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I. TWO-PARTITE VECTOR-BASED EXPECTATIONS NOT
SATISFYING CLASSICAL BOUNDS

Classical bounds on probabilities and expectations can be
expected to be “violated” by or “being different” from quan-
tum probabilities and expectations because the latter are based
on multi-dimensional vectorial entities whereas the former are
based on scalars in (sub)sets of power sets. Exactly how these
violations are operationalized and measured has developed
from an intuitive, heuristic search in the early days [1–3] into
a systematic method [4–8].

The most elementary expression of the classical versus
quantum difference quoted earlier is the two-partite correla-
tion function of two dichotomic observables X ,Y ∈ {−1,+1}.
It is empirically collected from a series of N measurements of
X and Y and defined by 〈X ,Y 〉s ≈ 1

N ∑
N
i=1 XiYi, where the in-

dex i refers to the ith measurement, and s refers to a specific
(unaltered) state on which these repetitive measurements are
performed. It is assumed that, if N increases, the limit exists
and is monotonically approached – that is, for “large enough”
N, 〈X ,Y 〉s is a “good approximation” [9].

A. Classical predictions on “singlet-type” states

It is not too difficult to model a classical two-partite state
q which shows “singlet-like” characteristics – an example
would be the angular momentum in a particular spacial di-
rection of two fragments of a bomb which originally had no
angular momentum in any direction [10]. An argument in-
volving equidistribution of angular momenta of the fragments
reveals a linear classical correlation on such a state; that is,
〈X ,Y 〉c = E(X ,Y ) = E(θ) = −1 + 2θ/π , where the angle
0 ≤ θ ≤ π characterizes the “spatial separation” of the direc-
tions of these observables X and Y .
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B. General classical predictions

To construct a generic classical situation, a generalized urn
model [11] is introduced which can also be phrased in terms of
finite-state identification problems of automata allowing com-
plementarity [12]. Its formalization is in terms of set-theoretic
partitions [13] and power sets.

In terms of generalized urn models, we consider urns
filled with black balls painted with three different colors,
one color per observable X , Y , and Z. Since each ob-
servable may have two different outcomes we can, for in-
stance, label these outcomes by “+” and “−”, printed on
these balls in the respective colors. There are eight such
ball types. As the urn is filled with an arbitrary distribu-
tion of ball types, it can only be ascertained that they oc-
cur with probabilities 0 ≤ λ±±± ≤ 1, were the indices refer
to the respective symbols in the colors associated with our
three observables. Since in such a scheme the ball types are
mutually exclusive and their enumeration is complete (i.e.,
exhaustive), we can suppose that ∑i, j,k∈{+,−}λi jk = 1, and
the joint expectations add up accordingly; e.g., E(X ,Y ) =
∑k∈{+,−}

[
λ++,k +λ−−,k−

(
λ+−,k +λ−+,k

)]
.

C. Quantum predictions on a singlet state

The quantum predictions of a single observable in an ar-
bitrary direction characterized by the spherical coordinates
0 ≤ θ ≤ π and 0 ≤ ϕ < 2π is derived from the Pauli spin
matrices σx, σy and σz forming the spin operator σσσ(θ ,ϕ) =
σx sinθ cosϕ +σy sinθ sinϕ +σz cosθ and the single particle
projection operator S±(θ ,ϕ) = 1

2 [I2±σσσ(θ ,ϕ)] for the states
“−” and “+”, respectively. The respective two-partite pro-
jection operators are S±1±2(θ1,ϕ1,θ2,ϕ2) = S±1(θ1,ϕ1)⊗
S±2(θ2,ϕ2). Finally, the operator associated with the two-
partite expectations is F(X ,Y ) = F(θ1,ϕ1,θ2,ϕ2) = S++ +
S−−− (S+−+S−+) = σσσ(θ1,ϕ1)⊗σσσ(θ2,ϕ2).

Suppose we are interested in the correlation func-
tion for a singlet state in the Bell basis q = |Ψ−〉〈Ψ−|
with |Ψ−〉 = 1√

2

(
0,1,−1,0

)ᵀ, then the quan-
tum prediction yields 〈X ,Y 〉q = F(θ1,ϕ1,θ2,ϕ2) =
− [cosθ1 cosθ2 + cos(ϕ1−ϕ2)sinθ1 sinθ2]. For

mailto:svozil@tuwien.ac.at
http://tph.tuwien.ac.at/~svozil


2

ϕ1 = ϕ2 this reduces to the well-known cosine form
〈X ,Y 〉q = F(θ1,0,θ2,0) = F(θ1− θ2) = −cos(θ1− θ2), that
is, the two-partite correlation for dichotomic observables
X ,Y = ±1 of the two-partite singlet state is proportional to
the Euclidean scalar product between the vectors associated
with X and Y .

The maximal quantum-to-classical violations

max
θ∈{0,π}

|E(θ)−F(θ)|=

√
1−
(

2
π

)2

− 2
π

cos−1 2
π
≈ 0.2

(1)
resulting from less, as well as more, equal occurrences of
the joint observables ++/−− and +−/−+, occur at angles
(d/dθ) [E(θ)−F(θ)] = 0, that is, at

θ = sin−1 2
π

as well as

θ = π− sin−1 2
π

, respectively.
(2)

D. Quantum predictions on more general pure states

By a min-max calculation [14] it is not too difficult to com-
pute those quantum states which, given arbitrary angles be-
tween the two observables X and Y , yield the minimal and
maximal correlations: all that is needed is the eigensystem of
F(θ1,ϕ1,θ2,ϕ2). Rather than enumerating this eigensystem in
full generality the special case θ1 = θ and θ2 = ϕ1 = ϕ2 = 0 is
posted, resulting in the (decomposable) vectors (modulo nor-
malization)

|ψ1,min〉=
(
0,cosθ +1,0,sinθ

)ᵀ as well as

|ψ2,min〉=
(
cosθ −1,0,sinθ ,0

)ᵀ (3)

for the minimal expectation 〈X ,Y 〉=−1; and

|ψ1,max〉=
(
0,cosθ −1,0,sinθ

)ᵀ as well as

|ψ2,max〉=
(
cosθ +1,0,sinθ ,0

)ᵀ (4)

for the maximal expectation 〈X ,Y 〉= 1, respectively.

II. THE CASE OF THREE OBSERVABLES

A. Classical bounds

One might as well stop here, contemplate the elementary
difference between two forms of probabilities based on scalars
and power sets in the classical case, and on vectors and the
vector space spanned by them in the quantum case, and leave
it at that. However, this is not what happened historically:
Bell and others tried to find criteria for non-compliance with
classical behavior involving more than just two observables.
In particular, Suppes and Zanotti [15–17] presented special
cases of what Boole called “conditions of possible experi-
ence” [18, 19] involving just three dichotomic observables
X ,Y,Z ∈ {−1,+1}.

The original method of deriving these bounds is rather in-
volved. But with today’s convex polytope techniques [4,
7, 20] it is not too difficult to derive those inequalities:
(i) form all possible combinations of joint occurrences by
multiplying the respective dichotomic observables – in this
case E(X ,Y ) = XY , E(X ,Z) = XZ, E(Y,Z) = Y Z; (ii) form
the 3-tuples (that is, the finite ordered list or sequence)
of all three numbers for particular instances of X ,Y,Z ∈
{−1,+1}

(
E(X ,Y ),E(X ,Z),E(Y,Z)

)
=
(
XY,XZ,Y Z

)
, (iii)

pretend these 3-tuples are coordinates (with respect to the
Cartesian three-dimensional standard basis) of vertices of a
convex polytope, and (iv) according to the Minkowski-Weyl
“main” representation theorem [21–23] represent this poly-
tope as its facets obtained by the hull computation [23, 24].
These facet (in)equalities represent Boole-Bell type “condi-
tions of possible (classical) experience”.

With three dichotomic observables, such procedures result
in eight three-dimensional row vectors. Four of them are lin-
early independent. They are interpreted as the vertices of a
correlation polytope. The row vectors, stacked on top of one
another, form a 4×3 Travis [25] matrix [26]

Ti j =

+1 +1 +1
+1 −1 −1
−1 +1 −1
−1 −1 +1

 . (5)

The hull computation (eg, by pycddlib [27], a Python wrap-
per of Fukuda’s cddlib algorithm [28] implementing the
Double Description Method [29]) yields the four Suppes-
Zanotti-Brodi inequalities [15, 16]

−1≤ E(X ,Y )+E(X ,Z)+E(Y,Z),
−1≤−E(X ,Y )−E(X ,Z)+E(Y,Z),
−1≤ E(X ,Y )−E(X ,Z)−E(Y,Z),
−1≤−E(X ,Y )+E(X ,Z)−E(Y,Z).

(6)

B. Quantum bounds by min-max calculation

The min-max calculations [14] of the associated operators
F(X ,Y )±F(X ,Z)±F(Y,Z) with the quantum expectation F
as defined earlier amounts to summing up the separate terms
and determining the eigensystem of these new observables. It
yields quantum bounds allowing ranges bounded by

−3 < F(X ,Y )±F(X ,Z)±F(Y,Z)< 3 (7)

which violate the classical ones (6) by almost the greatest al-
gebraically possible amount.

For the sake of more concrete realizations, we shall set
all azimuthal angles to zero and take equidistant polar angles
such that the directions of X , Y , and Z in configuration space
are 0, θ , and 2θ , respectively. Then the min-max compu-
tation associated with F(0,θ)+F(0,2θ)+F(θ ,2θ) exhibits
two eigenvalues

µ1 =−(5+4cosθ)1/2 ≤−(1+2cosθ) = µ2 (8)
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which, in a certain domain of θ , violate the first inequality
in (6). The associated pure states are proportional to

|x1〉=
(
a,b,−b,a

)ᵀ , where

a = 2(cosθ +1)sinθ and

b = 2cosθ + cos(2θ)+
√

5+4cosθ , as well as

|x2〉=
(
−sinθ ,cosθ ,cosθ ,sinθ

)ᵀ , respectively.

(9)

Note that for θ → 0 these two states converge to indecompos-
able vectors proportional to the Bell basis states

(
0,1,−1,0

)ᵀ
as well as

(
0,1,1,0

)ᵀ. Indeed, for θ → 0, the two other
eigenstates rendering the two eigenvalues (5+4cosθ)1/2,1+
2cosθ → 3, converge to the remaining states in the Bell basis.

C. Composition of higher-order distribution by lower-order
ones

For some “practical” application recall Specker’s story
about [30] “a wise man from Ninive . . . who was . . . concerned
almost exclusively about his daughter” and an oracle potential
suitors had to cope with: “The suitors were led in front of a
table on which three boxes were positioned in a row, and they
were ordered to indicate which of the boxes contained a gem
and which were empty. And now no matter how many times
they tried, it seemed to be impossible to solve the task. After
their predictions, each of the suitors was ordered to open two
boxes which they had indicated to be both empty or both not
empty: it turned out each time that one contained a gem and
the other did not, and, to be precise, sometimes the gem was
in the first, sometimes in the second of the boxes that were
opened. But how can it be possible that from three boxes nei-
ther two can be indicated as empty, nor as not empty?”

A similar scheme was mentioned by Garg and Mermin [5]:
“if we have three dichotomic variables each of which assumes
either the value 1 or -1 with equal probability and all the pair
distributions vanish unless the members of the pair have dif-
ferent values . . . .”

These scenarios mention three observables and strict anti-
correlations between pairs of observable outcomes, such
that E(X ,Y ) = E(X ,Z) = E(Y,Z) = −1. As can be read-
ily checked by the (maximal) violation of the first Suppes-
Zanotti-Brodi inequalities (6) no classical global probability
distribution allows this. But quantum mechanics can “al-
most” provide a realization as it yields “almost perfect” anti-
correlations at “almost vanishing” angles 0 < θ � 1. The
“reason” for this is threefold: (i) the quantum expectation
function, as mentioned earlier, is 〈X ,Y 〉q = F(θ1,0,θ2,0) =
−cos(θ1− θ2); (ii) the three expectation functions are com-
plementary and therefore cannot be measured simultaneously
– they have no simultaneous value definiteness; and (iii) the
quantum resources exploit a four-dimensional Hilbert space
with probabilities based on vectors rather than scalars.

It might be worth noting that Greenberger, Horne, and
Zeilinger proposed another, adaptive, protocol involving ex-
pectations of order three and going beyond stochastic quan-
tum violations of classical predictions [31–33] which could be

rewritten as a game “people play” [34–36] in which particular
quantum states allow certain players always to win whereas
this is not guaranteed classically [37].

III. THE CASE OF FOUR AND MORE OBSERVABLES

For completeness, we just mention that the addition of
an additional variable yields the well-known Clauser-Horne-
Shimony-Holt inequalities [2]. A polytope derivation can
be found in Refs. [4, 7, 20]. Its quantum bound −2

√
2 ≤

F(W,Y ) + F(W,Z) + F(X ,Y )− F(X ,Z) ≤ 2
√

2 derived by
Cirel’son (aka Tsirelson) [38] can be straightforwardly ob-
tained from a min-max calculation [14] of its eigensys-
tem. The quantum states rendering this bound can be rep-
resented by the vectors proportional to

(
−1,1,1,1

)ᵀ and(
−1,−1,−1,1

)ᵀ, respectively.
The polytope method can be straightforwardly scaled to de-

rive Boolean “bounds of classical experience” for over four
observables [39–41]. Their respective quantum violations can
again be derived by a min-max calculation [14].

IV. “CONTEXTUALITY” IN CONTEXT

Let me add a cautionary remark on the widely held opin-
ion that violations of classical Boolean criteria such as
the Suppes-Zanotti-Brodi inequalities suggest or even im-
ply “contextuality”. Presently the term “contextual” [42–
52] is often heuristically used as “violation of some inequal-
ity that is derived by assuming classical probability distribu-
tions” [53, 54]. There are a variety of notions [55] and accom-
panying measures [45, 56–58] for the term “contextuality”.

This “modern” quantitative use of the word can be con-
trasted with Bohr’s synthetic suggestion of a conditionality
of phenomena by [45, 46, 59] “the impossibility of any sharp
separation between the behavior of atomic objects and the in-
teraction with the measuring instruments which serve to define
the conditions under which the phenomena appear.” A related
proposition from the realist Bell contends that [60] “the result
of an observation may reasonably depend . . . on the complete
disposition of the apparatus.”

In this line of thought an experimental outcome—or, in
another wording, a phenomenon that should be considered
as [61–63] “the comprehension of the effects observed un-
der given experimental conditions”—is composed of contri-
butions from both the measured object as well as from the
measurement apparatus. Therefore the entire experimental
configuration—effectively the experimental context—needs
to be taken into account. As not all experimental contexts
can be expected to be physically realizable simultaneously,
not all observables can be expected to be jointly measur-
able. In essence this view suggests that contextuality re-
duces to what Bohr considers to be complementarity [45, B1–
B3]; and also to Heisenberg’s related Principle of Indeter-
minacy or Uncertainty Principle—contextuality from indeter-
minacy [46, 47, 64]. (See also Glauber’s concrete quantum
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amplifier model [65–67], as well as the “Humpty-Dumpty”
model of spin measurements [68, 69].)

However, this does not imply – and it may be even mislead-
ing to believe – that these conceivable “results of an observa-
tion” (aka outcome/event) are “dormant” properties of the ob-
ject (alone) which become “visible/actuated” by some “com-
plete disposition of the apparatus” (aka context). More pre-
cisely, there need not be any functional (in the sense of unique-
ness) dependency of the outcome that originates from inher-
ent information, causes or factors residing in or determined
by the observed system; no value definite intrinsic property
of the object alone. One could understand Bohr and Bell also
by their insistence that the value definite properties (character-
izing its physical state) of the object become “amalgamated”
with (properties of) the measurement apparatus, so that an ob-
servation signals the combined information both of the object
as well as of the measurement apparatus.

If one prepares a quantized system to be in a pure state
formalized by a vector, then it is perfectly value definite for
observable properties corresponding to that same preparation
(context). But if there is a mismatch between preparation and
measurement, the latter environment distorts value definite-
ness by an “inflow” of information from “outside of” the ob-
ject. Consequently, it makes no sense to speak of any such
measurement result as “being an element of physical reality”
associated with the observed system alone – one has to add the
(open) environment which “translates” the preparation into
the measurement, thereby introducing (external with respect
to the object) noise [67, 70].

V. WHAT PROPOSITIONS SUPPORT WHICH
PROBABILITIES?

For comparing probabilities and expectations on proposi-
tional structures I maintain that in all such considerations two
issues need to be distinguished as separate criteria:

(i) Given some particular type of propositional structure
(aka logics); which variety of probability distribution(s)
is(are) supported by this propositional structure?

(ii) Given two or more such varieties of probability distri-
butions, exactly what types of probability distributions
should be compared with one another? Is this not a
question that needs to be settled for the particular type
of systems dealt with?

I am unaware of any systematic way of answering the first
question (i). One approach, motivated by Gleason-type theo-
rems [71–76], is in terms of is Cauchy-type functional equa-
tions.

For instance, the same propositional structure may, on the
one hand, support a classical hidden variable theory based on
scalars as well as on (subsets of) a single Boolean algebra,
while on the other hand, accommodate a quantum interpre-
tation based on multi-dimensional vector space entities [77].
Take, for example, the Specker bug/cat’s cradle [78–80], or
the house/pentagon/pentagram [81–83] logics: both have a

classical interpretation in terms of partitions of the sets of two-
valued measures [13] as well as a faithful orthogonal represen-
tation [84, 85] as vectors.

But there are also structures that do not allow any global
classical probability distribution yet support a vector coor-
dinatization (aka faithful orthogonal representation). Exam-
ples are the Specker bug combo denoted by Γ3 by Kochen
and Specker [86] that has a nonseparable set of two-valued
states. In the extreme case there exists no classical truth as-
signment (relative to admissibility; ie, exclusivity and com-
pleteness): take, for example, Γ2 [86], or the logics introduced
in Refs. [87, 88]. One “demarcation criterion” is the separa-
bility of the observables by two-valued states, as expressed in
Kochen and Specker’s Theorem 0 [86].

Conversely, there exists a plethora of propositional struc-
tures [77] that allow a partition logic interpretation, and there-
fore global classical probability distributions; and yet they do
not support any faithful orthogonal representation, and there-
fore no quantization and no quantum probabilities. The sim-
plest such example are three observables which, when de-
picted in a hypergraph [89–91], form a cyclical triangular
structure.

It might not be too unreasonably to state that quantum “con-
textuality” needs only to show up if the observables satisfy
Kochen and Specker’s demarcation criterion by forming some
propositional structure that has no classical realization and no
joint probability distribution [52]. Before that one is talk-
ing about “complementary” configurations, which also allow
global classical probability distributions – albeit with different
probabilistic predictions yielding violations of Boole’s “con-
ditions of possible (classical) experience”.

VI. CONTEXTUALITY AS OBJECT CONSTRUCTIONS

As has been mentioned earlier, most investigations into
“contextuality” concentrate on the second criterion (ii) and
compare discords between classical versus quantum proba-
bilistic predictions. Thereby a presumption is an insistence
that one is only willing to accept classical Boolean proposi-
tional structures representable by (power) sets as ontological
entities.

This presumption is meshed with what Bell claimed to be
true: that “everything has definite properties” [92]. That is,
there is a common belief in “Omni-definiteness”, that any out-
come of some measurement reflects an “inner property” or
“element of physical reality” [93] of the “object” one is pre-
tending to “measure”. No doubts are raised about the con-
struction of this “object” which may involve important sig-
nal contributions from the measurement apparatus. Pointedly
stated: the very notion of “physical object” [94] – rather than
an “image of our mind” in the sense of Hertz [95, 96] – may be
a naive conception that is inappropriate for situations in which
one is dealing with certain types of complementary “observ-
ables” and, in particular, that have no simultaneous value defi-
niteness [88, 97]. If, for instance, one would also be willing to
contemplate vectors as fundamental ontological entities, then
value definiteness ensues as pure states, and arguments based
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on the scarcity or even absence of classical “non-contextual”
truth assignments decay into thin air.
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