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Classical evaluations of configurations of intertwined quantum contexts induce relations, such as true-implies-
false, true-implies-true [1], but also nonseparability among the input and output terminals. When combined,
these exploitable configurations (aka gadgets) deliver the strongest form of classical value indefiniteness. How-
ever, the choice of the respective configuration among all such collections, and thus the relation of its terminals,
remains arbitrary and cannot be motivated by some superselection principle inherent to quantum or classical
physics.

QUANTUM CLOUDS AS COLLECTIONS OF
INTERTWINED CONTEXTS AND THEIR CLASSICAL

DOUBLES

Quantum logic, as conceived by von Neumann [2, 3] and
Birkhoff [4], is about the formal/theoretical universe of po-
tential empirical observable propositions, as well as the al-
gebraic relations and operations among them. Every single
one of these observables is considered operational “subject
to the experimenter’s grace” as its actual measurement re-
flects the experimenter’s (subjective) choice to indeed mea-
sure one of these potential observables, versus its (often con-
tinuity of) complementary ones. (This choice is mostly sup-
posed to be “ex machina”; that is, outside of the reach of
quantum theory, and not subject to nesting [5–7].) Thereby, all
the other, then counterfactual, observables remain in a “dor-
mant/hypothetical” realm, an idealist [8, 9] “limbo” of sorts.

Even explorations allowing logical operations exclusively
among simultaneously commeasurable observables [10, 11]
and permitting partial value definiteness [12, 13] (in the
recursion-theoretic sense of Kleene [14]) rely upon, and are
thus valid relative to, such collections of counterfactuals.
Thereby the predictions/forecasts derived not for a single such
collection of observables – here sometimes referred to as
cloud or gadget – but for (finite) selections from the multi-
tude of conceivable (finite) collections of observables may be
inconsistent.

One way to conceptualize the (nonclassical) performance
of quantized systems is in terms of (black) boxes with input
and output terminals as interfaces [1]. Like zero-knowledge
proofs [15] (a topic the late Specker became interested in)
they are supposed to certify that they act “truly quantum me-
chanically” while at the same time not allowing any inspection
(e.g., duplication or opening) other than their performance at
the input-output terminals. Fulfillment/certification is usually
obtained by the exhibition of certain features or signals usu-
ally not encountered by classical devices, among them com-
plementarity and classical value indefiniteness (mostly pro-
nounced as contextuality). For a great variety of such criteria
see Table I, as well as the references cited therein, later.

However, the signals obtained from these boxes are far from
plain. Indeed in what follows we shall argue that, depending
on which hypothetical configurations of (necessarily comple-
mentary) “intrinsic” observables are considered, any individ-

ual outcome can ad hoc be classically (re)interpreted as an in-
dication of nonclassicality. Yet the same outcome could also
be in full conformity with a classical interpretation. A combi-
nation of such classical models allows any statistical predic-
tion at the terminals. Moreover, there does not seem to exist
any convincing reason to choose one of such configurations
over another, thus giving rise to either contradictory or arbi-
trary ad hoc signal analysis.

Already Specker [16] contemplated about generalized ex-
otic behaviors even beyond quantum boxes, whereby his cri-
teria for “weirdness” were inspired by scholastic counterfac-
tuals (aka Infuturabilien). And the benign outcome of his fa-
ble was only made possible by the unmarried daughter’s de-
termined alas futile attempt to open the “wrong” – according
to her father’s strategy – box; at which point he gave in, and
marriage ensued. Quantum boxes and as will be later argued
quantum clouds are not dissimilar: because of complementar-
ity and classical value indefiniteness (aka contextuality) com-
plete knowledge of the situation is impossible by any known
physical means. An immediate idealistic [8, 9, 17] objection
to the use of counterfactuals could be that the presupposition
of the sort of omni-realism required for a classical analysis of
quantum boxes cannot be operational [18] and supported by
quantum mechanics. Indeed, the partial algebra approach of
Kochen and Specker [10, 11, 19] disallows operations among
complementary observables whilst making heavy use of inter-
twined collections of complementary maximal operators (aka
contexts).

However, even classical models based on set representable
partition logics [20] such as Moore’s initial state identification
problem [21] and also Wright’s generalized urn model [22,
23] mimic quantum complementarity to a certain degree – in-
deed, formally up to quantum logics with separable sets of
two-valued states [19, Theorem 0, p. 67]. Thereby nonsep-
arability of quantum observables with respect to the set of
two-valued states (interpretable as classical truth assignments)
serves as a strict criterion for nonclassicality, and also as a
criterion against realizations by set-theoretical representable
partition logics, even if such two-valued states exist.

In what follows we shall further exploit counterfactual con-
figurations of contexts which are intertwined (this terminol-
ogy is borrowed from Gleason [24]) in one or more common
observable(s). Such counterfactual configurations of contexts
will be called clouds.
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Graph theoretically [25, Appendix] a context can be associ-
ated with a complete graph (aka clique). Its vertices are iden-
tified with the elements of the context. Adjacency is charac-
terized by comeasurable exclusivity. Clouds are represented
by collections of complete graphs (aka clicks or contexts) in-
tertwining at the respective vertices, thereby leaving the edges
unchanged.

In quantum mechanics, contexts are identified with or-
thonormal bases, or equivalently with the maximal opera-
tors [26, § 84, Theorem 1, p. 171] which can be (nonuniquely)
formed by nondegenerate sums containing all the one-
dimensional orthogonal projection operators associated with
those respective bases. Elementary propositions are formal-
ized by vectors of these bases of d-dimensional Hilbert space,
or by the orthogonal projection operators associated with such
vectors [4]. Graph theoretically the vertices are represented
by the basis vectors, and adjacency stands for orthogonality
of these vectors; that is, the edges represent the (pairwise)
orthogonality relations between the vectors (vertices). (Each
vertex must be connected to all the other d−1 vertices in the
respective context by an edge.) Thereby the graph represent-
ing a cloud has a faithful orthogonal representation [27, 28]
in terms of the elements of the bases representing the respec-
tive contexts. The inverse problem of finding some faithful
orthogonal representation of a given graph is still open. A
necessary condition for the existence of intertwines is that the
dimensionality of the vector space is higher than two because
in fewer dimensions than three contexts are either identical or
disjoint.

Orthogonality hypergraphs [29] are compact representa-
tions of clouds which reveal their structural constituents by
signifying contexts/cliques/bases: every complete graph Kd
is replaced by a single smooth curve (usually a straight line)
containing distinguished points that represent the vertices.
Thereby, the d(d − 1)/2 edges of any such complete graph
Kd are replaced with a single smooth curve. All the vertices
“within” this smooth curve represent the mutually orthogonal
vectors forming a d-dimensional basis.

Clouds may have various model realizations and represen-
tations: a particular cloud may have

(i) a quantum mechanical realization in terms of intertwin-
ing orthonormal bases, as mentioned earlier;

(ii) a pseudo-classical realization in terms of partition logic
which in turn have automaton logic or generalized urn
models;

(iii) a classical realization if there is only a single context
involved;

(iv) none of the above (such as a tightly interlinked “trian-
gle” configuration of three contexts with two vertices
per context).

Suffice it to say that (i) does not imply (ii), and vice versa.
Case (iii) can be interpreted as a subalgebra of all the other
groups enumerated, as the cases (i) and (ii) are pastings of
contexts or (Boolean) blocks [30].

ENFORCING CLASSICAL TWO-VALUED STATES

The commonly used method for exploring nonclassicality
is to consider configurations of type (i) with a quantum real-
ization, upon which a classical interpretation, if it exists, is
“enforced” in terms of uniform classical truth and falsity al-
locations of the associated propositions. Such value assign-
ments can be formalized by two-valued states s ∈ {0,1} or
(classical truth) value assignments which are additive and add
up to one whenever the propositions are exclusive and within
a single context.

The physical intuition behind this formalization is the ob-
servation that any d-dimensional context or maximal observ-
able can be interpreted as an array of detectors after a d-port
beam splitter [31]. In an ideal experiment, only one detector
clicks (associated with the proposition that the system is in the
respective state), whereas all the other d−1 detectors remain
silent.

Such uniform classical interpretations are supposed to be
context-independent; that is, the value on intertwining observ-
ables which are common to two or more contexts is indepen-
dent of the context. Besides context-independence of truth
assignments at the intertwining observables various variants
of such measures assume conditions of increasing strength:

(I) The “measures” or value assignments employed in so-
called “contextuality inequalities” merely assume that
every proposition is either true or false, regardless of
the other propositions in that context which are simul-
taneously measurable [32]. This allows all possible 2d

possibilities of value assignments in a d-dimensional
context with d vertices, thereby vastly expanding the
multitude of possible value assignments. With this ex-
pansion, all Kochen-Specker sets trivially allow value
assignments.

(II) The prevalent assumption of two-valued states or value
assignments, also used by Kochen and Specker [19]
as well as Pitowsky [33], is that only a single one of
the d vertices within a d-dimensional context is true,
and all the others are false; therefore any isolated d-
dimensional context can have only d such standard two-
valued value assignments.

(III) An even more restricted rule of value assignment aban-
dons uniform definiteness and supposes [12, 13, 34]
that, if all d−1 but one vertex in a d dimensional con-
text are false, the remaining one is true, and if one ver-
tex within a d-dimensional context is true, all remaining
d−1 vertices are false. This latter value assignments al-
low for partial functions which can be undefined.

Type (III) implies type (II) which in turn implies type (I) value
assignments.

A set S of two-valued states on a graph G is [35, 36]:

(u) unital, if for every x∈G there is a two-valued state s∈ S
such that s(x) = 1;
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(s) separating, if for every distinct pair of vertices x,y ∈ G
with x 6= y there is an s ∈ S such that s(x) 6= s(y);

(f) full, if for every nonadjacent pair of vertices x,y ∈ G
there is an s ∈ S such that s(x) = s(y) = 1.

A full set of two-valued states is separating, and a separat-
ing set of two-valued states is unital. As will be detailed later
TIFS/10-gadgets have a nonfull set so two-valued states in the
sense of (f). Nonseparability in the sense of (s) indicates non-
classicality. And nonunitality in the sense of (u) discredits
the classical predictions of quantum clouds even to a greater
degree, probably only challenged by a complete absence of
two-valued states.

CHROMATIC SEPARABILITY

As already discussed by Kochen and Specker [19, Theo-
rem 0] nonseparability of (at least one) pair of nonadjacent
vertices with respect to the set of two-valued states (inter-
pretable as classical truth assignments) of a graph is arguably
the most important signature of nonclassicality. It may be true
even if there is an “abundance” of two-valued states. Nonsep-
arability can also be expressed in terms of graph coloring.

A proper (vertex) coloring [25, Appendix] of a graph is a
function c from the vertex set to a finite set of “colors” (the
positive integers will do) such that, whenever x and y are ad-
jacent vertices, c(x) 6= c(y). The chromatic number of a graph
is the least positive integer t such that the graph has a coloring
with t colors.

A two-valued state on a (hyper)graph composed/pasted
from contexts/cliques, all having an identical number of
vertices/clique numbers d can be obtained by “project-
ing/reducing” colors if the chromatic number of that graph
equals d. In this case, in order to obtain a two-valued state,
take any proper (vertex) coloring c with d colors and map
d− 1 colors into (the ”new color”) 0 and one color into (the
”new color”) 1. Just as the graph coloring c itself such map-
pings need not to be unique.

Note that the chromatic number of a complete graph must
be equal to the clique number because type (II) & (III) two-
valued states require that every context/clique must have ex-
actly one vertex with value assignment 1 (and 0 for all the
other vertices). (One might conjecture that the set of two-
valued states induces graph colorings, in much the same way
as it induces a partition logic [20].) At the same time, the
clique number renders a bound from below on the chro-
matic number. Thus if the chromatic number of a graph
exceeds the clique number no such two-valued states exist
– the “phenomenological consequence” is that, for at least
one context/clique, the color projection/reduction is constant
– namely 0 – on all vertices of that context/clique.

A coloring is chromatically separating two nonadjacent
distinct vertices x and y in the vertex set of a graph if there
exists a proper vertex coloring such that c(x) 6= c(y). A set
of colorings of a particular graph is said to be separating if,

for any pair of distinct vertices it contains at least one color-
ing which separates those vertices. The separable chromatic
number of a graph is the least positive integer t such that the
graph has a separating set of colorings with at most t colors.

If the separable chromatic number is higher than the chro-
matic number of a given graph, then there exist nonadjacent
vertices which cannot be “resolved” by any proper graph col-
oring, or, for that matter, by any derived projected/reduced
two-valued state. As a consequence, the graph has no set-
theoretic realization as a partition logic, although its chro-
matic number is the clique number, and there still may exist
an abundance of proper colorings and two-valued states [19,
Γ3, p. 70].

It would be interesting to translate (non)unitality and
(non)fullness into (sets of) graph coloring. For reasons of
brevity, we shall not discuss this here.

FORMATION OF GADGETS AS USEFUL SUBGRAPHS
FOR THE CONSTRUCTION OF CLOUDS

The commonly used method seeks cloud configurations
with “exotic” classical interpretations. Again, exoticism may
express itself in various forms or types. One way is in terms
of violations on bounds on classical conditions of possible
experience [37, p. 229], such as Bell-type inequalities deriv-
able from taking all [type (II), and type (I) for inequalities
using only the assumption of noncontextuality [32]] value as-
signments, forming a correlation polytope by encoding those
states into vertices, and solving the hull problem thereof [38–
45]. Another, stronger [46] form of nonclassicality is the
nonexistence of any such classical interpretation in terms of
a type (II) valued assignments [16, 19, 24, 33, 47]; or at least
their nonseparability [19, Theorem 0, p. 67].

The explicit construction of such exotic classical interpre-
tations often proceeds by the (successive) application of ex-
ploitable subconfigurations of contexts – in graph theoret-
ical terms gadgets [48–50] defined as “useful subgraphs”.
Thereby, gadgets are formed from constituent lower order
gadgets of ever-increasing size and functional performance
(see also [51, Chapter 12]):

1. 0th order gadget: a single context (aka
clique/block/Boolean (sub)algebra/maximal ob-
servable/orthonormal basis). This can be perceived
as the most elementary form of a true-implies-false
(TIFS/10) [1]/01-(maybe better 10)-gadget [50, 52]
configuration, because a truth/ value 1 assignment of
one of the vertices implies falsity/ value 0 assignments
of all the others;

2. 1st order “firefly” gadget: two contexts connected in a
single intertwining vertex;

3. 2nd order gadget: two 1st order firefly gadgets con-
nected in a single intertwining vertex;
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intertwined contextsa b

FIG. 1. A collection of possible connections of counterfactuals
organised in intertwining contexts and joining a and b, depicted as a
cloud C(a,b).

4. 3rd order house/pentagon/pentagram gadget: one firefly
and one 2nd order gadget connected in two intertwining
vertices to form a cyclic orthogonality hypergraph;

5. 4rth order 10-gadget: e.g., a Specker bug [1] consisting
of two pentagon gadgets connected by an entire context;
as well as extensions thereof to arbitrary angles for the
terminal (“extreme”) points [13, 50];

6. 5th order true-implies-true (TITS) [1]/11-gadget [52]:
e.g., Kochen and Specker’s Γ1 [19], consisting of one
10-gadget and one firefly gadget, connected at the re-
spective terminal points (cf. Fig. 6);

That is, gadgets are subconfigurations of clouds. And clouds
can be interpreted as gadgets for the composition of bigger
clouds.

For the sake of arguing for an idealistic [8, 9, 17] and
against a realistic usage of quantum clouds, configurations
of intertwined contexts with two fixed propositions as “start”
and “end” points a and b will be studied; as well as meth-
ods for constructing such configurations with particular re-
lational properties. Whenever there is no preferred, less so
unique, path connecting a and b, all such connections should
be treated on an equal basis. We shall call any such collection
of counterfactual connections “clouds connecting a and b”,
denoted by C(a,b), and depict it with a cloud shape symbol,
as drawn in Figure 1. (This can in principle be generalized to
more than two terminal points.)

Thereby, as the endpoints a and b remain fixed, one can ask
what kind of (classical) relational information can be inferred
from such two-point quantum clouds. As it turns out, for fixed
a and b quantum clouds can be found which realize a wide
variety of conceivable relational properties between a and b.
Table I enumerates these relations.

QUANTUM CLOUDS ENFORCING PARTICULAR
FEATURES WHEN INTERPRETED CLASSICALLY

For quantum mechanics, a and b can be formalized by
the two one dimensional projection operators Ea = |a〉〈a|

|a〉=
(

1,0,0
)

1√
2

(
0,1,1

)
1√
2

(
0,1,−1

)
(
− 1√

2
, 1

2 ,
1
2

)
|b〉=

(
1√
2
, 1

2 ,
1
2

)

FIG. 2. Orthogonality hypergraph of a cloud consisting of a firefly
logic L12 connecting a and b, such that, for type (II) value assign-
ments, a true-implies-b whatever (quantum 50:50). Truth is encoded
by a filled red square, classical falsity by a filled green circle, and
arbitrary truth values by circles. [Type (III) value assignments are
partial and thus undefined.] L12 consists of 5 vertices in just 2 in-
teretwined blocks allowing a separating set of 5 two-valued states
and therefore is set representable by partition logics.

and Eb = |b〉〈b|, respectively. For the sake of demonstra-
tion we shall study configurations in which |a〉 =

(
1,0,0

)
and |b〉 =

(
1√
2
, 1

2 ,
1
2

)
, that is, the quantum prediction yields

a probability |〈b|a〉|2 = 1
2 to find the quantum in a state |b〉

if it has been prepared in a state |a〉. This configuration can
be extended to endpoints with (noncollinear and nonorthogo-
nal) arbitrary relative location by the techniques introduced in
Refs. [13, 50].

(a) A quantum cloud configuration for which classical
value assignments allow b to be either true or false if
a is true is the firefly configuration [53, pp. 21, 22], de-
picted in Fig. 2, with five classical value assignments of
type (II) [68].

(b) Already Kochen and Specker utilized quantum clouds
enforcing classical a true-implies-b false predictions
and their compositions in the construction of a config-
uration that does not allow a uniform truth assignment
[of type (II)]. Stairs [54, p. 588-589] has pointed out
that the Specker bug [10, Fig. 1, p. 182] is a quantum
cloud configuration which classically enforces a true-
implies-b false: if a quantum system is prepared in such
a way that a is true – that is, if it is in the state Ea – and
measured along Eb, and |a〉 and |b〉 are not orthogonal
or collinear, then any observation of b given a amounts
to a probabilistic proof of nonclassicality: because al-
though quantum probabilities do not vanish, classical
value assignments predict that b never occurs. Mini-
mal quantum cloud configurations for classical a true-
implies-b false, as well as a true-implies-b true value
assignments [of type (II)] can be found in [1].

As Cabello has pointed out [69, 70], the original
Specker bug configuration cannot go beyond the quan-
tum prediction probability threshold |〈b|a〉|2 = 3−2 be-
cause the angle between a and b cannot be smaller
than arccos 1

3 ≈ 1.23096 radians (71.5◦). A configura-



5

if a is true anectodal, historic reference to utility
classical value assignments quantum realisation or relational properties

imply b is independent (arbitrary) firefly logic L12 [53, pp. 21, 22]
imply b false (TIFS/10) Specker bug logic [10, Fig. 1, p. 182] [54, p. 588-589], [55], [1]
imply b true (TITS) extended Specker bug logic [19, Γ1, p. 68],

[56, Sects. II,III, Fig. 1],
[57, Fig. C.l. p. 67],
[58, p. 394], [59–61],
[62–67], [1]

iff b true (nonseparability) combo of intertwined Specker bugs [19, Γ3, p. 70]
imply value indefiniteness of b depending on Type (II), (III) assignments [33], [13]

TABLE I. Some (incomplete) history of the relational properties realizable by two-point quantum clouds.

|b〉|a〉

|16〉

FIG. 3. Orthogonality hypergraph of a nonfull/TIFS/10 cloud
even for type (III) value assignments. A faithful orthogonal real-
ization is enumerated in Ref. [13, Table. 1, p. 102201-7]. It con-
sists of 38 vertices in 24 interetwined blocks, endowed with a non-
separating set of 13 two-valued states and therefore is not set rep-
resentable by partition logics. The state depicted is the only one
allowing a to be 1. Moreover, this cloud has no unital set of two-
valued states as for all of them the vertex represented by the vector
|16〉 = 1√

10

(
2
√

2,1,−1
)

and drawn as a solid black circle (and the
associated observable) needs to be zero at all classical instantiations.

tion [71, Fig. 5(a)] allowing type (III) TIFS truth as-
signments with “maximally unbiased” quantum predic-
tion probability |〈b|a〉|2 = 1

2 is a sublogic of a quantum
logic whose realization is enumerated in Ref. [13, Ta-
ble. 1, p. 102201-7]. It is depicted in Fig. 3. A proof of
Theorem 2 in Ref. [50] contains an explicit parametriza-
tion of a single TIFS/10 cloud allowing the full range of
angles 0 < ∠a,b < π .

(c) Clifton (note added in proof to Stairs [54, p. 588-589])
presented a a true-implies-b true (TITS) cloud [56, 72,

|b〉|a〉

|16〉

FIG. 4. Orthogonality hypergraph of a TITS/11 cloud even for type
(III) value assignments. A faithful orthogonal realization is enumer-
ated in Ref. [13, Table. 1, p. 102201-7]. It consists of 38 vertices in
24 interetwined blocks, endowed with a nonseparating set of 13 two-
valued states and therefore is not set representable by partition logics.
The state depicted is the only one allowing a to be 1. Moreover, this
cloud has no unital set of two-valued states as for all of them the ver-
tex represented by the vector |16〉= 1√

10

(
2
√

2,1,−1
)

and drawn as
a solid black circle (and the associated observable) needs to be zero
at all classical instantiations.

73, Sects. II,III, Fig. 1] inspired by Bell [57, Fig. C.l.
p. 67] (cf. also Pitowsky [58, p. 394]), as well as by the
Specker bug logic [56, Sects. IV, Fig. 2]. Hardy [59–
61] as well as Cabello, among others [50, 63–67, 69,
70] utilized similar scenarios for the demonstration of
nonclassicality [74, Chapter 14]. Fig. 4 depicts a 11-
gadget [71, Fig. 5(b)] with identical endpoints as the
10-gadget discussed earlier and depicted in Fig. 3.

(d) Various parallel and serial compositions of 10- and 11-
gadgets serve as a “gadget toolbox” to obtain clouds
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which, if they are interpreted classically, exhibit other
interesting relational properties. For instance, the par-
allel composition (pasting) of two quantum clouds of
the 10-gadget type: one 10-gadget classically demand-
ing a true-implies-b false and the other 10-gadget clas-
sically demanding b true-implies-a false, results in a
quantum cloud which has two observables a and b
which are classically always “opposite”: if one is true,
the other one is false, and vice versa.

(e) The parallel composition (pasting) of two quantum
clouds of the TITS type, with one TITS, classically
demanding a true-implies-b true and the other TITS
classically demanding b true-implies-a true, results in
a quantum cloud which has two observables a and b
which are classically nonseparable, which is a sufficient
criterion for nonclassicality [19, Theorem 0, p. 67]. As
pointed out by Portillo [75] this is equivalent to a is true
if and only if b is true (TIFFTS). Fig. 5 depicts a his-
toric example of such a construction. The serial com-
position of suitable TITS of the form a1 true-implies-
a2 · · ·ai−1 true-implies-ai true eventually yields two or
more vectors a1 and ai which are mutually orthogonal;
a technique employed by Kochen and Specker for the
construction of a quantum cloud admitting no type (II)
truth assignment [19, Γ2, p. 69].

(f) The parallel composition (pasting) of the two quantum
clouds which respectively represent a 10-gadget and
an 11-gadget and identical endpoints a and b yields
a a true-implies-b value indefinite cloud discussed in
Ref. [13].

SOME TECHNICAL ISSUES OF GADGET
CONSTRUCTION

The concatenation of intertwining gadgets needs to allow
a proper faithful orthogonal representation of the resulting
compound (hyper)graph while at the same time preserving
the structure of these gadgets. Thereby the faithful orthog-
onal representations of the constituent gadgets cannot always
be transferred easily to a faithful orthogonal representation of
the resulting compound (hyper)graph.

Suppose, for the sake of a counterexample involving duplic-
ity of vertices after concatenations of gadgets, one would at-
tempt to construct a G

((
1,0,0

)
,
(

0,1,1
))

11 cloud (which
would constitute a Kochen-Specker proof as the respective ter-
minal points are orthogonal) by concatenating two 11-gadgets
G
((

1,0,0
)
,
(

1√
2
, 1

2 ,
1
2

))
and G

((
1√
2
, 1

2 ,
1
2

)
,
(

0,1,1
))

of
the type depicted in Fig. 4 by simply rotating all coordinates
of the first gadget π

4 radians (45◦) about the axis formed by
b−a. Unfortunately, a straightforward calculation shows that
these two 11-gadgets, with the faithful orthogonal realization
taken from [13, Table I, p. 102201-7], do not only have the

|a〉

|c〉 |b〉

|c′〉

FIG. 5. Orthogonality hypergraph of a TIFFTS cloud for type
(II) value assignments, based on a minimal 11-gadgets introduced
in Ref. [1, Fig. 6] for dimensions greater than 2. In three dimensions,
(i) the three orthogonal “middle” vertices intertwining four contexts
vanish, (ii) the two vertices |c〉 and |c′〉 coincide, and (iii) the two
edges connecting |c〉 with |a〉 and |c′〉 with |b〉 vanish, rendering the
original Specker bug combo introduced by Kochen and Specker [19,
Γ3, p. 70]. Unlike the earlier configurations, this cloud does not al-
low 50:50 quantum probabilities. Because of nonseparability of its
set of two-valued states and its separable chromatic number higher
than the clique number it does not allow a set representation by par-
tition logics.

vertex
(

1√
2
, 1

2 ,
1
2

)
in common as per construction, but also the

three additional vertices
(

0, 1√
2
,± 1√

2

)
and

(
1,0,0

)
.

Also, gadgets may not be able to perform as desired. For
instance, a standard construction in three dimensions, already
used by Kochen and Specker [19, Lemma 1, Γ1, p. 68] for
their construction of a 11-gadget Γ1 from a Specker bug-type
10-gadget introduced earlier [10, Fig. 1, p. 182], is to take the
terminal points a and b of some TIFS/10 cloud and form the
normal vector c = a×b. In a second step, the vector

d = b× c = b× (a×b)

= b2a− (a ·b)b = a− (a ·b)b = a− cos(∠a,b)b
(1)

orthogonal to both b and c is formed. If a is true/1 then b
(because of the 01-gadget) as well as c (because of orthog-
onality with a) must be false/0. Therefore d must be true,
since it completes the context {b,c,d}. The situation is de-
picted in Fig. 6. If all goes well the new cloud C(a,d) is of
the TITS/11 type. This is not the case if one uses the TIFS/10-
gadget depicted in Fig. 3, as the vector c =

(
0,− 1√

2
, 1√

2

)
and

the new terminal vector d =
(

1√
2
,− 1

2 ,−
1
2

)
also appear in the

original TIFS/10-gadget.
For very similar reasons (degeneracy or division through
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TIFS/10-gadget|a〉 |b〉

|c〉

|d〉|e〉

FIG. 6. Standard construction used by Kochen and Specker [19,
Lemma 1, Γ1, p. 68] for obtaining a 11 cloud C(a,d) [or, because of
symmetry, C(b,e)] from a nonfull/TIFS/10-gadget C(a,b), involving
two additional contexts {b,d,c} and {a,e,c}.

zero) the 10-gadget introduced in the proof of Theorem 3
in Ref. [50] and depicted in Fig. 7 cannot be extended to
an 11 cloud whose end terminals are the “maximal” angle
π

4 radians (45◦) apart. For all other allowed angles an ex-
tension of this earlier construction of a TIFS/10-gadget to
a TITS/11-cloud depicted in Fig. 6 with (without loss of
generality and for 0 < ∠a,b ≤ π

4 ) a =
(

1,0,0
)

and b =

1√
1+x2

(
x,1,0

)
yields the new terminal vector of the TITS/10-

cloud d = 1√
1+x2

(
1,−x,0

)
= u20 which already occurs as

the vector u20 in the original TIFS/10-gadget. The only
additional vertex c =

(
0,0,1

)
is from the edge connecting

u1 with u3, as well as u20 with u22. thereby “completing”
the two cliques/contexts {u1,c,u3} and {u20,c,u22}. The
angle between the two terminal points u1 and u20 of this
TITS/11-gadget is 0 < arccos 1√

1+x2
≤ π

4 radians (45◦) as

0 < x ≤ 1. This configuration is also a TITS/10-cloud for
the 17 pairs u1−{u8,u9,u12,u13,u16,u17,u22}, u6−u22, u7−
{u12,u16,u22}, u9−u14, u10−u22, u11−{u16,u22}, u14−u22,
and u15−u22, respectively.

DISCUSSION

It is important to notice that, for fixed terminal vertices, de-
pending on the cloud chosen, very different classical predic-
tions follow. Indeed, once the terminal vertices are fixed, it
is not too difficult to enumerate a quantum cloud which, in-
terpreted classically, predicts and demands any kind of input-
output behavior. This renders an element of arbitrariness in
the interpretation of quantum clouds.

The relevance of this observation lies in the conceivable in-

c

u3

u7

u15

u21u16

u13

u2

u10

u9

u11

u12

u14

u20

u6 u5

u19

u4

u18u17

u8
u1

u22

FIG. 7. Orthogonality hypergraph from a proof of Theorem 3 in
Ref. [50]. The advantage of this nonfull/TIFS/10-gadget is a straight-
forward parametric faithful orthogonal representation allowing an-
gles 0 < ∠u1,u22 ≤ π

4 radians (45◦) of, say, the terminal points u1
and u22. The corresponding logic including the completed set of
34 vertices in 21 blocks is set representable by partition logics be-
cause the supported 89 two-valued states are (color) separable. It is
not too difficult to prove (by contradiction) that, say, if both u1 as
well as u22 are assumed to be 1, then u2, u3, u4, as well as u19, u20
and u21 should be 0. Therefore, u5 and u18 would need to be true.
As a result, u6 and u17 would need to be false. Hence, u7 as well as
u16 would be 1, rendering u8 and u15 to be 0. This would imply u9
as well as u14 to be 1, which in turn would demand u10 and u13 to
be false. Therefore, u11 and u12 would have to be 1, which yields a
complete contradiction even for type-III value assignments. It is also
a TITS/11-gadget for the terminal points u1−u20, constructed by the
standard construction depicted in Fig. 6.

terpretation of elementary empirical observations, such as a
single particular click in a detector. Suppose a quantum is
prepared in a pure state “along” a unit vector a and, when
measured “along” Eb = b†b, “happens to activate a detector”
corresponding to that state b; that is, a detector associated with
this latter property clicks. Depending on the quantum cloud
considered, the following contradictory claims are justified:

1. if the quantum cloud allows both values then the claim
is that there is no determination of the outcome; the
event “popped up” from nowhere, ex nihilo, or, theolog-
ically speaking, has come about by creatio continua (cf.
Kelly James Clark’s God–as–Curler metaphor [76]);

2. in the case of a 10-gadget the system is truly quantum
and cannot be classical;

3. in the case of an 11-gadget the system could be classi-
cal;

4. in case of a cloud inducing value indefiniteness the
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claim can be justified that the system cannot be clas-
sical, as no such event (not even its absence) should be
recorded. Indeed, relative to the assumptions made, the
(non)occurrence of any event at all is in contradiction to
the classical predictions.

Conversely, if the experimenter observes no click in a detec-
tor associated with the state b, then, depending on the quan-
tum cloud considered, the following contradictory claims are
justified:

1. as mentioned earlier, if the quantum cloud allows both
values then there exists creatio continua (currently, this
appears to be the orthodox majority position);

2. in the case of a 10-gadget the system could be classical;

3. in case of an 11-gadget the system is truly quantum and
cannot be classical;

4. just as mentioned earlier, in case of a cloud inducing
value indefiniteness the claim can be justified that the
system cannot be classical, as no such event (not even
its absence) should be recorded.

As a result, depending on the quantum cloud considered,
any (non)occurrence of some single outcome can be published
(or rather marketed in venerable scientific journals) as a cru-
cial experiment indicating that the associated system cannot
be classical. Likewise, by taking other quantum clouds, any
such outcome may be considered to be consistent with clas-
sicality: (non)classicality turns out to be means relative with
respect to the quantum clouds considered. As quantum clouds
are configurable for any input-output port setup this is true for
any measurement outcome.

The situation turns even more precarious if one considers
quantum clouds with a nonunital (and nonseparable) set of
two-valued states, such as the ones depicted in Figs. 3 and 4:
In the particular faithful orthogonal representation [13, Ta-
ble 1, p. 102201-7] the vector along 1√

10

(
2
√

2,1,−1
)

yields
a classical prediction amounting to the nonoccurrence of the
particular quantum observable. For another example take a
cloud introduced by Tkadlec [36, Fig. 2]. It is based on a set of
orthogonal vectors communicated to Specker by Schütte [77]
and contains 36 vertices in 26 contexts/cliques which allow
6 two-valued states enforcing 8 vertices to be 0. In the par-
ticular faithful orthogonal representation of Tkadlec, those
correspond to the vectors along

(
1,0,0

)
,
(

0,0,1
)

,
(

1,0,1
)

,(
1,0,−1

)
,
(

2,0,−1
)

,
(

1,0,2
)

,
(
−1,0,2

)
, and

(
2,0,1

)
.

At the same time the vector
(

0,1,0
)

is forced to be 1. Since
without loss of generality, an orthogonal transformation can
transform all of these vectors into arbitrary other directions
(while maintaining angles between vectors and, in particu-
lar, orthogonality) the assumption of such unital configura-
tions and their classical interpretation immediately yields any
desired contradiction with any individual measurement out-
come.

This arbitrariness could be overcome by some sort of “su-
perselection rule” prioritizing or selecting particular quantum
clouds over other ones. However, in the absence of such su-
perselection rules a generalized Jayne’s principle, or rather
Laplace’s principle of indifference, implies that any choice
of a particular quantum cloud over other ones amounts to an
“epistemic massaging” of empirical data, and their nonopera-
tional, misleading overinterpretation in terms of a speculative
ontology [8, 9, 17]; or, to quote Peres [78], unperformed ex-
periments have no results”. In contradistinction, it may not
be too speculative to hold it for granted that the only opera-
tionally justified ontology is the assumption of a single one
context or its associated maximal observable.
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