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Abstract: Kolmogorov’s axioms of probability theory are extended to conditional probabilities among
distinct (and sometimes intertwining) contexts. Formally, this amounts to row stochastic matrices
whose entries characterize the conditional probability to find some observable (postselection) in one
context, given an observable (preselection) in another context. As the respective probabilities need
not (but, depending on the physical/model realization, can) be of the Born rule type, this generalizes
approaches to quantum probabilities by Aufféves and Grangier, which in turn are inspired by
Gleason’s theorem.
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1. Kolmogorov-Type Conditional Probabilities among Distinct Contexts

A physical system or a mathematical entity may permit not only one “view” on it
but may allow “many” such views. For the sake of an illustration, imagine a metaphor
mentioned by Schrödinger ([1] p. 15 and 95): a single crystal cluster whose light, depending
on the viewpoint, may appear very different; the Vedantic analogy of a “many-faceted crystal
which, while showing hundreds of little pictures of what is in reality a single existent object, does
not really multiply that object. . . . A comparison used in Hinduism is of the many almost identical
images which a many-faceted diamond makes of some one object such as the sun.” Another example
is the coordinatization or coding and encryption of a vector with respect to different bases,
thereby in physical terms appearing as “coherent superpositions” (linear combinations) of
the respective vectors of these bases. Still another example is the representation of an entity
by isomorphic graphs.

This idea is grounded in epistemology and in issues related to the (empirical) cognition
of ontology and might appear both trivial and sophistic at first glance. Nevertheless, it may
be difficult to find means or formal models exhibiting multiple contextual views of one and
the same entity. Many conceptualizations of such situations are motivated by quantum
complementarity [2–5].

A “view” or (used synonymously) “frame” [6] or “context” will be in full generality
and thus informally (by glancing at heuristics from quantum mechanics and partition logic)
characterized as some domain or set of observables or properties that is

(i) largest or maximal in the sense that any extension yields redundancies,
(ii) yet at the same time in the finest resolution in the sense that the respective observables

or properties are “no composite” of “more elementary” ones,
(iii) contains only mutually exclusive observables in the sense that one property or observa-

tion excludes another, different property or observation, while at the same time
(iv) includes only simultaneously measurable, compatible observables or properties.

In what follows, I shall develop a conceptual framework for very general probabilities
on such collections of contexts. This amounts to an extension of Kolomogorov probabilities
which are defined in a single context to a multi-context situation. Scrutinized separately,
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every single context has “legit local” classical Kolomogorov probabilities. In addition to
those local structures and measures, (intertwined) multi-context configurations and their
probabilities have to be “joined”, “woven”, “meshed” or “stitched” together to result in
consistent and coherent “global” multi-aspect views and probabilities.

In particular, one needs to cope with possible overlaps of contexts in common, in-
tertwining, observables. Because two or more contexts need not (but may) be separated
from one another, they may indeed intertwine in one or more common elements and form
complex propositional structures serving a variety of counterfactual [7,8] purposes [9–11].

In terms of probabilistic language, one might interpret contexts as conditions. Inter-
twining contexts might be identified with different conditionings with non-empty intersec-
tion(s).

This text is organized as follows: first, Kolmogorov’s axioms or principles for prob-
abilities are generalized to arbitrary event structures not necessarily dominated by the
quantum formalism. Then these principles will be applied to quantum bistochasticity, as
well as partition logics which offer an abundance of alternate configurations. Some “exotic”
probabilities as well as possible generalizations by Cauchy’s functional equations are briefly
discussed. Throughout this article, only finite contexts will be considered.

2. Generalization of Kolmogorov’s Axioms to Arbitrary Event Structures

Suppose that, as it is assumed for classical Kolmogorov probabilities, the elements c1
within any given single, individual finite context C = {c1, . . . cn} are mutually exclusive,
compatible and exhaustive; that is, the context contains a “maximal” set of mutually
exclusive compatible elements. Kolmogorov’s axioms demand that (i) probabilities are non-
negative; (ii) additivity of mutually exclusive events or outcomes P(ci) + P(cj) = P(ci ∪ cj);
(iii) the probability of the tautology formed by the union of all elements in the context adds
up to one; that is, ∑ci∈C P(ci) = P

(⋃
ci∈C ci

)
= 1.

Inspired by the multi-context quantum case discussed later, the following general-
ization to two- or, by induction, to a multi-context configuration is suggested: Suppose
two arbitrary contexts C1 = {e1, . . . en} and C2 = {f1, . . . fm}. The conditional probabilities
P(fj|ei), with 1 ≤ j ≤ m and 1 ≤ i ≤ n, which alternatively can be considered as either
measuring the Bayesian degree of reasonable expectation representing a state of knowledge
or as quantification of a personal belief [12] or the frequency of occurrence of “fj given ei”,
can be arranged into a (n×m)-matrix whose entries are P(fj|ei),=; that is,

[P(C2|C1)] = [P({f1, . . . fm}|{e1, . . . en})]

≡

P(f1|e1) · · · P(fm|e1)
· · · · · · · · ·

P(f1|en) · · · P(fm|en)

.
(1)

Assume as axiom the following criterion: the conditional probabilities of the elements
of the second context with respect to an arbitrary element ek ∈ C1 of the first context C1 are
non-negative, additive, and, if this sum is extended over the entire second context C2, add
up to one:

P(fi|ek) + P(fj|ek) = P[(fi ∪ fj)|ek]

∑
fi∈C2

P(fi|ek) = P

 ⋃
fi∈C2

fi

|ek

 = 1.
(2)

That is, the row sum taken within every single row of [P(C2|C1)] adds up to one.
This presents a generalization of Kolmogorov’s axioms, as it allows cases in which

both contexts do not coincide. It just reduces to the classical axioms for single contexts
if, instead of a single element ek ∈ C1 of the first context C1, the union of elements of this
entire context C1 – and thus the tautology

⋃
ei∈C1

ei – is inserted into (2).
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We shall mostly be concerned with cases for which n = m; that is, the associated matrix
is a row (right) stochastic (square) matrix. Formally, such a matrix A has nonnegative entries
aij ≥ 0 for i, j = 1, . . . , n whose row sums add up to one: ∑n

j=1 aij = 1 for i = 1, . . . , n. If,
in addition to the row sums, also the column sums add up to one; that is, if ∑n

i=1 aij = 1
for j = 1, . . . , n, then the matrix is called doubly stochastic. If J is a (n× n)–matrix whose
entries are 1, then a (n× n)–matrix A is row stochastic if AJ = J.

It is instructive to ponder why intuitively those conditional probabilities should be
arranged in right- but not in bistochastic matrices. Suppose a (physical or another model)
system is in a state characterized by some element ej ∈ C1 of the first context C1. Then,
if one takes the (union of elements of the) entire other context C2, thereby exhausting all
possible outcomes of the second “view”, the conditional probability for this system to be
in any element of C2 given ej ∈ C1 should add up to one because this includes all that
can be (or happen or exist) with respect to the second “view”. Indeed, if this conditional
probability would not add up to one, say if it adds up to something strictly smaller or larger
than one, then either some elements would be missing in, or be “external” to, the context
C2, which cannot occur since by assumption contexts are “maximal”.

On the other hand, if a particular element fi ∈ C2 of the second context C2 remains fixed,
and the column sum ∑ej∈C1

P(fi|ej) extends over all ej ∈ C1, then there is no convincing
reason why this column sum should add up to one. Indeed, as will be argued later, while
quantum mechanics results in bistochastic matrices for pure states, generalized urn models
result in partitions of (hidden) variables that will not induce bistochasticity.

3. Cauchy’s Functional Equation Encoding Additivity

One way of looking at generalized global probabilities from “stitching” local classical
Kolmogorov probabilities is to maintain the essence of the axioms,

namely positivity, probability one (certainty) for tautologies and, in particular, additiv-
ity. Additivity requires that, for mutually exclusive compatible events ci and cj within a
given context, their probabilities can be expressed in terms of a Cauchy-type functional
equation P(ci) + P(cj) = P(ci ∪ cj). With “reasonable” side assumptions, this amounts to
the linearity of probabilities in the argument [13,14].

For operators in Hilbert spaces of dimensions higher than two, and in particular for
linear operators A and B with an operator norm |A| = +

√
〈A|A〉 based on the Hilbert–

Schmidt inner product 〈A|B〉 = Trace(A∗B), where A∗ stands for the adjoint of A, Cauchy’s
functional equation can be related to Gleason-type theorems [15–20].

The general case may involve other, hitherto unknown, arguments besides scalars and
entities related to vector (or Hilbert) spaces. The discussion will not be extended to potential
inputs and sources for generalized probabilities as the main interest is in developing a
generalizing probability theory in the multi-context setting, but clearly these questions
remain pertinent.

4. Examples of Application of the Generalized Kolmogorov Axioms
4.1. Quantum Bistochasticity for Pure States

The multi-context quantum case has been studied in great detail with emphasis
on motivating and deriving the Born rule [21,22] from elementary foundations. Recall
that a context has been defined as the “largest” or “maximal” domain of both mutually
exclusive as well as simultaneously measurable, compatible observables. In quantum
mechanics, “simultaneously measurability” transforms into compatibility and commutativity;
that is, such observables are not complementary and can be jointly measured without
restrictions. “Mutual exclusivity” is defined in terms of orthogonality of the respective
observables. The spectral theorem asserts mutual orthogonality of unit eigenvectors |ei〉
and the associated orthogonal projection operators Ei formed by the dyadic product Ei =
|ei〉〈ei|. A context can be equivalently represented by (i) an orthonormal basis, (ii) the
respective one-dimensional orthogonal projection operators associated with the basis
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elements, or (iii) a single maximal operator (maximal observable) whose spectral sum is
non-degenerate [9,23].

An essential assumption entering Gleason’s derivation [6] of the Born rule for quan-
tum probabilities is the validity of classical probability theory whenever the respective
observables are compatible. Formally, this amounts to the validity of Kolmogorov proba-
bility theory for mutually commuting observables; and in particular, to the assumption of
Kolmogorov’s axioms within contexts.

Already Gleason pointed out [6] that it is quite straightforward to find an ad hoc prob-
ability satisfying this aforementioned assumption, which is based on the Pythagorean
property: suppose (i) a quantized system is in a pure state |ψ〉 formalized by some
unit vector, and (ii) some “measurement frame” formalized by an orthonormal basis
C = {|e1〉, . . . , |en〉}. Then, the probabilities of outcomes of observable propositions associ-
ated with the orthogonal projection operators formed by the dyadic products |ei〉〈ei| of the
vectors of the orthonormal basis can be obtained by taking the absolute square of the length
of those projections of |ψ〉 onto |ei〉 along the remaining basis vectors, which amounts to
taking the scalar products |〈ψ|ei〉|2. Since the vector associated with the pure state as well
as all the vectors in the orthonormal system are of length one, and since these latter vectors
(of the orthonormal system) are mutually orthogonal, the sum ∑n

i=1 |〈ψ|ei〉|2 of all these
terms, taken over all the basis elements, needs to add up to one. The respective absolute
squares are bounded between zero and one. In effect, the orthonormal basis “grants a view”
of the pure quantum state. The absolute square can be rewritten in terms of a trace (over
some arbitrary orthonormal basis) into the standard form known as the Born rule of quan-
tum probabilities: |〈ψ|ei〉|2 = 〈ψ|ei〉〈ei|ψ〉 = 〈ψ|ei〉〈ei|Inψ〉 = ∑n

j=1〈ψ|ei〉〈ei|gj〉〈gj|ψ〉 =
∑n

j=1〈gj|ψ〉〈ψ︸ ︷︷ ︸
=Eψ

| ei〉〈ei︸ ︷︷ ︸
=Ei

|gj〉 = Trace(EψEi), where Eψ and Ei are the orthogonal projection

operators representing the state |ψ〉 and the (unit) vectors of the orthonormal basis |ei〉,
respectively, and C ′ = {|g1〉, . . . , |gn〉} is an arbitrary orthonormal basis, so that a resolution
of the identity is In = ∑n

j=1 |gj〉〈gj|.
It is also well known that, at least from a formal perspective, unit vectors in quantum

mechanics serve a dual role. On the one hand, they represent pure states. On the other
hand, by the associated one-dimensional orthogonal projection operator, they represent an
observable: the proposition that the system is in such a pure state [24,25]. Suppose now
that we exploit this dual role by expanding the pure prepared state into a full orthonormal
basis, of which its vector must be an element. (For dimensions greater than two, such an
expansion will not be unique as there is a continuous infinity of ways to achieve this.) Once
the latter basis is fixed, it can be used to obtain a “view” on the former (measurement) basis,
and a completely symmetric situation/configuration is attained. We might even go so far as
to say that which basis is associated with the “observed object” and with the “measurement
apparatus,” respectively, is purely a matter of convention and subjective perspective.

Therefore, as has been pointed out earlier, an orthogonal projection operator serves
a dual role. On the one handm it is a formalization of a dichotomic observable, more
precisely, an elementary yes–no proposition E = |x〉〈x| associated with the claim that “the
quantized system is in state |x〉. On the other hand, it is the formal representation of a pure
quantum state |y〉 equivalent to the operator F = |y〉〈y|. By the Born rule, the conditional
probabilities are symmetric with respect to exchange of |x〉 and |y〉: let C ′ = {|g1〉, . . . , |gn〉}
be some arbitrary orthonormal basis of Cn, then P(E|F) = Trace(EF) = Trace(FE) =
P(F|E); or, more explicitly, P(E|F) = ∑n

i=1〈gi|x〉〈x|y〉〈y|gi〉 = ∑n
i=1〈x|y〉〈y| gi〉〈gi︸ ︷︷ ︸

=In

|x〉 =

|〈x|y〉|2 = |〈y|x〉|2 = P(F|E). Therefore, the respective conditional probabilities form a
doubly stochastic (bistochastic) square matrix. This result is a special case of a more general
result on quadratic forms on the set of eigenvectors of normal operators [26].

Consider two orthonormal bases (two contexts). Their respective conditional probabil-
ities can be arranged into a matrix form. The ith row jth column component corresponds to



Entropy 2022, 1, 0 5 of 12

the conditional probability associated with the probability of occurrence of the jth element
(observable) of the second context, given the ith element (observable) of the first context.
By taking into account that cyclically interchanging factors inside a trace does not change
its value, this matrix needs to be not only row (right) stochastic but doubly stochastic
(bistochastic) [21,22]; that is, the sum is taken within every single row and every single
column adds up to one.

It is important to emphasize that bistochasticity holds for pure states but not for more
general ones. In particular, for non-rank-one density matrices that are the product of two
vectors, such as for mixed states, the above arguments do not apply.

4.2. Quasi-Classical Partition Logics

In what follows, we shall study sets of partitions of a given set. They have models [27]
based on (i) the finite automata initial state identification problem [28] as well as (ii)
generalized urns [29,30]. Partition logics are quasi-classical and value-definite in so far
as they allow a separating set of “classical” two-valued states [9, Theorem 0], and yet
they feature complementarity. Many of these logics are doubles of quantum logics, such
as for spin-state measurements, and thereby their graphs also allow faithful orthogonal
representations [31]. Yet some of them have no quantum analog. Therefore, they neither
form a proper subset of all quantum logics nor do they contain all logical structures
encountered in quantum logics (they are neither continuous nor can they have a non-
separating or nonexisting set of two-valued states). However, partition logics overlaps
significantly with quantum logics, as they bear strong similarities with the structures arising
in quantum theory.

If some (partition) logic which is a pasting [32–34] of contexts has a separating set
of two-valued states [9, Theorem 0], then there is a constructive, algorithmic [35] way of
finding a “canonical” partition logic [27], and associated with it, all classical probabilities
on it. First, find all the two-valued states on the logic and assign consecutive number to
these states. Then, for any atom (element of a context), find the index set of all two-valued
states which are one on this atom. Associate with each one, say, the ith, of the two valued
states a nonnegative weight i → λi, and require that the (convex) sum of these weights
∑i λi = 1 is 1. Since all two-valued states are included, the Kolmogorov axioms guarantee
that the sum of measures/weights within each of the contexts in the logic exactly adds up
to one.

It will be argued that in this case, and unlike for quantum conditional probabilities,
the conditional probabilities, in general, do not form a bistochastic matrix.

4.2.1. Two Non-Intertwining Two-Atomic Contexts

In the Babylonian spirit ([36] p. 172), consider some anecdotal examples which have
quantum doubles. The first one will be analogous to a spin- 1

2 state measurement.
The logic in Figure 1 enumerates the labels of the atoms (elementary propositions)

according to the “inverse construction” based on all four two-valued states on the logic
mentioned earlier, using all two-valued measures thereon [27]. With the identifications
e1 ≡ {1, 2}, e2 ≡ {3, 4}, f1 ≡ {1, 3}, and f2 ≡ {2, 4}, we obtain all classical probabilities by
identifying i→ λi > 0. The respective conditional probabilities are

[P(C2|C1)] = [P({f1, f2}|{e1, e2)] ≡
[

P(f1|e1) P(f2|e1)
P(f1|e2) P(f2|e2)

]

=

 P(f1∩e1)
P(e1)

P(f2∩e1)
P(e1)

P(f1∩e2)
P(e2)

P(f2∩e2)
P(e2)

 =

 P({1,3}∩{1,2})
P({1,2})

P({2,4}∩{1,2})
P({1,2})

P({1,3}∩{3,4})
P({3,4})

P({2,4}∩{3,4})
P({3,4})


=

 P({1})
P({1,2})

P({2})
P({1,2})

P({3})
P({3,4})

P({4})
P({3,4})

 =

[
λ1

λ1+λ2

λ2
λ1+λ2

λ3
λ3+λ4

λ4
λ3+λ4

]
,

(3)
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as well as

[P(C1|C2)] = [P({e1, e2}|{f1, f2})]

≡

 P({1})
P({1,3})

P({3})
P({1,3})

P({2})
P({2,4})

P({4})
P({2,4})

 =

[
λ1

λ1+λ3

λ3
λ1+λ3

λ2
λ2+λ4

λ4
λ2+λ4

]
.

(4)

{1, 3} {2, 4}

{1, 2} {3, 4}

1√
2

(
1, 1
)ᵀ 1√

2

(
1,−1

)ᵀ

(
1, 0
)ᵀ (

0, 1
)ᵀ

(a) (b)

Figure 1. Greechie orthogonality (hyper)diagram of a logic consisting of two nonintertwining contexts:
(a) the associated (quasi) classical partition logic representations obtained by an inverse construction
using all two-valued measures therein [27]; (b) a faithful orthogonal representation [37] rendering a
quantum double.

4.2.2. Two Intertwining Three-Atomic Contexts

In what follows, we shall investigate a “firefly” model that has been introduced ([38]
Fig 3A.1, p. 22) to investigate a quasi-classical example of an empirical situation occurring in
quantized systems with three exclusive outcomes formalized by three-dimensional Hilbert
space. It comprises a box with two perpendicular windows and a firefly inside. Suppose
that sometimes the firefly radiates some light, and sometimes it does not shine. Suppose
further that each one of the two perpendicular windows has a thin vertical line drawn
down the center to divide the respective window in half.

This configuration allows two types of experiments corresponding to looking through
exactly one of the two windows, respectively. Each type of experiment has three outcomes,
labeled as follows:

(i) e1 (first type of experiment) or f1 (second type of experiment): the light of the firefly is
in the left half of the window;

(ii) e2 (first type of experiment) or f2 (second type of experiment): the light of the firefly is
in the right half of the window;

(iii) e3 (first type of experiment) and f3 (second type of experiment): the firefly does not
shine (does not emit light).

The two observers at the two windows may observe any of the four combinations e1
or f1, e1 or f2, e2 or f1, or e2 or f2. Ideally, it will always be the case that whenever the first
observer registers no light—that is, e3—also the second observer will register no light—that
is, f3—and vice versa.

This firefly configuration thus gives rise to two contexts {e1, e2, e3} and {f1, f2, f3},
associated with the two observers, respectively. These contexts are “tied together” and
intertwine at the “no light” event or outcomes e3 and f3. Together, this results in five
conceivable experimental outcomes for two observers, corresponding to five two-valued
measures representing these outcomes, respectively.

The associated L12 firefly logic depicted in Fig. 2 uses labels for the atoms (elementary
propositions) that can be obtained by an “inverse construction” using all its five two-valued
measures [27,39]. By design, it will be very similar to the earlier logic with four atoms.
With the identifications e1 ≡ {1, 2}, e2 ≡ {3, 4}, e3 = f3 ≡ {5}, f1 ≡ {1, 3} and f2 ≡ {2, 4},
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we obtain all classical probabilities by identifying i→ λi > 0. The respective conditional
probabilities are

[P(C2|C1)] = [P({f1, f2, f3}|{e1, e2, e3})]

≡


P({1})

P({1,2})
P({2})

P({1,2})
P(∅)

P({1,2})
P({3})

P({3,4})
P({4})

P({3,4})
P(∅)

P({3,4})
P(∅)

P({5})
P(∅)

P({5})
P({5})
P({5})

 =


λ1

λ1+λ2

λ2
λ1+λ2

0
λ3

λ3+λ4

λ4
λ3+λ4

0
0 0 1

,
(5)

as well as

[P(C1|C2)] = [P({e1, e2, e3}|{f1, f2, f3})]

≡


P({1})

P({1,3})
P({3})

P({1,3})
P(∅)

P({1,3})
P({2})

P({2,4})
P({4})

P({2,4})
P(∅)

P({2,4})
P(∅)

P({5})
P(∅)

P({5})
P({5})
P({5})

 =


λ1

λ1+λ3

λ3
λ1+λ3

0
λ2

λ2+λ4

λ4
λ2+λ4

0
0 0 1

.
(6)

The conditional probabilities of the firefly logic, as depicted in Figure 2a, and enu-
merated in Equation (6) form a right stochastic matrix. As mentioned earlier, given any
particular outcome fi of the second context corresponding to some respective row in
the matrix (6), the row-sum of the conditional probabilities of all the conceivable mutu-
ally exclusive outcomes of the first context C1 = {e1, e2, e3} must be one. However, the
“transposed” statement is not true. The column-sum of the conditional probabilities of a
particular element ej with respect to all the mutually exclusive outcomes of the second
context C2 = {f1, f2, f3} needs not be one.

{1, 2}

{3, 4}

{5}

{2, 4}

{1, 3}
(
1, 0, 0

)ᵀ
(
0, 1, 0

)ᵀ
(
0, 0, 1

)ᵀ
1√
2

(
1, 1, 0

)ᵀ
1√
2

(
1,−1, 0

)ᵀ

(a) (b)

{1, 2}

{3, 4}

{5}

{2, 4}

{1, 3}
(
1, 0, 0

)ᵀ
(
0, 1, 0

)ᵀ
(
0, 0, 1

)ᵀ
1√
2

(
1, 1, 0

)ᵀ
1√
2

(
1,−1, 0

)ᵀ

(c) (d)

Figure 2. Greechie orthogonality (hyper)diagram of the L12 “firefly” logic: (a) the associated
(quasi)classical partition logic representation obtained through in inverse construction using all
two-valued measures therein [27]; (b) a faithful orthogonal representation [37] rendering a quan-
tum double; (c) the “classical” two-valued measure or truth assignment number one (of five); (d) a

pure quantum state prepared as
(

1, 0, 0
)ᵀ

. A red square and gray and green circles indicate value

assignments 1, 1
2 and 0, respectively.

Take, for example, the singular distribution case such that λ1 = 1, and therefore, by
positivity and convexity, λi 6=1 = 0; that is, λ2 = λ3 = λ4 = λ5 = 0. This configuration,
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depicted in Fig. 2(c), results in the following, partial (undefined components are indicated
by the symbol “ 0

0 ”) right stochastic matrix (7) derived from (6):
P({1})

P({1,3})
P({3})

P({1,3})
P(∅)

P({1,3})
P({2})

P({2,4})
P({4})

P({2,4})
P(∅)

P({2,4})
P(∅)

P({5})
P(∅)

P({5})
P({5})
P({5})



=


λ1

λ1+λ3

λ3
λ1+λ3

0
λ2

λ2+λ4

λ4
λ2+λ4

0
0 0 1

 =

1 0 0
0
0

0
0 0

0 0 1

.

(7)

In such a case, in terms of, say, a generalized urn model, the observable proposition
{2, 4} associated with the plaintext “looked upon in the first color (in this case blue), the ball
drawn from the urn shows the symbols 2 or 4” will never occur; regardless of which ball type
associated with the other context {1, 2}, {3, 4} or {5} one would have (counterfactually)
drawn because the generalized urn is only loaded with balls of one type, namely the first
type, with the symbol “{1, 2}” painted on them in the first color, and the symbols “{1, 3}”
painted on them in the second color. (Instead of labels indicating the elements of the
partition, one may choose other symbols, such as {1, 3} ≡ a ≡ {1, 2}, {2, 4} ≡ b ≡ {3, 4}
and c ≡ {5}, in the respective colors [27,40].)

Ultimately, one may say that it is the discontinuity of the two-valued measures which
“prevents” the quasiclassical conditional probabilities to be arranged in a bistochastic
matrix. A similar quantum realization could, for instance, be obtained by the three-
dimensional faithful orthogonal representation [37] {1, 2} ≡

(
1, 0, 0

)ᵀ, {3, 4} ≡
(
0, 1, 0

)ᵀ,
{5} ≡

(
0, 0, 1

)ᵀ, {1, 3} ≡ (1/
√

2)
(
1, 1, 0

)ᵀ and {2, 4} ≡ (1/
√

2)
(
1,−1, 0

)ᵀ. Preparition (
“loading the quantum urn”) with state {1, 2} ≡

(
1, 0, 0

)ᵀ, as depicted in Fig. 2(d), yields the
quantum bistochastic matrixP



1

0
0

,

0
1
0

,

0
0
1


∣∣∣∣∣∣∣



1√
2

1√
2

0

,


1√
2

− 1√
2

0

,

0
0
1




 =

 1
2

1
2 0

1
2

1
2 0

0 0 1

. (8)

4.2.3. Different Intrinsically Operational State Preparation

A different approach to partition logic would be to insist that only intrinsical—that is,
for any embedded observer having access to means and methods available “from within”
the system—operational state preparations should be allowed. In such a scenario, it is
operationally impossible for an observer with access to only one context—in the generalized
urn model only one color—to single out the particular type of two-valued measure (ball).
Thereby, effectively any state preparation is reduced to the elements of the partition in the
respective context (color).

Therefore, in the earlier firefly model depicted in Fig. 2, the intrinsic operational
resolution is among the subsets resulting from the unions of two-valued states in {1, 2}, {3, 4}
and {5} in the first context (color); and among {1, 3}, {2, 4} and {5} in the second context (
color), as opposed to the single two-valued state discussed earlier. Stated differently, an
observer accessing a generalized urn in the first context (color) is not capable to differentiate
between the first and the second two-valued measure (ball type), and would produce a
mixture among them if asked to prepare the state {1, 2}. Similarly, the observer would not
be able to differentiate between the third and the fourth two-valued measure (ball type) and
would thus produce a mixture between those when preparing the state {3, 4}. However,
the ball type {5} is recognized and prepared without ambiguity. Indeed, if one assumes
equidistribution (uniform mixtures ([41] Assumption 1)) of measures (ball types), a very
similar situation as in quantum mechanics [cf Figure 2(d), Equation (8)] would result as
λ1 = λ2 = λ3 = λ4 = λ5 = 1

5 , and one would thus “recover” the matrix in Equation (8).



Entropy 2022, 1, 0 9 of 12

Pointedly stated, there is an epistemic issue of state preparation. If one demands that
the state has to be prepared by the distinctions accessible from a single context (color in
the generalized urn model), then there is no way to prepare or access "ontologic states",
say, selecting balls of type 1 (first two-valued measure) only. The difference is subtle. In the
“ontic” state case, one can resolve (and has access to) every single two-valued measure (ball
type). In the “epistemic,” intrinsic, operational state case, one is limited to the operational
procedures available. For example, one cannot “take off the colored glasses” in Wright’s
generalized urn model. That is, the resolution of balls is limited to whatever types can be
differentiated in that color.

Whenever such a scenario is considered, the respective matrices representing all
conditional probabilities may be very different from the previous scenarios. Indeed, one
may suspect that with the assumption of preservation of equidistributed uniform mixtures
across context changes, the respective matrices are bistochastic (at least for equidistributed
urns) because of a certain type of “epistemic continuity”. The sum of the conditional
probabilities for any particular outcome of the second context relative to all other outcomes
of the first context should add up to unity.

4.2.4. Pentagon/Pentagram/House Logic with Five Cyclically Intertwining Three-Atomic
Contexts

By now, it should be clear how classical conditional probabilities work on partition
logics. Consider one more example: the pentagon/pentagram/(orthomodular) house ([33]
[p. 46, Fig. 4.4]) logic in Figure 3. Labels of the atoms (elementary propositions) are again
obtained by an “inverse construction” using all 11 two-valued measures thereon [29]. Take,
for example, one of the two contexts C4 = {{2, 7, 8}, {1, 3, 9, 10, 11}, {4, 5, 6}} “opposite” to
the context C1 = {{1, 2, 3}, {4, 5, 7, 9, 11}, {6, 8, 10}}.

{1, 2, 3}

{7, 8, 9, 10, 11}

{4, 5, 6}

{1, 3, 9, 10, 11}

{2, 7, 8}
{1, 4, 6, 10, 11}

{3, 5, 9}

{1, 2, 4, 7, 11}

{6, 8, 10}

{4, 5, 7, 9, 11}

Figure 3. Greechie orthogonality (hyper)diagram of the pentagon/pentagram/house logic, based on
eleven two-valued states.



Entropy 2022, 1, 0 10 of 12

With the identifications e1 ≡ {1, 2, 3}, e2 ≡ {4, 5, 7, 9, 11}, e3 ≡ {6, 8, 10}, f1 ≡ {2, 7, 8},
f2 ≡ {1, 3, 9, 10, 11}, and f3 ≡ {4, 5, 6}. The respective conditional probabilities are

[P(C2|C1)] = [P({f1, f2, f3}|{e1, e2, e3})]

≡


P({2,7,8}∩{1,2,3})

P({1,2,3})
P({1,3,9,10,11}∩{1,2,3})

P({1,2,3})
P({4,5,6}∩{1,2,3})

P({1,2,3})
P({2,7,8}∩{4,5,7,9,11})

P({4,5,7,9,11})
P({1,3,9,10,11}∩{4,5,7,9,11})

P({4,5,7,9,11})
P({4,5,6}∩{4,5,7,9,11})

P({4,5,7,9,11})
P({2,7,8}∩{6,8,10})

P({6,8,10})
P({1,3,9,10,11}∩{6,8,10})

P({6,8,10})
P({4,5,6}∩{6,8,10})

P({6,8,10})



=


P({2})

P({1,2,3})
P({1,3})

P({1,2,3})
P(∅)

P({1,2,3})
P({7})

P({4,5,7,9,11})
P({11})

P({4,5,7,9,11})
P({4,5})

P({4,5,7,9,11})
P({8})

P({6,8,10})
P({10})

P({6,8,10})
P({6})

P({6,8,10})



=


λ2

λ1+λ2+λ3

λ1+λ3
λ1+λ2+λ3

0
λ7

λ4+λ5+λ7+λ9+λ11

λ9+λ11
λ4+λ5+λ7+λ9+λ11

λ4+λ5
λ4+λ5+λ7+λ9+λ11

λ8
λ6+λ8+λ10

λ10
λ6+λ8+λ10

λ6
λ6+λ8+λ10

.

(9)

5. Greechie and Wright’S Twelfth Dispersionless State on the
Pentagon/Pentagram/House Logic

Despite the aforementioned 11 two-valued states, there exists another dispersionless
state on cyclic pastings of an odd number of contexts, namely, a state being equal to 1

2 on
all intertwines/bi-connections [29,42]. This state and its associated probability distribution
are neither realizable by quantum nor by classical probability distributions. In this case, the
conditional probabilities of any two distinct contexts Ci and Cj, for 1 ≤ i, j ≤ 5 are

[
P(Ci|Cj)

]
≡

 1
2 0 1

2
0 0 0
1
2 0 1

2

. (10)

6. Three-Colorable Dense Points on the Sphere

There exist dense subsets of the unit sphere in three dimensions which require just
three colors for associating different colors within every mutually orthogonal triple of (unit)
vectors [43–45] forming an orthonormal basis. By identifying two of these colors with the
value “0”, and the remaining color with the value “1”, one obtains a two-valued measure
on this “reduced” sphere. The resulting conditional probabilities are discontinuous.

7. Extrema of Conditional Probabilities in Row and Doubly Stochastic Matrices

The row stochastic matrices representing conditional probabilities form a polytope in
Rn2

whose vertices are the nn matrices Ti, i = 1, . . . , nn, with exactly one entry 1 in each
row ([46] p. 49). Therefore, a row stochastic matrix can be represented as the convex sum
∑nn

i=1 λiTi, with nonnegative λi ≥ 0 and ∑nn

i=1 λi = 1.
For conditional probabilities yielding doubly stochastic matrices, such as, for instance,

the quantum case, the Birkhoff theorem [26] yields more restricted linear bounds. It states
that any doubly stochastic (n × n)–matrix is the convex hull of m ≤ (n − 1)2 + 1 ≤ n!
permutation matrices. That is, if A ≡ aij is a doubly stochastic matrix such that aij ≥ 0
and ∑n

i=1 aij = ∑n
i=1 aji = 1 for 1 ≤ i, j ≤ n, then there exists a convex sum decomposition

A = ∑
m≤(n−1)2+1≤n!
k=1 λkPk in terms of m ≤ (n− 1)2 + 1 linear independent permutation

matrices Pk such that λk ≥ 0 and ∑
m≤(n−1)2+1≤n!
k=1 λk = 1.

8. Summary

I have attempted to sketch a generalized probability theory for multi-context con-
figurations of observables which may or may not be embeddable into a single classical
Boolean algebra. Complementarity and distinct contexts require an extension of the Kol-
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mogorov axioms. This has been achieved by an additional axiom ascertaining that the
conditional probabilities of observables in one context, given the occurrence of observables
in another context, form a stochastic matrix. Various models have been discussed. In the
case of doubly stochastic matrices, linear bounds have been derived from the convex hull
of permutation matrices.
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