorem 0
[8], the structure of its observables can be embedded in some
Boolean algebra, which indicates classical representability.

An explicit construction of a classical model of a proposi-
tional structure corresponding to Hardy’s 1993 configuration
[22] is enumerated in Table I. Its realization is in terms of
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FIG. 2. Graphical presentation of a three-step proof by contradiction that from the pairs of observables {�, dd} and {a1, a8}, only one
element can have assigned the classical value 1: (a) suppose otherwise; that is, � = dd = 1 and a1 = a8 = 1; (b) then, by exclusivity, vd =
dv = uu = vc = cv = 0 and a2 = a3 = a6 = a7 = 0; (c) then, by completeness, vu = uv = 1 and a4 = a5 = 1, contradicting exclusivity.
Small circles indicate “auxiliary” observables which can be chosen freely, subject to orthogonality constraints: all smooth lines indicate
respective contexts representing orthonormal bases.

eight partitions (corresponding to the eight contexts) of the
index set {1, 2, . . . , 185, 186} of 186 two-valued states. The
elements of the partitions corresponding to the 21 atomic
propositions [which are obtained by “completing” the context
as enumerated in Eq. (1)] are the index sets of all two-valued
states which obtain the value “1” on the respective atoms.
A detailed description of this construction can be found in
Refs. [7,50,51].

Next, we shall elaborate on a classical prediction which
is violated by quantum predictions: If � is assumed to be
true—that is, if a classical system is prepared (also known as
preselected) in the state corresponding to observable �—then
the outcome corresponding to the observable dd cannot occur.

For a proof by contradiction depicted in Fig. 2, (wrongly)
suppose that both � as well as dd were both true simul-
taneously. Then, by the standard admissibility criteria for
two-valued states [12,52] (also denoted as completeness and
exclusivity [26,53,54]), cv = vc = vd = dv = uu = 0, en-
forcing vu = uv = 1, which contradicts admissibility (com-
pleteness and exclusivity).

The only remaining possibility is that ψ and dd have op-
posite values if one of them is true (they still may both be 0).
Therefore, any two-valued state for which � is 1—that is, in
which the observable corresponding to � occurs—must clas-
sically result in nonoccurrence of the outcome corresponding
to the observable dd , and vice versa. This particular relation
between the input and output ports of gadget graphs [16] has
been called the 1-0 property [55], or one dominated by a
true-implies-false set of two-valued states (TIFS) [14].

As mentioned earlier, the first true-implies-false gadget
seems to have been introduced by Kochen and Specker
([19, Fig. 1] and used by them as a subgraph of �1 [8] in
three dimensions. Its orthogonality hypergraph is depicted in
Fig. 1(b). As mentioned earlier, this gadget seems to have
been independently discussed by, among others, Pitowsky,
who called it the “cat’s cradle” [56,57]. See, also, Fig. 1 in
[52] (reprinted in Ref. [58]), a subgraph in Fig. 21 in Ref. [59],
Fig. B.l in [20], [21], Fig. 2 in [60], and Fig. 2.4.6 in [61] for
early discussions of the true-implies-false prediction.

The full nuances of the predictions are revealed when the
classical probabilities are computed. As the classical prob-
ability distributions are just the convex combinations of all

two-valued states [62], it is easy to read them off from the
canonical partition logic enumerated in Table I. In particular,
the true-implies-false gadget behavior at the terminals � and
dd can be directly read off from

P� =
∑
i∈�

λi = λ1 + λ2 + · · · + λ6,

Pdd =
∑
i∈dd

λi = λ11 + λ16 + · · · + λ182,

with λi � 0, and
186∑
i=1

λi = 1.

(2)

Since the intersection of the index sets � and dd is empty,
Pdd = 0 whenever P� = 1, and vice versa. For the sake of the
example, all six two-valued measures assigning 1 to � are
depicted in Fig. 3.

One equivalent alternative way to characterize the classical
probabilities completely would be to exploit the Minkowski-
Weyl “main” representation theorem [63–69] and consider the
classical convex polytope spanned by the 186 21-dimensional
vectors whose components are the values in {0, 1} of the
two-valued states on the atomic propositions of the Hardy
gadget. From these vertices (V-representation), the 35 half
spaces that are the bounds of the polytope (H-representation)
can be computed [1,62]. But due to space restrictions, we omit
this discussion, although it might reveal quantum violations of
Boole’s (classical) “conditions of experience” [3].

FIG. 3. Orthogonality hypergraphs of the Hardy gadget with
overlaid six two-valued states which are 1 at �.
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B. Original quantum realization

Hardy’s original quantum realization in terms of a particu-
lar type of faithful orthogonal representation is quite involved,
but for the sake of delineating it, we shall mostly stick to
the nomenclature of the 1993 paper [22]. Suppose two two-
state particles and, for each one of the two particles, consider
three orthonormal bases of its two-dimensional Hilbert space,
namely,

B1 = {|+〉, |−〉} ≡ {e1, e2},
B2 = {|u〉, |v〉} ≡ {f1, f2},
B3 = {|c〉, |d〉} ≡ {g1, g2}.

(3)

The components of the respective unitary transformations “ro-
tating” these orthonormal bases into each other are defined by
[70]

B1 ↔ B2 : f j = U12
ji ei, and e j = (U12)†

jifi,

B2 ↔ B3 : gk =
2∑

i=1

U23
k j f j, and fk =

2∑
i=1

(U23)†
k jg j,

B1 ↔ B3 : gk =
2∑

i=1

U13
ki ei =

2∑
i, j=1

U23
k j U

12
ji ei,

and ek =
2∑

i, j=1

(U12)†
k j (U

23)†
jigi. (4)

One further ingredient of Hardy’s configuration is a pure
entangled state of two two-state particles which can be param-
eterized by [71] (the relative order of states matter, therefore,
as pointed out earlier, we shall omit a subscript referring to
the first and second particle, respectively)

|�〉 = α| + +〉 − β| − −〉 with α, β ∈ R,

α2 + β2 = cos2 φ + sin2 φ = 1 with 0 � φ � π/4. (5)

The minus sign (indicating a phase ϕ = π for which eiϕ =
−1) has been chosen for the sake of conforming to Hardy’s
conventions. Note that 0 � α, β � 1.

So far, the transformation matrices in (4) have not yet been
specified, but in order for the argument to work, they should
yield a faithful orthogonal representation of the orthogonality
hypergraph depicted in Fig. 1(a). In particular, one needs to
assure that

〈�|uu〉 = 〈�|vd〉 = 〈�|dv〉 = 0. (6)

At the same time, and in order to obtain a contradiction with
the classical prediction “if � is true then dd must be false” or,

in physical terms, “if a system is prepared or (pre)selected in
state � then an event or outcome associated with dd cannot
occur” (and vice versa), one needs to define those transforma-
tions such that, in addition to (6),

〈�|dd〉 
= 0 and “as great as possible”. (7)

In order to facilitate these desiderata (6) and (7), suppose
ad hoc that

(U12)† = − i√
α + β

(√
β

√
α√

α −√
β

)
,

(U23)† = 1√
1 − αβ

( √
αβ −α + β

α − β
√

αβ

)
,

(U13)† = (U12)† · (U23)†.

(8)

Assume further, without loss of generality, that the first
basis B1 in (3) is identified with the Cartesian basis; that
is, |+〉 = (1, 0) and |−〉 = (0, 1). Consequently, the vectors
of the other bases B2 and B3 are obtained by applying the
respective transformations (4) and (8),

|u〉 = i( 4
√

1 − α2,
√

α)√√
1 − α2 + α

,

|v〉 = i(
√

α,− 4
√

1 − α2)√√
1 − α2 + α

,

|c〉 = i(α3/2, (1 − α2)3/4)√
α3 − √

1 − α2α2 + √
1 − α2

,

|d〉 = i((1 − α2)3/4,−α3/2)√
α3 − √

1 − α2α2 + √
1 − α2

.

(9)

We are only dealing with pure states represented as normal-
ized vectors which are (the sum of) the Kronecker (that is, “de-
lineated” outer or tensor) products [72], e.g., |�〉 = α(1, 0) ⊗
(1, 0) − √

1 − α2(0, 1) ⊗ (0, 1) = (α, 0, 0,−√
1 − α2). The

associated propositional observables can then be written in
terms of the orthogonal projections formed as dyadic products
|x〉〈x| of the unit (state) vectors |x〉.

By applying the transformations (4), |�〉 can be rewritten
in terms of either (i) the second basis B2 for the first particle
and the second basis B2 for the second particle, (ii) the second
basis B2 for the first particle and the third basis B3 for the
second particle, (iii) the third basis B3 for the first particle and
the second basis B2 for the second particle, or (iv) the third
basis B3 for the first particle and the third basis B3 for the
second particle. That is,

|�〉 = −|uv〉
√

αβ − |v〉[|u〉
√

αβ + |v〉(α − β )] (10)

= 1√
1 − αβ

[|uc〉(
√

αβ3 −
√

α3β ) − |vc〉(α2 − αβ + β2) − |ud〉αβ] (11)

= 1√
1 − αβ

[|cu〉(
√

αβ3 −
√

α3β ) − |cv〉(α2 − αβ + β2) − |du〉αβ] (12)

= − 1

1 − αβ
[|cc〉(α − β )(α2 + β2) + (|cd〉 + |dc〉)(αβ )3/2 + |dd〉αβ(β − α)]. (13)
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As can be readily read off from these representations of
|�〉, the conditions (6) and desideratum (7) are satisfied: (10)
has no term proportional to |uu〉, (11) has no term proportional
to |vd〉, (12) has no term proportional to |dv〉, and (13) has a
term proportional to |dd〉.

To complete Hardy’s original argument, we compare the
classical prediction of “zero outcome” (nonoccurrence) for
observable dd to the quantum prediction probability,

|〈dd|�〉|2 =
{

α[α(
√

1 − α2 + α) − 1]

α
√

1 − α2 − 1

}2

, (14)

obtained from preparing (also known as preselecting) two
entangled particles in state |�〉 and measuring (e.g., by post-
selection) the nonvanishing probability to find them in state
|dd〉 (thus contradicting the aforementioned classical predic-
tions). |〈dd|�〉|2 acquires its maximal value 1

2 (5
√

5 − 11) ≈
0.09 at α± =

√
1 ±

√
6
√

5 − 13/
√

2. This is slightly below
the maximal violation of the three-dimensional “minimal”
true-implies-false case [the Specker bug [7,14,19] depicted in
Fig. 1(b)] with probability 1/9 ≈ 0.1 [20,34,59,73,74].

V. VARIETIES OF COORDINATIZATION

In what follows, we shall enumerate a few faithful or-
thogonal representations of the Hardy gadget. Presently, no
general analytic construction for finding even a single faithful
orthogonal representation of a (hyper)graph (if any) exists, let
alone a method for finding all such coordinatizations. Nev-
ertheless, ad hoc faithful orthogonal representations can be
generated in extenso by heuristic algorithms. With regards to
(in)decomposability, the Hardy gadget allows almost all types
of faithful orthogonal representations: “mixed” ones which
have entangled as well as factorizable states, and ones which
use entangled states. Entirely decomposable configurations
are prohibited for geometric reasons.

From now on, the observables need not be formed by some
sort of composition, and therefore two symbols such as “uv”
should only be understood as a label. Note that indecom-
posable vectors can be interpreted as pure entangled states.
Likewise, decomposable vectors represent pure factorizable
states. The coordinatizations will not be enumerated com-
pletely, as only the intertwining vertices will be explicitly
mentioned. Nevertheless, completions are straightforward and
have been discussed earlier. Reference [49] contains a careful
categorization with respect to (in)decomposability.

A. Mixed (in)decomposability

Previous parametrizations [10,18,22,24,27] of Hardy’s
(minimal with respect to the number of vertices in four dimen-
sions [14]) true-implies-false gadget, depicted in Fig. 1(a), in
terms of four-dimensional vectors appear to be motivated by
high yield—that is, by maximizing the quantum predictions
of occurrence of the output (postselection) port dd , as well as
by (in)decomposability of the associated vectors. This is mo-
tivated by what is sometimes referred to as “demonstrations
of nonlocal contextuality”; that is, the “spread” of the rela-
tional information [75] among pairs of (spacelike) separated
particles.

The first, mixed with respect to (in)decomposability of the
vectors, type of coordinatization can almost directly be read
off from the orthogonality hypergraph of the Hardy gadget
depicted in Fig. 1(a). Note that the two “central full contexts”
{|cv〉, |vu〉, |uu〉, |dv〉} and {|vc〉, |uv〉, |uu〉, |vd〉} intertwine
at one common element |uu〉 and are actually “generated”
by the flattened tensor products of two nonidentical two-
dimensional contexts representable by the two orthonormal
bases {|c〉, |d〉} and {|u〉, |v〉}, respectively. Hence all that is
necessary is to make sure that |�〉 is orthogonal to three
vectors |vd〉, |uu〉, and |dv〉 of four-dimensional space (and
no multiplicities occur), as already encoded in Eqs. (6):

|�〉 ∝ (
d2u2

2v1 − 2d2u1u2v2 + d1u2
2v2,

d2u2
1v2 − d1u2

2v1,

d2u2
1v2 − d1u2

2v1,

2d1u1u2v1 − d2u2
1v1 − d1u2

1v2
)
, (15)

where xi stands for the ith component of the vector x with
respect to some basis common to all vectors.

In order to be able to claim nonlocality, additional
constraints can be required from the components of |�〉.
Suppose one desires |�〉 to be entangled. Then the prod-
uct of its outer components should not be equal to the
product of its inner components; that is, �1�4 
= �2�3

because every decomposable product state of two vec-
tors with components (a, b) and (c, d ) is of the (delin-
eated) form (x1 = ac, x2 = ad, x3 = bc, x4 = bd ), so that
because of commutativity of scalars, x1x4 = (ac)(bd ) =
abcd = (ad )(bc) = x2x3. If one prefers the tensor product in

matrix notation, then (x1 = ac x2 = ad
x3 = bc x4 = bd ) and the criterion for fac-

torizability and decomposability is a vanishing determinant,
x1x4 − x2x3 = 0. Applying this constraint to Eq. (15) results
in

(d2u1 − d1u2)(u1v2 − u2v1) 
= 0. (16)

The third and the fourth rows of Table II containing vectors
present two ad hoc configurations satisfying this “indecom-
posability” constraint.

B. Indecomposable configurations

The last two rows of Table II contain faithful orthogonal
representations of the Hardy gadget in which all intertwining
vectors are entangled (e.g., in the complex realization because
the number of components of any vector with imaginary units
i and −i is odd; that is, either one or three). These coor-
dinatizations have been obtained with a heuristic algorithm
developed by McKay et al. [47].

C. Impossibility of complete decomposability

Conversely, it might be desirable to keep |�〉 decompos-
able and factorizable; that is, all entities should be in a product
state. In this case, the product of the outer components of
|�〉 should be equal to the product of its inner components;
that is, �1�4 = �2�3. This results in the constraint d1 =
d2u1/u2, with u2 
= 0 from Eq. (15), and consequently in a
multiplicity of vectors; more explicitly, d ∝ u. The resulting
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ā 2
b 1

a 1
b̄ 2

a 2
b 2
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unattainability of a coordinatization with purely decompos-
able vectors should come as no surprise as the hypergraph
of the Hardy gadget depicted in Fig. 1(a) contains three tri-
angular subgraphs, namely, the cyclically intertwining sets
of contexts {{�, 2, 3, vd}, {vd, uv, vc, uu}, {uu, 20, 21, �}},
{{�, 16, 17, dv}, {dv, vu, cv, uu}, {uu, 20, 21, �}}, as well
as {{vu, dv, cv, uu}, {uu, vd, vc, uv}, {vu, 18, 19, uv}}. Tri-
angular hypergraphs have no faithful orthogonal representa-
tion by purely decomposable vectors [49].

VI. EXTENSIONS TO TRUE-IMPLIES-TRUE GADGETS

We now turn to important extensions of the Hardy gadget
which have a classical true-implies-true structure, as already
employed in Kochen and Specker’s �1 [8] and discussed
in Ref. [14]. A further escalation is a combination of these
true-implies-true gadgets, similar to Kochen and Specker’s
�3, which delivers a truly nonclassical performance on the

FIG. 4. Orthogonality hypergraphs of (a) the Hardy gad-
get extended to a true-implies-true gadget [14], as enumer-
ated in (c), with 8 + 2 = 10 contexts and 21 + 4 = 25 atoms
{{dd, 8, 9, cv}, {dd, 11, 12, vc}, {cv, vu, uu, dv}, {vc, uv, uu, vd},
{vu, 18, 19, uv}, {vd, 2, 3, �}, {uu, 20, 21, �}, {dv, 16, 17, �},
{5, dd, M, N}, {1, O, P, M}}; (b) rendition based on the true-implies-
true extended Specker bug or cat’s cradle gadget [7,8], as enumerated
in (c), with 7 + 2 = 9 contexts and 13 + 3 = 17 atoms {{a8, . . . , a6},
{a8, . . . , a7}, {a6, a4, a3}, {a7, a5, a2}, {a4, . . . , a5}, {a2, . . . , a1},
{a3, . . . , a1}, {a8, M, N}, {a1, . . . , M}}. Due to the way these true-
implies-false gadgets are constructed, N always turns out to be 1
if � or a1 are supposed to be 1. Small circles indicate “auxiliary”
observables, which can be chosen freely, subject to orthogonality
constraints: all smooth lines indicate respective contexts representing
orthonormal bases.
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FIG. 5. Orthogonality hypergraphs of (a) a combination of two extended Hardy gadgets form a structure of quantum observables which
cannot be classically embedded with 2 × 8 + 2 = 18 contexts and 2 × 21 + 1 = 43 atoms that cannot be classically embedded because of
the indistinguishability with classical means (two-valued states) of the two pairs of atoms {ψ1, ψ2} as well as {dd1, dd2}, respectively; (b) a
combination of two extended Hardy-like gadgets first introduced in Fig. 4(b) of Ref. [14] form a structure of quantum observables with
2 × 7 = 14 contexts and 2 × 19 + 1 = 39 atoms that cannot be classically embedded because of the indistinguishability with classical means
(two-valued states) of the two pairs of atoms {ψ1, ψ2} as well as {dd1, dd2}, respectively; (c) a combination of two extended Specker bug
or cat’s cradle gadgets [7,8] with 2 × 7 + 2 = 16 contexts and 2 × 13 + 1 = 27 atoms that cannot be classically embedded because of the
indistinguishability with classical means (two-valued states) of the two pairs of atoms {a1, a′

1} as well as {a8, a′
8}, respectively. (d)–(i) depict the

associated two-valued states which are not 0 on all four observables {ψ1, ψ2, dd1, dd2} as well as {a1, a′
1, a8, a′

8}, respectively. Only valuations
that are relevant for the proof are drawn. Small circles indicate “auxiliary” observables which can be chosen freely, subject to orthogonality
constraints: all smooth lines indicate respective contexts representing orthonormal bases.

algebraic level of the propositional observables (and not just
probabilistic predictions based upon classical probabilities):
Unlike the Hardy and its extended true-implies-true gadgets,
those observables can no longer be faithfully embedded into
any Boolean algebra ([8], Theorem 0).

Figure 4 depicts the extension of the Hardy gadget
which delivers a classical true-implies-true prediction
at its terminal points � and N . A faithful orthogonal
representation of the extended Hardy gadget can be
obtained ad hoc by the heuristic algorithm VECFIND
[47] in the coordinate basis {0,±1,±2, 3} and the -nk

option, which is capable of finding “almost all” vectors,
including the true-implies-true terminal points � and N
ex machina, and (for this coordinate basis) needs a little
helping hand (or the additional component basis elements
{−3, 5, 7, sin θ, cos θ} with θ 
= nπ/4, n ∈ Z) to find the
complete set, given by � = (0, 1, 1,−1), 2 = (2, 2,−1, 1),
3 = (3,−2, 1,−1), vd = (0, 0, 1, 1), uu = (1, 0, 0, 0),
vu = (0, 0, 0, 1), cv = (0, 1, 1, 0), 8 = (3, 1,−1, 2), 9 =
(−2, 1,−1, 2), dd = (0,−1, 1, 1), 11 = (3,−2,−1,−1),
12 = (2, 2, 1, 1), vc = (0, 0, 1,−1), uv = (0, 1, 0, 0),
dv = (0, 1,−1, 0), 16 = (−2, 1, 1, 2), 17 = (3, 1, 1, 2),
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FIG. 6. Hypergraphs of the “orthogonality backbones” of
(a) Fig. 5(a) and (b) Fig. 5(b) supporting the two-valued states de-
picted in Figs. 5(c) and 5(d), respectively.

18 = (cos θ, 0, sin θ, 0), 19 = (− sin θ, 0, cos θ, 0),
20 = (0, 4,−3, 1), 21 = (0, 2, 5, 7), M = (0, 1, 0, 1),
N = (0, 1, 2,−1), O = (2,−1, 2, 1), P = (3, 1,−2,−1),
where θ 
= nπ/4, n ∈ Z. [The original coordinatization sug-
gested for atom 20 was (0, 1,−1, 0), but a completion would
have resulted in duplicities, namely, 21 = (0, 1, 1, 2) = dv;
and therefore the original suggestion had to be dropped.]
Although we do not concentrate on maximal violations of
classical predictions by quantum probabilities, for reasons
mentioned later, it is worth noting that as |〈ψ |N〉|2 = 8/9,
the quantum violation of the classical predictions will,
in this particular configuration, occur in one out of nine
times; that is, with probability 0.1 (proper normalization is
always assumed). Fortuitously, if one concentrates on the
quantum signal for observable |dd〉〈dd|, then one obtains
the same quantum prediction |〈ψ |dd〉|2 = 1/9 for this
outcome—although classically it should never occur.

VII. EXTENSIONS TO GADGETS WITH
INDISTINGUISHABLE CLASSICAL TRUTH

ASSIGNMENTS

One way to proceed would be what Kochen and Specker
did with their true-implies-true gadget �1, and serially com-
pose them at their respective (properly parametrized) terminal
points often enough to obtain �2, which renders a complete
contradiction with exclusivity [8]. Instead of this head-on
strategy for obtaining complete contradictions with classical
noncontextual hidden-variable models, we shall use a more
subtle approach and consider a hypergraph which, again in
analogy with Kochen and Specker’s �3 in three dimensions,
cannot be classically embedded in a Boolean algebra. The
construction uses two true-implies-true extended Hardy gad-
gets to construct two pairs of observable propositions which
cannot be differentiated by classical two-valued measures—
and thus by any classical probability distributions—although
“plenty” such two-valued states still exist (but their set is
“too meager” to allow mutual distinguishability of all pairs
of distinct propositions).

Searches for a faithful orthogonal representation of an
extensions using two (a combination) of the “original” ver-
sion of the Hardy gadget, as depicted in Fig. 6(a), have
been inconclusive so far. Nevertheless, as it turns out, this
task can be completed by using (a combination of) a slight

modification of Hardy’s gadget introduced in Fig. 4(b) of
Ref. [14], in which the original context {�, . . . , uu} is “re-
located” or “reshuffled” into the context {uu, . . . , dd}. The
resulting gadget, depicted in Fig. 5(b), not only has less atoms
but, most importantly, has a less tight “orthogonality back-
bone” structure, depicted in Fig. 6(b), of just two contexts
intertwined in a single atom M, namely, {{uu1, dd1, M, �2},
{uu2, dd2, M, �1}}, as compared to the tight configuration
resulting from a composition of two of Hardy’s original gad-
gets {{Psi1, . . . , uu1}, {uu1, dd1, M, �2}, {uu2, dd2, M, �1},
{Psi2, . . . , uu2}} depicted in Fig. 6(a).

More explicitly, VECFIND [47], with the component
basis {0,±1, 2,−3, 4, 5}, yields an ad hoc coordi-
natization of the intertwine atoms ψ = (1, 0, 0, 0),
vd = (0, 2,−1, 1), uu = (0, 0, 1, 1), vu = (1,−1, 1,−1),
cv = (−3,−1, 1,−1), dd = (1,−3, 0, 0), vc =
(−3,−1,−1, 1), uv = (1,−1,−1, 1), dv = (0, 2, 1,−1),
ψ ′ = (−3,−1, 0, 0), vd ′ = (1,−3, 4,−1), uu′ =
(0, 1, 1, 1), vu′ = (−3,−1, 2,−1), cv′ = (1, 0, 1,−1),
dd ′ = (0, 2,−1,−1), vc′ = (5, 0,−1, 1), uv′ =
(−1,−3,−1, 4), dv′ = (1,−3, 1, 2), and M = (0, 0, 1,−1),
which can be readily completed into a faithful orthogonal
representation of the hypergraph depicted in Fig. 5(b).
Note that in this particular configuration, because of
indistinguishability, the classical prediction to find a particle
prepared in a state � in the state � ′ is one (certainty), whereas
quantum mechanics predicts nonoccurrence of the elementary
propositional observable |� ′〉〈� ′| given a preselected,
prepared state |�〉 with probability |〈�|� ′〉|2 = 9/10; that is,
the violation of the classical prediction by quantum mechanics
occurs in this case in one out of ten experimental runs.

VIII. SUMMARY AND CAUTIONARY REMARKS

Hardy-type configurations have been extended to con-
figurations of contexts which show a different nonclassical
performance: they contain distinct quantum observables that
cannot be distinguished from one another by any classical
(noncontextual) means. To appreciate the difference of this as-
pect beyond the realization of just another relational property
among some prepared state and its measurement, it is impor-
tant to keep in mind that according to a finding by Kochen
and Specker [8, Theorem 0], indistinguishability serves a de-
marcation criterion for strong forms of nonclassicality: The
absence of classical distinguishability indicates a stronger
contraindication of hidden-variable theories (relative to the as-
sumptions) than, say, exploitation of true-implies-{true, false}
properties [14] which still allow faithful classical embeddabil-
ity of the quantum observables (albeit with different statistical
predictions), and merely requires complementarity.

Indistinguishability by classical means indicates a rather
strong form of nonclassicality—that is, the impossibility to
faithfully embed the quantum mechanical observables in
classical Boolean structures—while still allowing the direct
experimental falsification of the respective quantum and clas-
sical predictions. Therefore, it is not affected by questions
related to the empirical pertinence of Kochen-Specker proofs
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(by contradiction) of the absence of any classical interpre-
tation, stated pointedly by Clifton, “how can you measure a
contradiction?” (quoted from my memory [76]).

Further efforts could advance by “improving the nonclas-
sical performance” of gadgets not in terms of the number
of (counterfactual, complementary) observables, but in terms
of quantum-to-classical discords in four dimensions. The
hypergraph method developed earlier might suggest such
advancements by their emphasis on the logico-algebraic struc-
ture, thereby making possible a more systematic exploitation
of feasible configurations of observables. There already exist
true-implies-{true, false} gadgets which yield high perfor-
mance in three dimensions [38,77,78].

Nevertheless, once the vectors corresponding to pre- and
postselected states are fixed, it is always possible to find any
kind of conforming or disagreeing classical-versus-quantum
behavior. As I have pointed out elsewhere [16], these kind
of statements are contingent on the chosen gadget consisting
of mostly counterfactual observables “in the mind” of the
observer [79,80]. Nevertheless, any such considerations raise

fascinating, challenging issues in a variety of fields which
might have been perceived unrelated so far: graph theory,
(linear) algebra, functional analysis, geometry, automated the-
orem proving, and—last but not least—quantum physics and
quantum information (processing) technology.
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