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Abstract: Extensions of the Kochen–Specker theorem use quantum logics whose classical
interpretation suggests a true-implies-value indefiniteness property. This can be interpreted as
an indication that any view of a quantum state beyond a single context is epistemic. A remark by
Gleason about the ad hoc construction of probability measures in Hilbert spaces as a result of the
Pythagorean property of vector components is interpreted platonically. Unless there is a total match
between preparation and measurement contexts, information about the former from the latter is
not ontic, but epistemic. This is corroborated by configurations of observables and contexts with a
truth-implies-value indefiniteness property.
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1. Quantum Contexts as Views on States

Contexts arise naturally in quantum mechanics: they correspond to the “greatest classical
subdomains within the expanse of conceivable quantum propositions:” for all empirical matters,
every observable within a particular fixed context can be assumed classical with respect to and relative
to that context. Therefore, according to Gleason [1], it appears prudent to assume that classical
probabilities should be applicable to such classical mini-universes; and in particular, when considering
observables within a given context. Gleason formalized this in terms of frame functions and proceeded
to show how the quantum probabilities, in particular, the Born rule, can be “stitched together” from
these classical bits and pieces. This paper can be seen as a prolegomenon to this approach; and as a
contribution to the ongoing search for its semantics.

Formally, the concept of context can be exposed in two ways: one is in terms of “largest possible”
sets of orthogonal pure states; that is, in terms of (unit) vectors and their linear spans. Another one
is by maximal operators and the perpendicular projection operators in their non-degenerate
spectral decomposition.

Let us start by supposing that contexts can be represented by orthonormal bases of Hilbert space.
Due to the spectral theorem, this immediately gives rise to an equivalent conception of context: that
as a maximal observable, which is formed by some (non-degenerate) spectral sum of the mutually
orthogonal perpendicular projection operators corresponding to the basis states. This is just the
expression of the dual role of perpendicular projection operators in quantum mechanics: they represent
both pure states, as well as observable bits; that is, elementary yes-no propositions.

For the sake of an elementary example, suppose one is dealing with (lossless) electron spin state
(or photon polarization) measurements. As there are two outcomes, the associated Hilbert space is
two-dimensional. The two outcomes can be identified with two arbitrary orthogonal normalized
vectors therein, forming an orthonormal basis. Suppose, for the sake of further simplicity, that we
parametrize this basis to be the standard Cartesian basis in two-dimensional Hilbert space, its two
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vectors being (Equation (1.8), [2]) |0〉 =
(

1, 0
)ᵀ

and |1〉 =
(

0, 1
)ᵀ

, where the superscript symbol

“ᵀ” indicates transposition. Their dyadic products E0 = |0〉〈0| =
(

1, 0
)ᵀ
⊗
(

1, 0
)

=

(
1 0
0 0

)
,

E1 =

(
0 0
0 1

)
form the corresponding (mutually) orthogonal perpendicular projection operators.

These contexts can be either represented in terms of vectors, like C = {|0〉, |1〉}, or in terms of
perpendicular projection operators, like C = {E0, E1}.

Any two distinct numbers λ0 6= λ1 define a maximal operator through the “weighted”
spectral sum:

A = λ0E0 + λ1E1 = λ0|0〉〈0|+ λ1|1〉〈1| =
(

λ0 0
0 λ1

)
. (1)

The term “maximal” refers to the fact that A “spans” a “classical sub-universe” of mutually
commuting operators through variations of f (A) = f (λ0)E0 + f (λ1)E1, where f : R 7→ R represents
some real valued polynomial or function of a single real argument (§ 84, Theorems 1 and 2, p. 171, [3]).
In particular, this includes the context C = {E0, E1} through the two binary functions fi(λj) = δij,
with i, j ∈ {0, 1}.

2. Probabilities on Contexts in Quantum Mechanics

Let us concentrate on probabilities next. As already mentioned, Gleason [1] observed that classical
observables should obey classical probabilities (this should be the same for Bayesian and frequentist
approaches). Can we, therefore, hope for the existence of some “Realding”, that is some global ontology,
some enlarged panorama of “real physical properties”, behind these stitched probabilities? As it turns
out, relative to reasonable assumptions and the absence of exotic options, this is futile.

Formally, this issue can be rephrased by recalling that the main formal entities of quantum
mechanics are all based on Hilbert space; that is, on vectors, as well as their relative position and
permutations. A pure state represented as a vector |ψ〉 can be conveniently parameterized or encoded
by coordinates referring to the respective bases. Because of their convenience, one chooses orthonormal
bases, that is contexts, for such a parametrization. Why is convenience important? Because, as has
been noted earlier, in finite dimensions D, any such context C ≡ {|e1〉, |e2〉, . . . , |eD〉} can also be
interpreted as a maximal set of co-measurable propositions C ≡ {E1, E2, . . . , ED} with Ei = |ei〉〈ei|,
1 ≤ i ≤ D, as the latter refers to a complete system of orthogonal perpendicular projections, which
are a resolution of the identity operator ID = ∑D

i=1 Ei. For any such context, classical Kolmogorov
probability theory requires the probabilities P to satisfy the following axioms:

A1 probabilities are real-valued and non-negative: P(Ei) ∈ R, and P(Ei) ≥ 0 for all Ei ∈ C, or,
equivalently, 1 ≤ i ≤ D;

A2 probabilities of mutually-exclusive observables within contexts are additive: P
(

∑k≤D
i=1 Ei

)
=

∑k≤D
i=1 P (Ei) ;

A3 probabilities within one context add up to one: P(ID) = P
(

∑D
i=1 Ei

)
= 1.

How can probabilities Pψ (E) of propositions formalized by perpendicular projection operators
(or, more generally, observables whose spectral sums contain such propositions) on given states |ψ〉
be formed that adhere to these axioms? As already Gleason pointed out in the second paragraph
of (Section 1, p. 885, [1]), there is an ad hoc way to obtain a probability measure on Hilbert spaces:
a vector |ψ〉 can be “viewed” through a “probing context” C as follows:

(i) For each closed subspace spanned by the vectors |ei〉 in the context C, take the projection Ei|ψ〉 of
|ψ〉 onto |ei〉.
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(ii) Take the absolute square of the length (norm) of this projection and identify it with the probability
Pψ (Ei) of finding the quantum system that is in state |ψ〉 to be in state |ei〉; that is (the symbol “†”
stands for the Hermitian adjoint):

Pψ (Ei) = (Ei|ψ〉)† Ei|ψ〉 = 〈ψ|E†
i Ei|ψ〉

= 〈ψ|ei〉 〈ei|ei〉︸ ︷︷ ︸
=1

〈ei|ψ〉 = 〈ψ|ei〉〈ei|ψ〉 = ‖〈ei|ψ〉‖2. (2)

Because of the mutual orthogonality of the elements in the context C, the Pythagorean theorem
enforces the third axiom A3 as long as all vectors involved are normalized; that is, has length (norm) one.
This situation is depicted in Figure 1.

The situation is symmetric in a sense that reflects the duality between observable and state
observed: Suppose now that the state |ψ〉 is “completed” by other vectors to form an entire context
C ′. Then, one could consider this context C ′, including |ψ〉 to be“probe” vectors, now identified as
states, in the original context C. Very similarly, probability measures adhering to Axioms A1–A3 can
be constructed by, say, for instance, PEψ

(Ei)
2

latter refers to a complete system of orthogonal perpendicu-
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ality between observable and state observed: Suppose now
that the state |ψ〉 is “completed” by other vectors to form an
entire context C ′. Then one could consider this context C ′,
including |ψ〉 to “probe” vectors – now identified as states –
in the original context C . Very similarly, probability mea-
sures adhering axioms A1–A3 can be constructed by, say, for
instance, PEψ (Ei)

It is important to keep in mind that, although Gleason’s
Ansatz is about a single context C it is valid for all con-
texts; indeed, formally, for a continuum of contexts repre-
sented by the continuum of possible orthonormal bases of D-
dimensional Hilbert space. Every such context entails a par-
ticular view on the state |ψ〉; and there are a continuum of such
views on the state |ψ〉.

Furthermore, there is a symmetry between the two contexts
C and C ′ involved. We may call C ′ the “preparation context”

|e2〉
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E1|ϕ〉
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FIG. 1. An orthonormal basis forming a context C = {|e1〉, |e2〉}
represents a frame of reference from which a “view” on a state |ψ〉
can be obtained. Formally, if the vectors |ψ〉 and |ϕ〉 are normal-
ized, such that 〈ψ|ψ〉 = 〈ϕ|ϕ〉 = 1, then the absolute square of the
length (norm) of the projections E1|ψ〉 = |e1〉〈e1|ψ〉 and E2|ψ〉 =
|e2〉〈e2|ψ〉 as well as E1|ϕ〉 = |e1〉〈e1|ϕ〉 and E2|ϕ〉 = |e2〉〈e2|ϕ〉
add up to one. Conversely, a second context C ′ = {|ψ〉, |ϕ〉} grants
a frame of reference from which a “view” on the first context C can
be obtained.

and C the “measurement context,” but these denominations
are purely conventional. In this sense, it is a matter of conven-
tion if we consider “C probing C ′” or “C ′ probing C .”

There is one “privileged view” on the preparation context
C ′: that is the view obtained if both the preparation and mea-
surement contexts coincide: C = C ′. Under such circum-
stances the observables are value definite: their values coin-
cide with those of the preparation.

III. CONTEXTS IN PARTITION LOGICS AND THEIR
PROBABILITIES

This section is a reminder rather than an exposition [4–10]
into partition logics. Suffice it to say that partition logics are
probably the most elementary generalization of Boolean alge-
bras: they are the Boolean subalgebras associated with sets of
partitions of a given set which are “pasted” or “stitched” to-
gether at their common elements; similar to contexts (blocks,
subalgebras) in quantum logic. The main difference is that
the latter is a continuous logic based on geometrical entities
(vectors), whereas partition logics are discrete, finite algebraic
structures based on sets of partitions of a given set. Never-
theless, for empirical purposes, it is always possible to come
up with a partition logic mimicking the respective quantum
logic [11]. Partition logics have two known model realization:
automaton logics [12–14] and generalized urn models [15–
17].

Figure 1. An orthonormal basis forming a context C = {|e1〉, |e2〉} represents a frame of reference
from which a “view” on a state |ψ〉 can be obtained. Formally, if the vectors |ψ〉 and |ϕ〉 are normalized,
such that 〈ψ|ψ〉 = 〈ϕ|ϕ〉 = 1, then the absolute square of the length (norm) of the projections
E1|ψ〉 = |e1〉〈e1|ψ〉 and E2|ψ〉 = |e2〉〈e2|ψ〉, as well as E1|ϕ〉 = |e1〉〈e1|ϕ〉 and E2|ϕ〉 = |e2〉〈e2|ϕ〉
adds up to one. Conversely, a second context C ′ = {|ψ〉, |ϕ〉} grants a frame of reference from which a
“view” on the first context C can be obtained.

It is important to keep in mind that, although Gleason’s ansatz is about a single context C, it is
valid for all contexts; indeed, formally, for a continuum of contexts represented by the continuum of
possible orthonormal bases of D-dimensional Hilbert space. Every such context entails a particular
view on the state |ψ〉; and there is a continuum of such views on the state |ψ〉.
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Furthermore, there is a symmetry between the two contexts C and C ′ involved. We may call
C ′ the “preparation context” and C the “measurement context,” but these denominations are purely
conventional. In this sense, it is a matter of convention if we consider “C probing C ′” or “C ′ probing C.”

There is one “privileged view” on the preparation context C ′, that is the view obtained if both the
preparation and measurement contexts coincide: C = C ′. Under such circumstances, the observables
are value definite: their values coincide with those of the preparation.

3. Contexts in Partition Logics and Their Probabilities

This section is a reminder rather than an exposition [4–10] of partition logics. Suffice it to say
that partition logics are probably the most elementary generalization of Boolean algebras: they are
the Boolean subalgebras associated with sets of partitions of a given set, which are “pasted” or
“stitched” together at their common elements; similar to contexts (blocks, subalgebras) in quantum
logic. The main difference is that the latter is a continuous logic based on geometrical entities (vectors),
whereas partition logics are discrete, finite algebraic structures based on sets of partitions of a given set.
Nevertheless, for empirical purposes, it is always possible to come up with a partition logic mimicking
the respective quantum logic [11]. Partition logics have two known model realization: automaton
logics [12–14] and generalized urn models [15–17].

Just like classical probabilities on Boolean logics, the probabilities on Boolean structures are
formed by a convex summation of all two-valued measures [9,10,18], corresponding to ball types.
Such probabilities will henceforth be called (quasi)classical.

4. Probabilities on Pastings or Stitchings of Contexts

From dimension D ≥ 3 onwards, contexts can be non-trivially connected or intertwined [1] in up
to D − 2 common elements. Such intertwining chains of contexts give rise to various apparently
“non-classical” logics; and a wealth (some might say a plethora) of publications dealing with
ever-increasing “strange” or “magic” properties of observables hitherto unheard of in classical physics.
The following logics have a realization in (mostly three-dimensional if not stated otherwise) Hilbert
space. For concrete parametrizations, the reader is either referred to the literature or to a recent survey
(Chapter 12, [10]).

On such pastings of contexts, (quasi)classical probabilities and their bounds, termed conditions of
possible experience by Boole (p. 229, [19]), can be obtained in three steps [8–10,18]:

(i) Enumerate all truth assignments (or two-{0, 1}-valued measures or states) vi.
(ii) The (quasi)classical probabilities are obtained by the formation of the convex sum ∑i λivi over all

such states obtained in (i), with 0 ≤ λi ≤ 1 and ∑i λi = 1.
(ii) The Bell-type bounds on probabilities and expectations are obtained by bundling these truth

assignments into vectors, one per two-valued measure, with the coordinates representing the
respective values of those states on the atoms (propositions, observables) of the logic; and by
subsequently solving the hull problem for a convex polytope whose vertices are identified with
the vectors formed by all truth assignments [20–23].

In what follows, some such quantum logics will be enumerated whose quantum probabilities
co-exist and sometimes violate their (quasi)classical probabilities, if they exist. Such violations can
be expected to occur quite regularly, as (although in both cases, the probability Axioms A1–A3 are
satisfied for mutually-compatible observables) the quantum probabilities are formed very differently
from the (quasi)classical ones; that is, not by convex sums as in the (quasi)classical case, but by scalar
products among vectors.
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4.1. Triangular and Square Logics in Four Dimensions

For geometric and algebraic reasons, there is no cyclic pasting of three or four contexts in three
dimensions, but in four dimensions, this is possible; as depicted in Figure 2. The (quasi)classical
probabilities are enumerated in Appendices A and B.
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mation of all two-valued measures [9, 10, 18] – correspond-
ing to ball types. Such probabilities will hencefort called
(quasi)classical.

IV. PROBABILITIES ON PASTINGS OR STITCHINGS OF
CONTEXTS

From dimension D ≥ 3 onwards, contexts can be non-
trivially connected or intertwined [1] in up to D− 2 com-
mon elements. Such intertwining chains of contexts give
rise to various apparently “non-classical” logics; and a wealth
(some might say a plethora) of publications dealing with ever-
increasing “strange” or “magic” properties of observables
hitherto unheard of in classical physics. The following logics
have a realization in (mostly three-dimensional if not stated
otherwise) Hilbert space. For concrete parametrizations, the
reader is either referred to the literature, or to a recent sur-
vey [10, Chapter 12].

On such pastings of contexts, (quasi)classical probabilities
and their bounds, termed conditions of possible experience by
Boole [19, p. 229], can be obtained in three steps [8–10, 18]:

(i) Enumerate all truth assignments (or two-{0,1}-valued
measures or states) vi.

(ii) The (quasi)classical probabilities are obtained by the
formation of the convex sum ∑i λivi over all such states
obtained in (i), with 0≤ λi ≤ 1 and ∑i λi = 1.

(ii) The Bell-type bounds on probabilities and expectations
are attained by bundling these truth assignments into
vectors, one per two-valued measure, with the coordi-
nates representing the respective values of those states
on the atoms (propositions, observables) of the logic;
and by subsequently solving the Hull problem for a con-
vex polytope whose vertices are identified with the vec-
tors formed by all truth assignments [20–23].

In what follows some such quantum logics will be enumer-
ated whose quantum probabilities co-exist and sometimes vio-
late their (quasi)classical probabilities, if they exist. Such vio-
lations can be expected to occur quite regularly, as – although
in both cases the probability axioms A1–A3 are satisfied for
mutually compatible observables – the quantum probabilities
are formed very differently from the (quasi)classical ones; that
is, not by convex sums as in the (quasi)classical case, but by
scalar products among vectors.

A. Triangular and square logics in four dimensions

For geometric and algebraic reasons there is no cyclic past-
ing of three or four contexts in three dimensions, but in
four dimensions this is possible; as depicted in Fig. 2. The
(quasi)classical probabilities are enumerated in the Appen-
dices A and B.

1

9

8

7 6 5 4

3

2

1121110

9

8

7 6 5 4

3

2

(a) (b)

FIG. 2. Informally, Greechie (or, in another wording, orthog-
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Summation of the (quasi)classical probabilities on the in-
tertwining atoms of the triangle logic yields p1 + p4 + p7 =
λ1 + λ2 + λ7 + λ12 + λ13 + λ14 ≤ 1. However, the axioms
of probability theory are too restrictive to allow for quan-
tum violations of these probabilities: after all, these adjacent
vertices are mutually orthogonal, and thus are in the same
context (augmented with the fourth atom of that context).
Other inequalities, such as p1 + p2 = λ1 + λ2 ≤ p5 + p6 =
(λ1 + λ3 + λ4 + λ8 + λ9)+ (λ2 + λ5 + λ6 + λ10 + λ11), com-
pare vertices with the adjacent “inner” atoms; but again, due
to the probability axiom A3, the quantum probabilities must
obey these inequalities as well.

Komei Fukuda’s cddlib package [25] can be employed
for a calculation of the hull problem, yielding all Bell-type
inequalities associated with the convex polytope whose ver-
tices are associated with the 14 or 34 truth assignments (two-
valued measures) on the respective triangle and square logics.
It turns out that all of them are expressions of the axioms A1–
A3 which are mandatory also for the quantum probabilities
within contexts.

B. Pentagon (pentagram) logic

The pentagon (graph theoretically equivalent to a penta-
gram) logic is a cyclic stitching or pasting of five contexts [26–
32] as depicted in Fig. 3. The (quasi)classical probabilities [9,

Figure 2. Informally, Greechie (or, in different wording, orthogonality) diagrams [24] represent
contexts by smooth curves such as straight lines or circles. The atoms are represented by circles.
Two intertwining contexts are represented by “broken” (not smooth), but connected lines. (a) Greechie
orthogonality diagram of triangle logic in four dimensions, realized by (from the top) 1 : 1

2 (1, 1, 1, 1)ᵀ,
2 : 1√

2
(1, 0,−1, 0)ᵀ, 3 : 1√

2
(0, 1, 0,−1)ᵀ, 4 : 1

2 (−1, 1,−1, 1)ᵀ, 5 : 1√
2
(0, 1, 1, 0)ᵀ, 6 : 1√

2
(1, 0, 0, 1)ᵀ,

7 : 1
2 (1, 1,−1,−1)ᵀ, 8 : 1√

2
(0, 0, 1,−1)ᵀ and 9 : 1√

2
(1,−1, 0, 0)ᵀ. (b) Greechie orthogonality diagram

of triangle logic in four dimensions, realized by (from the top right) 1 : (1, 0, 0, 0)ᵀ, 2 : 1√
2
(0, 1, 0, 1)ᵀ,

3 : 1√
2
(0, 1, 0,−1)ᵀ, 4 : (0, 0, 1, 0)ᵀ, 5 : 1√

2
(1, 1, 0, 0)ᵀ, 6 : 1√

2
(1,−1, 0, 0)ᵀ, 7 : (0, 0, 0, 1)ᵀ and

8 : 1√
2
(1, 0, 1, 0)ᵀ, 9 : 1√

2
(1, 0,−1, 0)ᵀ, 10 : (0, 1, 0, 0)ᵀ, 11 : 1√

2
(0, 0, 1, 1)ᵀ, 12 : 1√

2
(0, 0, 1,−1)ᵀ. (Not all

orthogonality relations are represented.) The associated (quasi)classical probabilities are obtained from
a convex summation over all truth assignments, and listed in Appendices A and B.

Summation of the (quasi)classical probabilities on the intertwining atoms of the triangle logic
yields p1 + p4 + p7 = λ1 + λ2 + λ7 + λ12 + λ13 + λ14 ≤ 1. However, the axioms of probability theory
are too restrictive to allow for quantum violations of these probabilities: after all, these adjacent vertices
are mutually orthogonal and thus are in the same context (augmented with the fourth atom of that
context). Other inequalities, such as p1 + p2 = λ1 + λ2 ≤ p5 + p6 = (λ1 + λ3 + λ4 + λ8 + λ9) +

(λ2 + λ5 + λ6 + λ10 + λ11), compare vertices with the adjacent “inner” atoms; but again, due to the
probability Axiom A3, the quantum probabilities must obey these inequalities, as well.

Komei Fukuda’s cddlib package [25] can be employed for a calculation of the hull problem,
yielding all Bell-type inequalities associated with the convex polytope, the vertices of which are
associated with the 14 or 34 truth assignments (two-valued measures) on the respective triangle and
square logics. It turns out that all of them are expressions of Axioms A1–A3, which are mandatory
also for the quantum probabilities within contexts.

4.2. Pentagon (Pentagram) Logic

The pentagon (graph theoretically equivalent to a pentagram) logic is a cyclic stitching or pasting
of five contexts [26–32], as depicted in Figure 3. The (quasi)classical probabilities (p. 289, Figure 11.8, [9])
can be obtained by taking the convex sum of all 11 two-valued measures [26], as listed in Appendix C.
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Because of the convex sum of all λ’s adds up to one, the sum of the (quasi)classical probabilities
enumerated in Equation (A3), taken merely on the five intertwining observables, yields:

p1 + p3 + p5 + p7 + p9

= λ1 + λ4 + λ7 + λ9 + λ10 + 2 (λ2 + λ3 + λ5 + λ6 + λ8)

≤ 2
11

∑
i=1

λi = 2.

(3)

This inequality is in violation of quantum predictions [30,32] of
√

5 > 2. Note that, in order
to obtain the probabilities on the five intertwining observables (vertices), all of them need to be
determined. However, only adjacent pairs share a common context. Therefore, at least three
incompatible measurement types are necessary.

4

1

10

9

8

7 6 5

4

3

2

FIG. 3. Greechie orthogonality diagram of the pentagon (pentagram)
logic. The associated (quasi)classical probabilities are obtained from
a convex summation over all truth assignments, and listed in the Ap-
pendix C.

p. 289, Fig. 11.8] can be obtained by taking the convex sum of
all the 11 two-valued measures [26], as listed in Appendix C.
Because of the convex sum of all λ ’s add up to one, the sum
of the (quasi)classical probabilities enumerated in Eq. (C1),
taken merely on the 5 intertwining observables, yields

p1 + p3 + p5 + p7 + p9

= λ1 +λ4 +λ7 +λ9 +λ10 +2(λ2 +λ3 +λ5 +λ6 +λ8)

≤ 2
11

∑
i=1

λi = 2.

(3)

This inequality is in violation of quantum predictions [30, 32]
of
√

5 > 2. Note that, in order to obtain the probabilities on
the five intertwining observables (vertices) all of them need to
be determined. However, only adjacent pairs share a common
context. So at least three incompatible measurement types are
necessary.

C. Specker bug logic with the true–implies–false property

A pasting of two pentagon logics, the “Specker bug” logic,
has been introduced [33, Fig. 1, p. 182] and used [34, Γ1,
p. 68] by Kochen and Specker in 1963(5) (and discussed
by many researchers [35–37]; see also Refs. [38, Fig. B.l.
p. 64], [39, p. 588-589], [40, Sects. IV, Fig. 2] and [41,
p. 39, Fig. 2.4.6].) It is a pasting [27, 42] of seven con-
texts in such a tight way [cf. Fig. 4(a)] that preparation of
a (quasi)classical system in state a entails non-occurrence of
observable b. As has been observed by Stairs [39, p. 588-
589] and Clifton [40, 43, 44, Sects. II,III, Fig. 1], this is no
longer the case for quantum states and quantum observables.
Therefore, if one prepares a system in a state |a〉 and mea-
sures Eb = |b〉〈b|, associated with state |b〉, then the mere
occurrence of |b〉 implies the non-classicality of the quantized
system.

Again the (quasi)classical probabilities [9, p. 286,
Fig. 11.5(iii)] enumerated in Appendix D can be obtained by
taking the convex sum of all the 14 two-valued measures [8,
p. 579, Table 7]. Pták and Pulmannová [41, p. 39, Fig. 2.4.6]
as well as Pitowsky in Refs. [36, p. 402, Fig. 2] and [37,

pp. 224,225, Fig. 10.2] noted that, for (quasi)classical prob-
abilities – including ones on partition logics – the sum of the
probabilities on |a〉 and |b〉must not exceed 3

2 . Therefore both
cannot be true at the same time, because this would result in
their sum being 2. This might be called a true–implies–false
property [45] (aka one-zero rule [46]) on the atoms a and b.

Actually, this classical bound can be tightened by explicity
summing the (quasi)classical probabilities of a and b enumer-
ated in Eq. (D2) Because of the convex sum of all λ ’s add up
to one, this yields yields

pa + pb = λ1 +λ2 +λ3 +λ6 +λ13 +λ14 ≤
14

∑
i=1

λi = 1. (4)

This inequality is in violation of quantum predictions for a
system prepared in state |a〉; in this case [47], 10

9 > 1.
Indeed, Cabello [47] (see also his dissertation [48,

pp. 55,56]) pointed out that in three dimensions, |a〉 and |b〉
must be at least an angle ∠(a,b) ≥ arcsec(3) = arccos

( 1
3

)
=

π
2 − arccot

(
2
√

2
)
= arctan

(
2
√

2
)

apart. Therefore, the

probability to find a state prepared along |a〉 ≡
(
1,0,0

)ᵀ
in a state |b〉 ≡

(
cos∠(a,b),sin∠(a,b),0

)ᵀ cannot exceed
|〈b|a〉|2 = 1/9. Thus in at most one-ninth of all cases will
quantum mechanical probabilities violate the classical ones,
as the classical prediction demands zero probability to mea-
sure b, given a. (This prediction is relative to the assumption
of non-contextuality, such that the truth assignment is inde-
pendent of the particular context.) For a concrete “optimal”
realization [49, p. 206, Fig. 1] (see also [50, Fig. 4, p. 5387]),
take |a〉= 1

3

(
1,
√

2,0
)ᵀ and |b〉= 1

3

(
−1,
√

2,0
)ᵀ which yield

|〈b|a〉|= 1
3 .

Another true-implies-false configuration depicted in
Fig. 5(a) has an immediate quantum realization [51, Table. 1,
p. 102201-7] for |〈a|b〉|2 = 1

2 , and can be constructively (i.e.,
algorithmically computable) extended to arbitrary angles
between non-collinear and non-orthogonal vectors.

D. Combo of Specker bug logic with the true–implies–true as
well as inseparability properties

This non-classical behaviour can be “boosted” by an ex-
tension of the Specker bug logic [34, Γ1, p. 68], including
two additional contexts {a,c,b′} as well as {b,c,a′}, as de-
picted in Fig. 4(b). It implements a true-implies-true prop-
erty [45] (aka one-one rule [46]) for a and a′. Cabello’s
bound on the angle ∠(a,b) between a and b mentioned ear-
lier results in bounds between a and a′ as well as b and
b′: since a and b′ as well as b and a′ are orthogonal, that
is, ∠(a,b′) = ∠(b,a′) = π

2 , it follows for planar configura-
tions that ∠(a,a′) = ∠(b,a′)−∠(a,b) ≤ π

2 − arccos
( 1

3

)
=

arccot
(

2
√

2
)
= arccsc(3) = arcsin

( 1
3

)
. For symmetry rea-

sons, the same estimate holds for planar configurations be-
tween b and b′. For non-planar configurations the angles must
be even less than for planar ones.

True-implies-true properties have also been studied by
Stairs [39, p. 588-589, note added in proof]; Clifton [40, 43,

Figure 3. Greechie orthogonality diagram of the pentagon (pentagram) logic. The associated
(quasi)classical probabilities are obtained from a convex summation over all truth assignments,
and listed in Appendix C.

4.3. Specker Bug Logic with the True-Implies-False Property

A pasting of two pentagon logics, the “Specker bug” logic, has been introduced (Figure 1,
p. 182, [33]) and used (Γ1, p. 68, [34]) by Kochen and Specker and discussed by many researchers [35–37];
see also (Figure B.l, p. 64, [38]), (pp. 588–589, [39]), (Section IV, Figure 2, [40]) and (p. 39,
Figure 2.4.6, [41]). It is a pasting [27,42] of seven contexts in such a tight way (cf. Figure 4a) that
preparation of a (quasi)classical system in state a entails the non-occurrence of observable b. As has
been observed by Stairs (pp. 588–589, [39]) and Clifton (Sections II and III, Figure 1, [40,43,44] ), this is
no longer the case for quantum states and quantum observables. Therefore, if one prepares a system in
a state |a〉 and measures Eb = |b〉〈b|, associated with state |b〉, then the mere occurrence of |b〉 implies
the non-classicality of the quantized system.

Again, the (quasi)classical probabilities (p. 286, Figure 11.5(iii), [9]) enumerated in Appendix D
can be obtained by taking the convex sum of all 14 two-valued measures (p. 579, Table 7, [8]). Pták
and Pulmannová (p. 39, Figure 2.4.6, [41]), as well as Pitowsky in (p. 402, Figure 2, [36]) and (pp. 224,
225, Figure 10.2, [37]) noted that, for (quasi)classical probabilities, including ones on partition logics,
the sum of the probabilities on |a〉 and |b〉 must not exceed 3

2 . Therefore, both cannot be true at the
same time, because this would result in their sum being two. This might be called a true-implies-false
property [45] (also known as the one-zero rule [46]) on the atoms a and b.
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5

44, Sects. II,III, Fig. 1] presents a similar argument, based
upon another true-implies-true logic inspired by Bell [38,
Fig. C.l. p. 67] (cf. also Pitowsky [52, p. 394]), on the Specker
bug logic [40, Sects. IV, Fig. 2]. More recently Hardy [53–55]
as well as Cabello and Garcı́a-Alcaine and others [32, 56–60]
have discussed such scenarios.

Another true-implies-true configuration depicted in
Fig. 5(b) has an immediate quantum realization [51, Table. 1,
p. 102201-7] for |〈a|b〉|2 = 1

2 , and can be extended to
arbitrary angles between non-collinear and non-orthogonal
vectors.

A combo of Specker bug logics renders a non-separable
set of two-valued states [34, Γ3, p. 70]: in the logic de-
picted in Fig. 4(c), a and a′ as well as b and b′ can-
not be “separated” from one another by any non-contextual
(quasi)classical truth assignment enumerated in Appendix D.
Kochen and Specker [34, Theorem 0, p. 67] pointed out that
this type of inseparability is a necessary and sufficient condi-
tion for a logic to be not embeddable in any classical Boolean
algebra. Therefore, whereas both the Specker bug logic as
well as its extension true-implies-true logic can be represented
by a partition logic, the combo Specker bug logic cannot.

E. Logics inducing partial value (in)definiteness

Probably the strongest forms on value indefiniteness [61,
62] are theorems [51, 63, 64] stating that relative to reasonable
(admissibility, non-contextuality) assumptions, if a quantized
system is prepared in some pure state |a〉, then any observ-
able which is not identical or orthogonal to |a〉 is undefined.
That is, there exist finite systems of quantum contexts whose
pasting are demanding that any pure state |b〉 not belonging
to some context with |a〉 can neither be true nor false; else a
complete contradiction would follow from the assumption of
classically pre-existent truth values on some pasting of con-
texts such as the Specker bug logic.

What does “strong” mean here? Suppose one prepares the
system in a particular context C such that a single vector |a〉 ∈
C is true; that is, |a〉 has probability measure 1 when measured
along C . Then, if one measures a complementary variable
|b〉, and |b〉 is sufficiently separated from |a〉 (more precisely,
at least an angle arccos

( 1
3

)
apart for the Specker bug logic),

then intertwined quantum propositional structures (such as the
Specker bug logic) exist which, interpreted (quasi)classically,
demand that |b〉 can never occur (cannot be true) – and yet
quantum system allow |b〉 to occur. Likewise, other inter-
twined contexts which correspond to true-implies-true config-
urations of quantum observables (termed Hardy-like [53–55]
by Cabello [60]) (quasi)classically imply that some endpoint
|b′〉 must always occur, given |a〉 is true. And yet, quantum
mechanically, since |a〉 and |b′〉 are not collinear, quantum
mechanics predicts that occasionally |b′〉 does not occur. In
the “strongest” form [51, 63, 64] of classical “do’s and don’ts”
there are no possibilities whatsoever for an observable propo-
sition to be either true or false. That is, even if the Specker bug
simultaneously allows some |a〉 to be true and |b〉 to be false
(although disallowing the latter to be true), there is another,

a
10

9

8

7

6

b
5

4

3

2

1

11

(a)

a
10

9

8

7

6

b

5 4

3

21
11

a′

b′

c

(b)

a
10

9

8

7

6

b

5 4

3

21
11

a′

10’9’

8’

7’ 6’

b′
5’

4’

3’

2’
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11’

c

(c)

FIG. 4. Greechie orthogonality diagram of (a) the Specker bug
logic [33, Fig. 1, p. 182]. A proof that, if the system is prepared
in state a, then classical (non-contextual) truth assignments require
b not to occur, proceeds as follows: In such a truth assignment, as
per axiom A3, there is only one true atom per context; all the others
have to be false. In a proof by contradiction, suppose that both a and
b are true. Then all atoms connected to them (2,4,7,9) must be false.
This in turn requires that the observables (3,8) connecting them must
both be true. Alas, those two observables (3,8) are connected by a
“middle” context {3,11,8} are both true, which is forbidden by ax-
iom A3. The only consistent alternative is to disallow b to be true if
a is assumed to be true; or, conversely, to disallow a to be true if b is
assumed to be true. (b) Greechie orthogonality diagram of a Specker
bug logic extended by two contexts which has the true-implies-true
property on a′, given a to be true [34, Γ1, p. 68]. (c) Greechie or-
thogonality diagram of a combo of two Specker bug logics [34, Γ3,
p. 70]. If a is assumed to be true then the remaining atoms in the
context {a,c,b′} connecting a with b′, and, in particular, c, have to
be false. Also if a is true then b is false. Therefore, a′ needs to be
true if b and c both are false, because they form the context {b,c,a′}.
This argument is valid even in the absence of a second Specker bug
logic. Introduction of a second Specker bug logic ensures the con-
verse: whenever a′ is true, a must be true as well. Therefore a and
a′ (and by symmetry also b and b′) cannot be separated by any truth
assignment.

Figure 4. Greechie orthogonality diagram of (a) the Specker bug logic (Figure 1, p. 182, [33]). A proof
that, if the system is prepared in state a, then classical (non-contextual) truth assignments require b not
to occur proceeds as follows: In such a truth assignment, as per Axiom A3, there is only one true atom
per context; all the others have to be false. In a proof by contradiction, suppose that both a and b are
true. Then, all atoms connected to them (2,4,7,9) must be false. This in turn requires that the observables
(3,8) connecting them must both be true. Alas, those two observables (3,8) are connected by a “middle”
context {3, 11, 8} . But the occurrence of two true observables within the same context is forbidden
by Axiom A3. The only consistent alternative is to disallow b to be true if a is assumed to be true; or
conversely, to disallow a to be true if b is assumed to be true. (b) Greechie orthogonality diagram of a
Specker bug logic extended by two contexts, which has the true-implies-true property on a′, given a
to be true (Γ1, p. 68, [34]). (c) Greechie orthogonality diagram of a combo of two Specker bug logics
(Γ3, p. 70, [34]). If a is assumed to be true, then the remaining atoms in the context {a, c, b′} connecting
a with b′ and, in particular, c have to be false. Furthermore, if a is true, then b is false. Therefore, a′

needs to be true if b and c both are false, because they form the context {b, c, a′}. This argument is valid
even in the absence of a second Specker bug logic. Introduction of a second Specker bug logic ensures
the converse: whenever a′ is true, a must be true, as well. Therefore, a and a′ (and by symmetry, also b
and b′) cannot be separated by any truth assignment.
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Actually, this classical bound can be tightened by explicity summing the (quasi)classical
probabilities of a and b enumerated in Equation (A5). Because of the convex sum of all λ’s adds up to
one, this yields:

pa + pb = λ1 + λ2 + λ3 + λ6 + λ13 + λ14 ≤
14

∑
i=1

λi = 1. (4)

This inequality is in violation of quantum predictions for a system prepared in state |a〉; in this
case [47], 10

9 > 1.
Indeed, Cabello [47] (see also his dissertation (pp. 55–56, [48])) pointed out that in three

dimensions, |a〉 and |b〉 must be at least an angle ∠(a, b) ≥ arcsec(3) = arccos
(

1
3

)
= π

2 −
arccot

(
2
√

2
)

= arctan
(

2
√

2
)

apart. Therefore, the probability of finding a state prepared along

|a〉 ≡
(

1, 0, 0
)ᵀ

in a state |b〉 ≡
(

cos∠(a, b), sin∠(a, b), 0
)ᵀ

cannot exceed |〈b|a〉|2 = 1/9. Thus, in at
most one-ninth of all cases will quantum mechanical probabilities violate the classical ones, as the
classical prediction demands zero probability to measure b, given a (this prediction is relative to
the assumption of non-contextuality, such that the truth assignment is independent of the particular
context). For a concrete “optimal” realization (p. 206, Figure 1, [49]) (see also (Figure 4, p. 5387, [50])),

take |a〉 = 1√
3

(
1,
√

2, 0
)ᵀ

and |b〉 = 1√
3

(
−1,
√

2, 0
)ᵀ

, which yield |〈b|a〉| = 1
3 .

Another true-implies-false configuration depicted in Figure 5a has an immediate quantum
realization (Table 1, p. 102201-7, [51]) for |〈a|b〉|2 = 1

2 and can be constructively (i.e., algorithmically
computable) extended to arbitrary angles between non-collinear and non-orthogonal vectors.

4.4. Combo of Specker Bug Logic with the True-Implies-True, as Well as Inseparability Properties

This non-classical behavior can be “boosted” by an extension of the Specker bug logic
(Γ1, p. 68, [34]), including two additional contexts {a, c, b′}, as well as {b, c, a′}, as depicted in
Figure 4b. It implements a true-implies-true property [45] (also known as the one-one rule [46])
for a and a′. Cabello’s bound on the angle ∠(a, b) between a and b mentioned earlier results in
bounds between a and a′, as well as b and b′: since a and b′, as well as b and a′ are orthogonal, that
is, ∠(a, b′) = ∠(b, a′) = π

2 , it follows for planar configurations that ∠(a, a′) = ∠(b, a′)−∠(a, b) ≤
π
2 − arccos

(
1
3

)
= arccot

(
2
√

2
)
= arccsc (3) = arcsin

(
1
3

)
. For symmetry reasons, the same estimate

holds for planar configurations between b and b′. For non-planar configurations, the angles must be
even less than for planar ones.

True-implies-true properties have also been studied by Stairs (pp. 588–589, note added in
proof, [39]); Clifton (Sections II and III, Figure 1, [40,43,44]) presents a similar argument, based on
another true-implies-true logic inspired by Bell (Figure C.l, p. 67, [38]) (cf. also Pitowsky (p. 394, [52])),
on the Specker bug logic (Section IV, Figure 2, [40]). More recently, Hardy [53–55], as well as Cabello
and García-Alcaine and others [32,56–60] have discussed such scenarios.

Another true-implies-true configuration depicted in Figure 5b has an immediate quantum
realization (Table 1, p. 102201-7, [51]) for |〈a|b〉|2 = 1

2 and can be extended to arbitrary angles
between non-collinear and non-orthogonal vectors.

A combo of Specker bug logics renders a non-separable set of two-valued states (Γ3, p. 70, [34]):
in the logic depicted in Figure 4c, a and a′, as well as b and b′ cannot be “separated” from one another
by any non-contextual (quasi)classical truth assignment enumerated in Appendix D. Kochen and
Specker (Theorem 0, p. 67, [34]) pointed out that this type of inseparability is a necessary and sufficient
condition for a logic to be not embeddable in any classical Boolean algebra. Therefore, whereas both
the Specker bug logic, as well as its extension true-implies-true logic can be represented by a partition
logic, the combo Specker bug logic cannot.
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6

supposedly more sophisticated finite configuration of inter-
twined quantum contexts, which can be constructively enu-
merated and which disallows |b〉 even to be false (it cannot be
true either).

For the sake of an explicit example take the logic [? , Fig. 2,
p. 102201-8] depicted in Fig. ??(c). It is the composite of two
logics depicted in Figs. ??(a),(b), which perform very differ-
ently at b given a to be true: whereas (a) implements a true-
implies-false property, (b) has a true-implies-true property for
the atoms a and b, respectively. Both (a) and (b) are proper
subsets (lacking 2 contexts) of the logic in Fig. ??(c); and,
apart from their difference in 4 contexts, are identical.

More precisely, as explicated in Appendix ??, both of these
logics (a) and (b) allow 13 truth assignments (two-valued
states), but only a single one allows a to be true on either
of them. (This uniqueness is not essential to the argument.)
The logic in (c) allows for 8 truth assignments, but all of them
assign falsity to a. By combining the logics (a) and (b) one ob-
tains (c) which, if a is assumed to be true, implies that b can
neither be true – this would contradict the true-implies-false
property of (a) – nor can it be false – because this would con-
tradict the true-implies-true property of (b). Hence we are left
with the only consistent alternative, (relative to the assump-
tions): that a system prepared in state a must be value indef-
inite for observable b. Thereby, as the truth assignment on b
is not defined, it must be partial on the entire logic depicted in
Fig. ??(c).

The scheme of the proof is as follows:

(i) Find a logic (collection of intertwined contexts of ob-
servables) exhibiting a true-implies-false property on
the two atoms a and b.

(ii) Find another logic exhibiting a true-implies-true prop-
erty on the same two atoms a and b.

(iii) Then join (paste) these logics into a larger logic, which,
given a, neither allows b to be true nor false. Conse-
quently b must be value indefinite.

The most suggestive candidate for such a pasting is, however,
unavailable: it is the combination of a Specker bug logic and
another, extended Specker bug logic, as depicted in Fig. ??.
Such logic cannot be realized in three dimensions, as the an-
gles cannot be chosen consistently; that is, obeying the Ca-
bello bounds on the relative angles, respectively.

The latter result about the partiality of the truth assignment
has already been discussed by Pitowsky [? ], and later by
Hrushovski and Pitowsky [? ]. It should also be mentioned
that the logic (c) has been realized with a particular configu-
ration in three-dimensional real Hilbert space [? , Tables I,II,
p. 102201-7] which are an angle ∠(a,b) = arccos

(
1√
2

)
apart,

but, as has been mentioned earlier, this kind of value indefi-
niteness on any particular state b, given that the system has
been prepared in state a, can be constructively obtained by
an extension of the above configuration whenever a and b are
neither collinear (in this case b would be true) nor orthogo-
nal (in this case b would be false). So basically all states not
identical (or orthogonal) to the state prepared must be value
indefinite.

b

a
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b 2 3
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FIG. 5. Greechie orthogonality diagram of a logic [? , Fig. 2,
p. 102201-8] realizable in R3 (a) with the true–implies–false prop-
erty; (b) with the true–implies–true property; (c) with the true–
implies–value indefiniteness (neither true nor false) property on the
atoms a and b, respectively. (a) and (b) contain the single (out of 13)
value assignment which is possible, and for which a is true. All 8
value assignments of the logic depicted in (c) require a to be false.

Figure 5. Greechie orthogonality diagram of a logic (Figure 2, p. 102201-8, [51]) realizable in R3

(a) with the true-implies-false property, (b) with the true-implies-true property and (c) with the
true-implies-value indefiniteness (neither true nor false) property on the atoms a and b, respectively.
(a,b) contain the single (out of 13) value assignment that is possible and for which a is true. All eight
value assignments of the logic depicted in (c) require a to be false.

4.5. Logics Inducing Partial Value (In)Definiteness

Probably the strongest forms of value indefiniteness [61,62] are theorems [51,63,64] stating that
relative to reasonable (admissibility, non-contextuality) assumptions, if a quantized system is prepared
in some pure state |a〉, then any observable that is not identical or orthogonal to |a〉 is undefined. That is,
there exist finite systems of quantum contexts whose pastings are demanding that any pure state |b〉
not belonging to some context with |a〉 can neither be true, nor false; else a complete contradiction
would follow from the assumption of classically pre-existent truth values on some pasting of contexts
such as the Specker bug logic.
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What does “strong” mean here? Suppose one prepares the system in a particular context C such
that a single vector |a〉 ∈ C is true; that is, |a〉 has probability measure of one when measured along
C. Then, if one measures a complementary variable |b〉 and |b〉 is sufficiently separated from |a〉
(more precisely, at least an angle arccos

(
1
3

)
apart for the Specker bug logic), then intertwined quantum

propositional structures (such as the Specker bug logic) exist, which, interpreted (quasi)classically,
demand that |b〉 can never occur (cannot be true); and yet, quantum systems allow |b〉 to occur.
Likewise, other intertwined contexts that correspond to true-implies-true configurations of quantum
observables (termed Hardy-like [53–55] by Cabello [60]) (quasi)classically imply that some endpoint
|b′〉must always occur, given |a〉 is true. Yet, quantum mechanically, since |a〉 and |b′〉 are not collinear,
quantum mechanics predicts that occasionally, |b′〉 does not occur. In the “strongest” form [51,63,64]
of classical “do’s and don’ts”, there are no possibilities whatsoever for an observable proposition to be
either true or false. That is, even if the Specker bug simultaneously allows some |a〉 to be true and |b〉
to be false (although disallowing the latter to be true), there is another, supposedly more sophisticated
finite configuration of intertwined quantum contexts, that can be constructively enumerated and that
disallows |b〉 even to be false (it cannot be true either).

For the sake of an explicit example, take the logic (Figure 2, p. 102201-8, [51]) depicted in Figure 5c.
It is the composite of two logics depicted in Figure 5a,b, which perform very differently at b given a to
be true: whereas (a) implements a true-implies-false property, (b) has a true-implies-true property for
the atoms a and b, respectively. Both (a) and (b) are proper subsets (lacking two contexts) of the logic
in Figure 5c; and apart from their difference in four contexts, are identical.

More precisely, as explicated in Appendix E, both of these logics (a) and (b) allow 13 truth
assignments (two-valued states), but only a single one allows a to be true on either of them
(this uniqueness is not essential to the argument). The logic in (c) allows for eight truth assignments,
but all of them assign falsity to a. By combining the logics (a) and (b), one obtains (c) which, if a is
assumed to be true, implies that b can neither be true (this would contradict the true-implies-false
property of (a)) nor can it be false, because this would contradict the true-implies-true property of
(b). Hence, we are left with the only consistent alternative (relative to the assumptions): that a system
prepared in state a must be value indefinite for observable b. Thereby, as the truth assignment on b is
not defined, it must be partial on the entire logic depicted in Figure 5c.

The scheme of the proof is as follows:

(i) Find a logic (collection of intertwined contexts of observables) exhibiting a true-implies-false
property on the two atoms a and b.

(ii) Find another logic exhibiting a true-implies-true property on the same two atoms a and b.
(iii) Then, join (paste) these logics into a larger logic, which, given a, neither allows b to be true nor

false. Consequently, b must be value indefinite.

The most suggestive candidate for such a pasting is, however, unavailable: it is the combination
of a Specker bug logic and another, extended Specker bug logic, as depicted in Figure 6. Such a logic
cannot be realized in three dimensions, as the angles cannot be chosen consistently; that is, obeying
the Cabello bounds on the relative angles, respectively.

The latter result about the partiality of the truth assignment has already been discussed by
Pitowsky [61], and later by Hrushovski and Pitowsky [62]. It should also be mentioned that the
logic (c) has been realized with a particular configuration in three-dimensional real Hilbert space
(Tables I and II, p. 102201-7, [51]), which are an angle ∠(a, b) = arccos

(
1√
2

)
apart, but as has been

mentioned earlier, this kind of value indefiniteness on any particular state b, given that the system has
been prepared in state a, can be constructively obtained by an extension of the above configuration
whenever a and b are neither collinear (in this case, b would be true) nor orthogonal (in this case,
b would be false). Therefore, basically, all states not identical (or orthogonal) to the state prepared
must be value indefinite.
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All three logics in Figure 6a–c have another non-classical feature: they are non-unital [49], meaning
that the truth assignments on some of their atoms can only acquire the value as false, regardless of
the preparation. That is, in this “state-independent” form, whenever a proposition corresponding
to such an atom is measured to be true, this can be interpreted as the indication of non-classicality
(note that one can always rotate the entire set of rays so that this particular atom coincides with some
observable measured.). 7

a

b

c

FIG. 6. Greechie orthogonality diagram of a logic which is value
indefinite on b (as well as on c for symmetry reasons), given a is
true; alas such a logic has no realization in three dimensional Hilbert
space, as the angles ∠(a,b) between a and b should simultaneously
obey 1.2≈ arcsec(3)≤ ∠(a,b)≤ arccsc(3)≈ 0.3.

All three logics in Fig. 6(a)-(c) have another non-classical
feature: they are non-unital [49], meaning that the truth as-
signments on some of their atoms can only acquire the value
false, regardless of the preparation. That is, in this “state-
independend” form, whenever a proposition corresponding to
such an atom is measured to be true, this can be interpreted as
indication of non-classicality. (Note that one can always ro-
tate the entire set of rays so that this particular atom coincides
with some observable measured.)

V. PROPOSITIONAL LOGIC DOES NOT UNIQUELY
DETERMINE PROBABILITIES

By now it should be clear that the propositional structure
does in general not uniquely determine its probabilities. The
Specker bug in Fig. 4(a) serves as a good example for that: it
supports (quasi)classical probabilities, explicitly enumerated
in Refs. [9, p. 286, Fig. 11.5(iii)] and [10, p. 91, Fig. 12.10]
which are formed by convex combinations of all two-valued
states on them.

Other propositional structures such as the pentagon logic
support “exotic” probability measures [26] which do not van-
ish at their interlink observables and are equally weighted
with value 1

2 there. This measure is neither realized in the
(quasi)classical partition logic setup explicitly discussed in
Refs. [9, p. 289, Fig. 11.8] and [10, p. 88, Fig. 12.8], nor in
quantum mechanics. It remains to be seen if a more general
theory of probability measures based on the axioms A1-A3
can be found.

VI. SOME PLATONIST AFTERTHOUGHTS

The author’s not-so-humble reading of all these aforemen-
tioned “mind-boggling” non-classical quantum predictions is
a rather sober one: in view of the numerous indications that
classical value definiteness cannot be extended to more than a
single context, the most plausible supposition is that, besides
exotic possibilities [65, 66], ontologically there is only one
such “Realding” – indeed a rather obvious candidate suggest-
ing itself as ontology: a single vector, or rather a single con-
text. Quantized systems can be completely and exhaustively
characterized by a unique context, and a “true” proposition
within this context.

Suppose for a moment that this hypothesis is correct, and
that there is no ontology, no “Realding,” beyond a single con-
text. There is one preferred view – namely the context iden-
tical to the context in which the system has been prepared –
and all but one epistemic views.

And yet, a confusing experience is the apparent ease by
which an experimenter appears to measure, without any diffi-
culty, a context or (maximal) observable not (or only partly
through intertwines) matching the preparation context. In
such a situation one may assume that the measurement grants
an “imperfect” view on the preparation context. In this pro-
cess, information – in particular, the relative locatedness of
the measurement context with respect to the preparation con-
text – is augmented by properties of the measurement device,
thereby effectively generating entanglement [67, 68] via con-
text translation [69]. Frames of reference which do not co-
incide with the “Realding” or preparation context necessar-
ily include stochastic elements which are not caused or deter-
mined by any property of the formerly individual “Realding.”
One may conclude [70] with Bohr’s 1972 Como lecture [71,
p. 580] that “any observation of atomic phenomena will in-
volve an interaction with the agency of observation not to be
neglected. Accordingly, an independent reality in the ordi-
nary physical sense can neither be ascribed to the phenom-
ena nor to the agencies of observation.” That is, any inter-
action between the previously separated individual object and
the measurement device results in a joint physical state which
is no longer determined by the states of the (previously) indi-
vidual constituents [68, 72]. Instead, the joint state exhibits
what Schrödinger later called entanglement [67]. Entangle-
ment characterized by a value definite relational [73] or col-
lective (re-)encoding of information with respect to the con-
stituent parts, thereby (since the unitary quantum evolution is
injective) resulting in a value indefiniteness of the previously
individual and separate parts. As a result, knowledge about
observations obtained by different contexts than the prepa-
ration context are necessarily (at least partially in the sense
of the augmented information from the measurement device)
epistemic.

Another possible source of perplexity might be the various
types of algabaic or logical structures involved. Classically,
empirical logics are Boolean algebras. Then, in a first step to-
wards non-classicality, there are partition logics which are not
Boolean any longer (they feature complementarity through
non-distributivity) but nevertheless still allow for a certain

Figure 6. Greechie orthogonality diagram of a logic that is value indefinite on b (as well as on c for
symmetry reasons), given a is true; alas, such a logic has no realization in three-dimensional Hilbert
space, as the angles ∠(a, b) between a and b should simultaneously obey 1.2 ≈ arcsec(3) ≤ ∠(a, b) ≤
arccsc(3) ≈ 0.3.

5. Propositional Logic Does Not Uniquely Determine Probabilities

By now, it should be clear that the propositional structure does in general not uniquely determine
its probabilities. The Specker bug in Figure 4a serves as a good example of that: it supports
(quasi)classical probabilities, explicitly enumerated in(p. 286, Figure 11.5(iii), [9] ) and (p. 91,
Figure 12.10, [10]), which are formed by convex combinations of all two-valued states on them.

Other propositional structures such as the pentagon logic support “exotic” probability
measures [26], which do not vanish at their interlink observables and are equally weighted with
value 1

2 there. This measure is neither realized in the (quasi)classical partition logic setup explicitly
discussed in (p. 289, Figure 11.8, [9]) and (p. 88, Figure 12.8, [10]), nor in quantum mechanics. It remains
to be seen if a more general theory of probability measures based on Axioms A1–A3 can be found.

6. Some Platonist Afterthoughts

The author’s not-so-humble reading of all these aforementioned “mind-boggling” non-classical
quantum predictions is a rather sober one: in view of the numerous indications that classical value
definiteness cannot be extended to more than a single context, the most plausible supposition is that,
besides exotic possibilities [65,66], ontologically, there is only one such “Realding” (indeed, a rather
obvious candidate suggesting itself as ontology): a single vector, or rather a single context. Quantized
systems can be completely and exhaustively characterized by a unique context and a “true” proposition
within this context.

Suppose for a moment that this hypothesis is correct and that there is no ontology, no “Realding,”
beyond a single context. There is one preferred view, namely the context identical to the context in
which the system has been prepared, and all but one epistemic view.
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Yet, a confusing experience is the apparent ease with which an experimenter appears to measure,
without any difficulty, a context or (maximal) observable not (or only partly through intertwines)
matching the preparation context. In such a situation, one may assume that the measurement grants
an “imperfect” view on the preparation context. In this process, information, in particular the relative
locatedness of the measurement context with respect to the preparation context, is augmented by
properties of the measurement device, thereby effectively generating entanglement [67,68] via context
translation [69]. Frames of reference that do not coincide with the “Realding” or preparation context
necessarily include stochastic elements that are not caused or determined by any property of the
formerly individual “Realding.” One may conclude [70] with Bohr’s 1972 Como lecture (p. 580, [71])
that “any observation of atomic phenomena will involve an interaction with the agency of observation
not to be neglected. Accordingly, an independent reality in the ordinary physical sense can neither
be ascribed to the phenomena nor to the agencies of observation.” That is, any interaction between
the previously separated individual object and the measurement device results in a joint physical
state that is no longer determined by the states of the (previously) individual constituents [68,72].
Instead, the joint state exhibits what Schrödinger later called entanglement [67]. Entanglement is
characterized by a value definite relational [73] or collective (re-)encoding of information with respect
to the constituent parts, thereby (since the unitary quantum evolution is injective) resulting in the
value indefiniteness of the previously individual and separate parts. As a result, knowledge about
observations obtained by different contexts than the preparation context are necessarily (at least
partially in the sense of the augmented information from the measurement device) epistemic.

Another possible source of perplexity might be the various types of algebraic or logical structures
involved. Classically, empirical logics are Boolean algebras. Then, in a first step towards non-classicality,
there are partition logics that are not Boolean any longer (they feature complementarity through
non-distributivity), but nevertheless still allow for a certain type of (quasi)classicality; that is,
a separating and unital set of two-valued states. Then, further on this road, there are (finite) quantum
logics that do not allow any definite state at all.

One might be puzzled by the fact that there exist “intermediate” logics, such as the Specker bug
or the pentagon (pentagram) logic discussed in Sections 4.2 and 4.3 that still allow (even classical)
simultaneous value indefiniteness, although they contain observables that are mutually complementary
(non-collinear and non-orthogonal). However, this apparent paradox should rather be interpreted
epistemically, as means (configuration) relative [74]: in the case of the pentagon, we have decided
to concentrate on 10 observables in a cyclic pasting of five contexts, but we have thereby implicitly
chosen to “look the other way” and disregard the abundance of other observables that impose much
more stringent conditions on the value definiteness of the observables in the pentagon logic than the
pentagon logic itself.

Therefore, properties such as the true-implies-false, the true-implies-true properties, as well
as inseparability and even value indefiniteness are means relative and valid only if one restricts or
broadens one’s attention to sometimes very specific, limited sublogics of the realm of all conceivable
quantum logics, which are structures formed by perpendicular projection operators in Hilbert spaces
of dimension larger than two.

Pointedly stated, sets of intertwining contexts connecting two (or more) relevant complementary
observables a and b should be considered as totally arbitrary when it comes to the inclusion or
exclusion of particular contexts interconnecting them: there is neither a necessity nor even a compelling
reason to take into account one such structure and disregard another, or favor one over the other.
Indeed, in an extreme, sui generis form of the argument, suppose a single quantum is prepared in some
state a. Then, every single outcome of a measurement of every complementary (non-collinear and
non-orthogonal relative to the state prepared) quantum observable may be considered as “proof” or
“certification of non-classicality” (or, in different terminology, “contextuality”). Those observable can
be identified with the “endpoint” b of either some true-implies-false, or alternatively true-implies-true
configuration (say the one sketched in Figure 6a,b), depending on whether the classical false or true
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predictions need to contradict the particular outcome, respectively. For quantum logics with a unital
set of two-valued states, such as the logics depicted by Tkadlec (p. 207, Figure 2, [49]) or the ones
in Figure 6a,b, one could even get rid of the state preparation if b occurs and is identified with
an observable that, according to the classical predictions associated with that logic, cannot occur.
There is no principle that could prevent us from arguing that way if we insist on the simultaneous
existence of multiple contexts encountered in quantum mechanics. Indeed, are not intertwining
contexts scholastic [75] sophisms in desperate need of deconstruction?

An interesting historical question arises: Kochen and Specker, in a succession of papers on partial
algebras [33,34,76], have insisted that logical operations should only be defined within contexts and
must not be applied to propositions outside of it. Yet, they have considered extended counterfactual
structures of pasted context, ending up in a holistic argument involving complementary observables.
Of course, an immediate reply might be that without intertwined contexts, there cannot be any non-trivial
(non-classical, non-Boolean) configuration of observables that is of any interest.

For the reasons mentioned earlier, the emphasis should not be on “completing” quantum
mechanics by some sort of hidden parameter theory, such as, for instance, Valentini [77] envisioning a
theory that is to quantum mechanics as statistical physics is to thermodynamics, but just the opposite:
the challenge is to acknowledge the scarcity of resources, the “Realding” or physical state as a mere
vector, despite the continuum of possible views on it, resulting in an illusory over-abundance and
over-determination.

In this line of thought, the question of what might be the reason behind the futility to co-define
non-commuting quantum observables (from two or more different contexts) simultaneously should be
answered in terms of a serious lack of a proper perspective of what one is dealing with: metaphorically
speaking, it is almost as if one pretends to take a 360◦ panorama of what lies in the outside world,
while actually merely taking photos from some sort of echo chamber, or house of mirrors, partly
reflecting what is in it, and partly reproducing the observer (photographer) in almost endless reflections.
Stitching together photos from these reflections yields a panorama of one and the same object in
seemingly endless varieties. In this way, one might end up with a horribly distorted image of this
situation; and with the inside turned outside.

This is not dissimilar to what Plato outlined in the Republic’s cave metaphor (Book 7, 515c,
p. 221, [78]): “what people in this situation would take for truth would be nothing more than the
shadows of the manufactured objects.” In the quantum transcription of this metaphor, the vectors are
the objects, and the shadows taken for truth are the views on these objects, mediated or translated [69]
by arbitrary mismatching contexts.
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Appendix A. Two-Valued States, (Quasi)Classical Probabilities on the Triangular Logic in
Four Dimensions

The two-valued states (also known as truth tables) have been enumerated by Josef Tkadlec’s
Pascal program 2states [79].Implicitly, the convex sums over the respective probabilities encode the
truth tables, as, on any particular atom, the i’th truth table entry is one if λi appears in the listing of the
classical probability pi. Otherwise, the i’th truth table entry is zero.

The bounds for classical probabilities have been obtained by Komei Fukuda’s cddlib package [25].
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There are nine propositions forming three contexts {1, 2, 3, 4}, {4, 5, 6, 7} and {7, 8, 9, 1} allowing 14
(separating, unital) two-valued states whose convex sum yields the following (quasi)classical probabilities:

p1 =λ1 + λ2,

p2 =λ3 + λ4 + λ5 + λ6 + λ7,

p3 =λ8 + λ9 + λ10 + λ11 + λ12,

p4 =λ13 + λ14,

p5 =λ1 + λ3 + λ4 + λ8 + λ9,

p6 =λ2 + λ5 + λ6 + λ10 + λ11,

p7 =λ7 + λ12,

p8 =λ3 + λ5 + λ8 + λ10 + λ13,

p9 =λ4 + λ6 + λ9 + λ11 + λ14.

(A1)

Appendix B. Truth Assignments, (Quasi)Classical Probabilities on the Square Logic in
Four Dimensions

There are 12 propositions forming four contexts {1, 2, 3, 4}, {4, 5, 6, 7}, {7, 8, 9, 10} and
{10, 11, 12, 1} allowing 34 (separating, unital) two-valued states whose convex sum yields the following
(quasi)classical probabilities:

p1 =λ1 + λ2 + λ3 + λ4 + λ5,

p2 =λ6 + λ7 + λ8 + λ9 + λ10 + λ11

+ λ12 + λ13 + λ14 + λ15 + λ16 + λ17,

p3 =λ18 + λ19 + λ20 + λ21 + λ22 + λ23

+ λ24 + λ25 + λ26 + λ24 + λ28 + λ29,

p4 =λ30 + λ31 + λ32 + λ33 + λ34,

p5 =λ1 + λ2 + λ6 + λ7 + λ8 + λ9

+ λ10 + λ18 + λ19 + λ20 + λ21 + λ22,

p6 =λ3 + λ4 + λ11 + λ12 + λ13 + λ14

+ λ15 + λ23 + λ24 + λ25 + λ26 + λ27,

p7 =λ5 + λ16 + λ17 + λ28 + λ29,

p8 =λ1 + λ3 + λ6 + λ7 + λ11 + λ12

+ λ18 + λ19 + λ23 + λ24 + λ30 + λ31,

p9 =λ2 + λ4 + λ8 + λ9 + λ13 + λ14

+ λ20 + λ21 + λ25 + λ26 + λ32 + λ33,

p10 =λ10 + λ15 + λ22 + λ27 + λ34,

p11 =λ6 + λ8 + λ11 + λ13 + λ16 + λ18

+ λ20 + λ23 + λ25 + λ28 + λ30 + λ32,

p12 =λ7 + λ9 + λ12 + λ14 + λ17 + λ19

+ λ21 + λ24 + λ26 + λ29 + λ31 + λ33.

(A2)
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Appendix C. Two-Valued States, (Quasi)Classical Probabilities on the Pentagon (Pentagram)
Logic in Three Dimensions

There are five contexts {1, 2, 3}, {3, 4, 5}, {5, 6, 7}, {7, 8, 9} and {9, 10, 1} allowing 11 (separating,
unital) two-valued states [26] whose convex sum yields the following (quasi)classical probabilities:

p1 =λ1 + λ2 + λ3,

p2 =λ4 + λ5 + λ7 + λ9 + λ11,

p3 =λ6 + λ8 + λ10,

p4 =λ1 + λ2 + λ4 + λ7 + λ11,

p5 =λ3 + λ5 + λ9,

p6 =λ1 + λ4 + λ6 + λ10 + λ11,

p7 =λ2 + λ7 + λ8,

p8 =λ1 + λ3 + λ9 + λ10 + λ11,

p9 =λ4 + λ5 + λ6,

p10 =λ7 + λ8 + λ9 + λ10 + λ11.

(A3)

Appendix D. Truth Assignments, (Quasi)Classical Probabilities on the Specker Bug Combo Logic

The logic depicted in Figure 4c contains 27 propositions forming 16 contexts {a, 1, 2}, {2, 3, 4},
{4, 5, b}, {b, 6, 7}, {7, 8, 9}, {9, 10, a}, {3, 8, 11}, {a, c, b′}, {b, c, a′}, {a′, 1′, 2′}, {2′, 3′, 4′}, {4′, 5′, b′},
{b′, 6′, 7′}, {7′, 8′, 9′}, {9′, 10′, a′} and {3′, 8′, 11′}, allowing 82 non-separating on a/a′ and b/b′, unital
two-valued states (not enumerated here because of volume). Nine and nine of these permit a, as well
as a′ and b, as well as b′ to be true, respectively.

The logic depicted in Figure 4b contains 16 propositions forming nine contexts {a, 1, 2},
{2, 3, 4}, {4, 5, b}, {b, 6, 7}, {7, 8, 9}, {9, 10, a}, {3, 8, 11}, {a, c, b′} and {b, c, a′}, allowing 22
(separating and unital) two-valued states, which, through their convex summation, yield the
(quasi-)classical probabilities:
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pa =λ1 + λ2 + λ3,

pb =λ8 + λ21 + λ22,

pa′ =λ1 + λ2 + λ3 + λ5 + λ7 + λ10

+ λ12 + λ14 + λ16 + λ18 + λ20,

pb′ =λ5 + λ7 + λ8 + λ10 + λ12 + λ14

+ λ16 + λ18 + λ20 + λ21 + λ22,

pc =λ4 + λ6 + λ9 + λ11 + λ13 + λ15 + λ17 + λ19,

p1 =λ4 + λ5 + λ6 + λ7 + λ8 + λ9

+ λ10 + λ11 + λ12 + λ13 + λ14,

p2 =λ15 + λ16 + λ17 + λ18 + λ19 + λ20 + λ21 + λ22,

p3 =λ1 + λ4 + λ5 + λ6 + λ7 + λ8,

p4 =λ2 + λ3 + λ9 + λ10 + λ11 + λ12 + λ13 + λ14,

p5 =λ1 + λ4 + λ5 + λ6 + λ7 + λ15

+ λ16 + λ17 + λ18 + λ19 + λ20,

p6 =λ2 + λ4 + λ5 + λ9 + λ10 + λ11

+ λ12 + λ15 + λ16 + λ17 + λ18,

p7 =λ1 + λ3 + λ6 + λ7 + λ13 + λ14 + λ19 + λ20,

p8 =λ2 + λ9 + λ10 + λ15 + λ16 + λ21,

p9 =λ4 + λ5 + λ8 + λ11 + λ12 + λ17 + λ18 + λ22,

p10 =λ6 + λ7 + λ9 + λ10 + λ13 + λ14

+ λ15 + λ16 + λ19 + λ20 + λ21,

p11 =λ3 + λ11 + λ12 + λ13 + λ14 + λ17

+ λ18 + λ19 + λ20 + λ22.

(A4)

Note that, for all configurations, pa = λ1 + λ2 + λ3 ≤ pa′ , implying that, whenever a is true, a′

must be true, as well.
The Specker bug logic depicted in Figure 4a contains 13 propositions forming seven contexts

{a, 1, 2}, {2, 3, 4}, {4, 5, b}, {b, 6, 7}, {7, 8, 9}, {9, 10, a} and {3, 8, 11}, allowing 14 (separating and
unital) two-valued states:

pa =λ1 + λ2 + λ3,

pb =λ6 + λ13 + λ14,

p1 =λ4 + λ5 + λ6 + λ7 + λ8 + λ9,

p2 =λ10 + λ11 + λ12 + λ13 + λ14,

p3 =λ1 + λ4 + λ5 + λ6,

p4 =λ2 + λ3 + λ7 + λ8 + λ9,

p5 =λ1 + λ4 + λ5 + λ10 + λ11 + λ12,

p6 =λ2 + λ4 + λ7 + λ8 + λ10 + λ11,

p7 =λ1 + λ3 + λ5 + λ9 + λ12,

p8 =λ2 + λ7 + λ10 + λ13,

p9 =λ4 + λ6 + λ8 + λ11 + λ14,

p10 =λ5 + λ7 + λ9 + λ10 + λ12 + λ13,

p11 =λ3 + λ8 + λ9 + λ11 + λ12 + λ14.

(A5)

Note that, for all configurations, whenever a is true, b is false, and vice versa.
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Appendix E. Truth Assignments, (Quasi)Classical Probabilities on Truth-Implies-Value
Indefiniteness Logic in Three Dimensions

Figure 6c depicts 37 propositions {a, b, 1, 2, 3, . . . , 35} in 26 contexts {a, 1, 2}, {b, 2, 3}, {4, a, 5},
{b, 6, 7}, [{7, 10, 4}](a),(c), [{10, 12, 13}](a),(c), [{5, 29, 23}](b),(c), [{13, 31, 29}](b),(c), {3, 21, 23}, {4, 28, 22},
{22, 19, 3}, {b, 8, 9}, {9, 11, 5}, {28, 30, 15}, {15, 14, 11}, {6, 33, 17}, {17, 20, 21}, {7, 34, 27}, {27, 26, 23},
{22, 24, 25}, {25, 35, 9}, {15, 17, 1}, {13, 16, 1}, {16, 18, 19}, {16, 32, 8} and {25, 1, 27}, allowing eight
(non-separating, non-unital on a, 2, 13, 15, 16, 17, 25, 27) two-valued states whose convex sum yields
the following weights:

pa =p2 = p13 = p15 = p16 = p17 = p25 = p27 = 0,

pb =λ1 + λ2 + λ3 + λ4,

p1 =λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 = 1,

p3 =+ λ5 + λ6 + λ7 + λ8,

p4 =λ1 + λ2 + λ5 + λ6,

p5 =λ3 + λ4 + λ7 + λ8,

p6 =λ5 + λ6 + λ7,

p7 =λ8, p9 = λ6, p22 = λ4, p23 = λ2,

p8 =λ5 + λ7 + λ8,

p10 =λ3 + λ4 + λ7,

p11 =λ1 + λ2 + λ5,

p12 =λ1 + λ2 + λ5 + λ6 + λ8,

p14 =λ3 + λ4 + λ6 + λ7 + λ8,

p18 =λ4 + λ5 + λ6 + λ7 + λ8,

p19 =λ1 + λ2 + λ3,

p20 =+ λ2 + λ5 + λ6 + λ7 + λ8,

p21 =λ1 + λ3 + λ4,

p24 =λ1 + λ2 + λ3 + λ5 + λ6 + λ7 + λ8,

p26 =λ1 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8,

p28 =λ3 + λ7 + λ8,

p29 =λ1 + λ5 + λ6,

p30 =λ1 + λ2 + λ4 + λ5 + λ6,

p31 =λ2 + λ3 + λ4 + λ7 + λ8,

p32 =λ1 + λ2 + λ3 + λ4 + λ6,

p33 =λ1 + λ2 + λ3 + λ4 + λ8,

p34 =λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7,

p35 =λ1 + λ2 + λ3 + λ4 + λ5 + λ7 + λ8.

(A6)

The logics in Figure 6a,b contain 35 observables in 24 contexts, which are the same as before in
Figure 6c, lacking two contexts[{5, 29, 23}](b),(c) and [{13, 31, 29}](b),(c), as well as [{7, 10, 4}](a),(c) and
[{10, 12, 13}](a),(c), respectively.

The logic in Figure 6a allows 13 (non-unital on 16) two-valued states whose convex sum yields
the following weights:
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pa =λ1,

pb =λ2 + λ3 + λ4 + λ5 + λ6 + λ7,

p16 =0,

p1 =λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 + λ9 + λ10 + λ11,

p2 =λ12 + λ13,

p3 =λ1 + λ8 + λ9 + λ10 + λ11,

p4 =λ2 + λ3 + λ8 + λ9 + λ12,

p5 =λ4 + λ5 + λ6 + λ7 + λ10 + λ11 + λ13,

p6 =λ8 + λ9 + λ10 + λ12,

p7 =λ1 + λ11 + λ13,

p8 =λ1 + λ8 + λ10 + λ11 + λ13,

p9 =λ9 + λ12,

p10 =λ4 + λ5 + λ6 + λ7 + λ10,

p11 =λ1 + λ2 + λ3 + λ8,

p12 =λ2 + λ3 + λ8 + λ9 + λ11,

p13 =λ1 + λ12 + λ13,

p14 =λ4 + λ5 + λ6 + λ7 + λ9 + λ10 + λ11 + λ13,

p15 =λ12,

p17 =λ1 + λ13,

p18 =λ1 + λ5 + λ7 + λ8 + λ9 + λ10 + λ11,

p19 =λ2 + λ3 + λ4 + λ6 + λ12 + λ13,

p20 =λ3 + λ6 + λ7 + λ8 + λ9 + λ10 + λ11,

p21 =λ2 + λ4 + λ5 + λ12,

p22 =λ5 + λ7,

p23 =λ3 + λ6 + λ7 + λ13,

p24 =λ2 + λ3 + λ4 + λ6 + λ8 + λ9 + λ10 + λ11 + λ12,

p25 =λ1 + λ13,

p26 =λ1 + λ2 + λ4 + λ5 + λ8 + λ9 + λ10 + λ11,

p27 =λ12,

p28 =λ1 + λ4 + λ6 + λ10 + λ11 + λ13,

p30 =λ2 + λ3 + λ5 + λ7 + λ8 + λ9,

p32 =λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ9 + λ12,

p33 =λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ11,

p34 =λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 + λ9 + λ10,

p35 =λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 + λ10 + λ11.

(A7)

Therefore, whenever a is true, that is, pa = λ1 = 1, b has to be false, because pb = λ2 + λ3 + λ4 +

λ5 + λ6 + λ7 = 0.
Conversely, the logic in Figure 6b allows 13 (non-separating on 15/27 and non-unital on 16)

two-valued states whose convex sum yields the following weights:
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pa =λ1,

pb =λ1 + λ2 + λ3 + λ4 + λ5,

p16 =0,

p1 =λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 + λ9 + λ10 + λ11,

p2 =λ12 + λ13,

p3 =λ6 + λ7 + λ8 + λ9 + λ10 + λ11,

p4 =λ2 + λ3 + λ6 + λ7 + λ8 + λ9 + λ12,

p5 =λ4 + λ5 + λ10 + λ11 + λ13,

p6 =λ6 + λ7 + λ10 + λ13,

p7 =λ8 + λ9 + λ11 + λ12,

p8 =λ6 + λ8 + λ10 + λ11 + λ12 + λ13,

p9 =λ7 + λ9,

p11 =λ1 + λ2 + λ3 + λ6 + λ8 + λ12,

p13 =λ1 + λ12 + λ13,

p14 =λ4 + λ5 + λ7 + λ9 + λ10 + λ11,

p15 =p27 = λ13,

p17 =λ1 + λ12,

p18 =λ5 + λ6 + λ7 + λ8 + λ9 + λ10 + λ11 + λ13,

p19 =λ1 + λ2 + λ3 + λ4 + λ12,

p20 =λ3 + λ6 + λ7 + λ8 + λ9 + λ10 + λ11,

p21 =λ2 + λ4 + λ5 + λ13,

p22 =λ5 + λ13,

p23 =λ1 + λ3 + λ12,

p24 =λ2 + λ3 + λ4 + λ6 + λ7 + λ8 + λ9 + λ10 + λ11,

p25 =λ1 + λ12,

p26 =λ2 + λ4 + λ5 + λ6 + λ7 + λ8 + λ9 + λ10 + λ11,

p28 =λ1 + λ4 + λ10 + λ11,

p29 =λ2 + λ6 + λ7 + λ8 + λ9,

p30 =λ2 + λ3 + λ5 + λ6 + λ7 + λ8 + λ9 + λ12,

p31 =λ3 + λ4 + λ5 + λ10 + λ11,

p32 =λ1 + λ2 + λ3 + λ4 + λ5 + λ7 + λ9,

p33 =λ2 + λ3 + λ4 + λ5 + λ8 + λ9 + λ11,

p34 =λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ10,

p35 =λ2 + λ3 + λ4 + λ5 + λ6 + λ8 + λ10 + λ11 + λ13.

(A8)

Therefore, whenever a is true, that is, pa = λ1 = 1, b has to be true, because pb = λ1 + λ2 + λ3 +

λ4 + λ5 = λ1 = 1.
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