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Introduction

THIS IS AN ONGOING ATTEMPT to provide some written material of a
course in mathematical methods of theoretical physics. Only God knows
(see Ref.! part one, question 14, article 13; and also Ref.2, p. 243) if I am
succeeding! I kindly ask the perplexed to please be patient, do not panic
under any circumstances, and do not allow themselves to be too upset
with mistakes, omissions & other problems of this text. At the end of the
day, everything will be fine, and in the long run, we will be dead anyway.

THE PROBLEM with all such presentations is to present the material in
sufficient depth while at the same time not to get buried by the formalism.
As every individual has his or her own mode of comprehension there is no
canonical answer to this challenge.

I AM RELEASING THIS text to the public domain because it is my convic-
tion and experience that content can no longer be held back, and access
to it be restricted, as its creators see fit. On the contrary, in the attention
economy — subject to the scarcity as well as the compound accumulation
of attention — we experience a push toward so much content that we can
hardly bear this information flood, so we have to be selective and restric-
tive rather than acquisitive. I hope that there are some readers out there
who actually enjoy and profit from the text, in whatever form and way they
find appropriate.

SUCH UNIVERSITY TEXTS AS THIS ONE - and even recorded video tran-
scripts of lectures — present a transitory, almost outdated form of teaching.
Future generations of students will most likely enjoy massive open online
courses (MOOCs) that might integrate interactive elements and will allow
a more individualized — and at the same time automated — form of learn-
ing. Most importantly, from the viewpoint of university administrations,
is that (i) MOOC:s are cost-effective (that is, cheaper than standard tuition)
and (ii) the know-how of university teachers and researchers gets trans-
ferred to the university administration and management; thereby the de-
pendency of the university management on teaching staff is considerably
alleviated. In the latter way, MOOCs are the implementation of assembly
line methods (first introduced by Henry Ford for the production of afford-

“It is not enough to have no concept, one
must also be capable of expressing it.” From
the German original in Karl Kraus, Die
Fackel 697, 60 (1925): “Es genlgt nicht,
keinen Gedanken zu haben: man muss ihn
auch ausdriicken kénnen.”

"Thomas Aquinas. Summa  Theolog-
ica. Translated by Fathers of the En-
glish Dominican Province. Christian Clas-
sics Ethereal Library, Grand Rapids, MI,
1981. URL http://www.ccel.org/ccel/
aquinas/summa.html

2Ernst Specker. Die Logik nicht gle-
ichzeitig entscheidbarer Aussagen.  Di-
alectica, 14(2-3):239-246, 1960. DOI:
10.1111/j.1746-8361.1960.tb00422.x.

URL https://doi.org/10.1111/j.
1746-8361.1960.tb00422.x


http://www.ccel.org/ccel/aquinas/summa.html
http://www.ccel.org/ccel/aquinas/summa.html
https://doi.org/10.1111/j.1746-8361.1960.tb00422.x
https://doi.org/10.1111/j.1746-8361.1960.tb00422.x
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able cars) in the university setting. Together with “scientometric” meth-
ods which have their origin in both Bolshevism as well as in Taylorism3,
automated teaching is transforming schools and universities, and in par-
ticular, the old Central European universities, as much as the Ford Mo-
tor Company (NYSE:F) has transformed the car industry and the Soviets
have transformed Czarist Russia. To this end, for better or worse, univer-
sity teachers become accountants?, and “science becomes bureaucratized;

indeed, a higher police function. The retrieval is taught to the professors.>”

TO NEWCOMERS in the area of theoretical physics (and beyond) I strongly
recommend to consider and acquire two related proficiencies:

* to learn to speak and publish in BIgX and BibTeX; in particular, in the
implementation of TeX Live. IIEX’s various dialects and formats, such
as REVTeX, provide a kind of template for structured scientific texts,
thereby assisting you in writing and publishing consistently and with
methodologic rigor;

* to subscribe to and browse through preprints published at the website
arXiv.org, which provides open access to more than three-quarters
of a million scientific texts; most of them written in and compiled by
HKIEX. Over time, this database has emerged as a de facto standard from
the initiative of an individual researcher working at the Los Alamos Na-
tional Laboratory (the site at which also the first nuclear bomb has been
developed and assembled). Presently it happens to be administered by
Cornell University.

MY OWN ENCOUNTER with many researchers of different fields and dif-
ferent degrees of formalization has convinced me that there is no single,
unique “optimal” way of formally comprehending a subject®. With regards
to formal rigor, there appears to be a rather questionable chain of con-
tempt — all too often theoretical physicists look upon the experimentalists
suspiciously, mathematical physicists look upon the theoreticians skepti-
cally, and mathematicians look upon the mathematical physicists dubi-
ously. I have even experienced the distrust of formal logicians expressed
about their colleagues in mathematics! For an anecdotal evidence, take
the claim of a prominent member of the mathematical physics commu-
nity, who once dryly remarked in front of a fully packed audience, “what

|

other people call ‘proof’ I call ‘conjecture’!” Ananlogues in other disci-
plines come to mind: An (apocryphal) standing joke among psychother-
apists holds that every client — indeed everybody - is in constant super-
position between neurosis and psychosis. The “early” Nietzsche pointed
out  that classical Greek art and thought, and in particular, attic tragedy,
is characterized by the proper duplicity, pairing or amalgamation of the
Apollonian and Dionysian dichotomy, between the intellect and ecstasy,

rationality and madness, law&order aka l6gos and xdos.

SO NOT ALL THAT IS PRESENTED HERE will be acceptable to everybody;
for various reasons. Some people will claim that I am too confused and
utterly formalistic, others will claim my arguments are in desperate need

3 Frederick Winslow Taylor. The Principles of
Scientific Management. Harper Bros., New
York, 1911. URL https://archive.org/
details/principlesofscie@0taylrich

“Karl Svozil. Versklavung durch Verbuch-
halterung.  Mitteilungen der Vereinigung
Osterreichischer Bibliothekarinnen & Biblio-
thekare, 60(1):101-111, 2013. URL http:
//eprints.rclis.org/19560/

5 Ernst Jiinger. Heliopolis. Riickblick auf eine
Stadt. Heliopolis-Verlag Ewald Katzmann,
Tubingen, 1949

German original ‘“die Wissenschaft wird
biirokratisiert, ja Funktion der hoheren
Polizei. Den Professoren wird das Ap-
portieren beigebracht.”

If you excuse a maybe utterly displaced com-
parison, this might be tantamount only to
studying the Austrian family code (“Ehege-
setz”) from §49 onward, available through

http://www.ris.bka.gv.at/Bundesrecht/

before getting married.

5 Philip W. Anderson. More is different.
Broken symmetry and the nature of the
hierarchical structure of science. Science,
177(4047):393-396, August 1972. DOI:
10.1126/science.177.4047.393. URL
https://doi.org/10.1126/science.
177.4047.393

7 Friedrich Nietzsche. Die Geburt der
Tragddie. Oder: Griechenthum und Pes-
simismus. 1874, 1872, 1878, 2009-

URL http://www.nietzschesource.
org/#eKGWB/GT. Digital critical edition of
the complete works and letters, based on
the critical text by G. Colli and M. Montinari,
Berlin/New York, de Gruyter 1967-, edited by
Paolo D’lorio


https://archive.org/details/principlesofscie00taylrich
https://archive.org/details/principlesofscie00taylrich
http://eprints.rclis.org/19560/
http://eprints.rclis.org/19560/
https://doi.org/10.1126/science.177.4047.393
https://doi.org/10.1126/science.177.4047.393
http://www.nietzschesource.org/#eKGWB/GT
http://www.nietzschesource.org/#eKGWB/GT

of rigor. Many formally fascinated readers will demand to go deeper into
the meaning of the subjects; others may want some easy-to-identify prag-
matic, syntactic rules of deriving results. I apologize to both groups from
the outset. This is the best I can do; from certain different perspectives,
others, maybe even some tutors or students, might perform much better.

I AM CALLING for more tolerance and a greater unity in physics; as well
as for a greater esteem on “both sides of the same effort;” I am also
opting for more pragmatism; one that acknowledges the mutual bene-
fits and oneness of theoretical and empirical physical world perceptions.
Schrodinger® cites Democritus with arguing against a too great separation
of the intellect (5tavota, dianoia) and the senses (ato8noeig, aitheseis).
In fragment D 125 from Galen?, p. 408, footnote 125, the intellect claims
“ostensibly there is color, ostensibly sweetness, ostensibly bitterness, ac-
tually only atoms and the void;” to which the senses retort: “Poor intellect,
do you hope to defeat us while from us you borrow your evidence? Your
victory is your defeat.”

IN 1987 IN HIS Abschiedsvorlesung professor Ernst Specker at the Eid-
gendssische Hochschule Ziirich remarked that the many books authored by
David Hilbert carry his name first, and the name(s) of his co-author(s) sec-
ond, although the subsequent author(s) had actually written these books;
the only exception of this rule being Courant and Hilbert’s 1924 book
Methoden der mathematischen Physik, comprising around 1000 densely
packed pages, which allegedly none of these authors had actually written.
It appears to be some sort of collective effort of scholars from the Univer-
sity of Géttingen.

So, in sharp distinction from these activities, I most humbly present
my own version of what is important for standard courses of contempo-
rary physics. Thereby, I am quite aware that, not dissimilar with some
attempts of that sort undertaken so far, I might fail miserably. Because
even if I manage to induce some interest, affection, passion, and under-
standing in the audience — as Danny Greenberger put it, inevitably four
hundred years from now, all our present physical theories of today will ap-
pear transient!?, if not laughable. And thus, in the long run, my efforts
will be forgotten (although, I do hope, not totally futile); and some other
brave, courageous guy will continue attempting to (re)present the most
important mathematical methods in theoretical physics.

ALL THINGS CONSIDERED, it is mind-boggling why formalized thinking
and numbers utilize our comprehension of nature. Even today eminent
researchers muse about the “unreasonable effectiveness of mathematics in

the natural sciences™!.

ZENO OF ELEA AND PARMENIDES, for instance, wondered how there can
be motion if our universe is either infinitely divisible or discrete. Because
in the dense case (between any two points there is another point), the
slightest finite move would require an infinity of actions. Likewise in the
discrete case, how can there be motion if everything is not moving at all
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8Erwin  Schrédinger. Nature  and
the Greeks. Cambridge  Univer-
sity Press, Cambridge, 1954, 2014.
ISBN 9781107431836. URL http:
//www.cambridge.org/9781107431836
9Hermann Diels and Walther Kranz.
Die Fragmente der Vorsokratiker.  Wei-

dmannsche Buchhandlung, Berlin,
sixth  edition, 1906,1952. ISBN
329612201X,9783296122014. URL

https://biblio.wiki/wiki/Die_
Fragmente_der_Vorsokratiker
German: Nachdem D. [[Demokri-
tos]] sein  MiBtrauen  gegen  die
Sinneswahrnehmungen in dem Satze
ausgesprochen: ‘Scheinbar (d. i. kon-
ventionell) ist Farbe, scheinbar SiBigkeit,
scheinbar Bitterkeit: ~ wirklich nur Atome
und Leeres” 1aBt er die Sinne gegen den
Verstand reden: ‘Du armer Verstand, von
uns nimmst du deine Beweisstiicke und
willst uns damit besiegen? Dein Sieg ist
dein Fall’

" |mre Lakatos. Philosophical Papers. 1.
The Methodology of Scientific Research Pro-
grammes.  Cambridge University Press,
Cambridge, 1978. ISBN 9781316038765,
9780521280310, 0521280311

""Eugene P. Wigner. The unreasonable
effectiveness of mathematics in the natu-
ral sciences. Richard Courant Lecture de-
livered at New York University, May 11,
1959. Communications on Pure and Ap-
plied Mathematics, 13:1-14, 1960. DOI:
10.1002/cpa.3160130102. URL https://
doi.org/10.1002/cpa.3160130102


http://www.cambridge.org/9781107431836
http://www.cambridge.org/9781107431836
https://biblio.wiki/wiki/Die_Fragmente_der_Vorsokratiker
https://biblio.wiki/wiki/Die_Fragmente_der_Vorsokratiker
https://doi.org/10.1002/cpa.3160130102
https://doi.org/10.1002/cpa.3160130102
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times!2?

The Pythagoreans are often cited to have believed that the universe is
natural numbers or simple fractions thereof, and thus physics is just a part
of mathematics; or that there is no difference between these realms. They
took their conception of numbers and world-as-numbers so seriously that
the existence of irrational numbers which cannot be written as some ratio
of integers shocked them; so much so that they allegedly drowned the poor
guy who had discovered this fact. That appears to be a saddening case of
a state of mind in which a subjective metaphysical belief in and wishful
thinking about one’s own constructions of the world overwhelms critical
thinking; and what should be wisely taken as an epistemic finding is taken
to be the ontologic truth.

THE RELATIONSHIP BETWEEN PHYSICS AND FORMALISM has been de-

1 5

bated by Bridgman'?, Feynman'4, and Landauer'®, among many others.

It has many twists, anecdotes, and opinions.

16

Take, for instance, Heaviside’s not uncontroversial stance"° on it:

I suppose all workers in mathematical physics have noticed how the mathe-
matics seems made for the physics, the latter suggesting the former, and that
practical ways of working arise naturally. ... But then the rigorous logic of the
matter is not plain! Well, what of that? Shall I refuse my dinner because I do
not fully understand the process of digestion? No, not if I am satisfied with the
result. Now a physicist may in like manner employ unrigorous processes with
satisfaction and usefulness if he, by the application of tests, satisfies himself
of the accuracy of his results. At the same time he may be fully aware of his
want of infallibility, and that his investigations are largely of an experimen-
tal character, and may be repellent to unsympathetically constituted mathe-
maticians accustomed to a different kind of work. [p. 9, § 225]

Dietrich Kiichemann, the ingenious German-British aerodynamicist
and one of the main contributors to the wing design of the Concord su-

personic civil aircraft, tells us 17

[Again,] the most drastic simplifying assumptions must be made before we
can even think about the flow of gases and arrive at equations which are
amenable to treatment. Our whole science lives on highly-idealized concepts
and ingenious abstractions and approximations. We should remember this
in all modesty at all times, especially when somebody claims to have obtained
“the right answer” or “the exact solution”. At the same time, we must acknowl-
edge and admire the intuitive art of those scientists to whom we owe the many
useful concepts and approximations with which we work [page 23].

The question, for instance, is imminent whether we should take the for-
malism very seriously and literally, using it as a guide to new territories,
which might even appear absurd, inconsistent and mind-boggling; just
like Carroll’s Alice’s Adventures in Wonderland. Should we expect that all
the wild things formally imaginable have a physical realization?

IT MIGHT BE PRUDENT to adopt a contemplative strategy of evenly-
suspended attention outlined by Freud'®, who admonishes analysts to be
aware of the dangers caused by “temptations to project, what [the analyst]
in dull self-perception recognizes as the peculiarities of his own personal-
ity, as generally valid theory into science.” Nature is thereby treated as a

2H. D. P. Lee. Zeno of Elea. Cambridge
University Press, Cambridge, 1936; Paul
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the modern Eleatics. Journal of Philoso-
phy, LIX(24):765-784, 1962. URL http:
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A. Grinbaum. Modern Science and Zeno’s
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sity Press, Cambridge, United Kingdom,
third edition, 2009. ISBN 0521720796
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ica, 2:101-117, 224-234, 1934

* Richard Phillips Feynman. The Feynman
lectures on computation. Addison-Wesley
Publishing Company, Reading, MA, 1996.
edited by A.J.G. Hey and R. W. Allen

" Rolf Landauer. Information is physi-
cal. Physics Today, 44(5):23-29, May 1991.
DoI: 10.1063/1.881299. URL https://
doi.org/10.1063/1.881299
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Figure 1: Contemporary mathematicians
may have perceived the introduction of
Heaviside’s unit step function with some con-
cern. It is good in the modeling of, say,
switching on and off electric currents, but it
is nonsmooth and nondifferentiable.

'8 Oliver Heaviside. Electromagnetic theory.
“The Electrician” Printing and Publish-
ing Corporation, London, 1894-1912.
URL http://archive.org/details/
electromagnetict@2heavrich
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Design of Aircraft. Pergamon Press, Oxford,
1978
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client-patient, and whatever findings come up are accepted as is without
any immediate emphasis or judgment. This also alleviates the dangers of
becoming embittered with the reactions of “the peers,” a problem some-
times encountered when “surfing on the edge” of contemporary knowl-

edge; such as, for example, Everett’s case'”.
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" Hugh Everett Ill. The Everett interpreta-
tion of quantum mechanics: Collected works
1955-1980 with commentary. Princeton Uni-
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Jaynes has warned of the “Mind Projection Fallacy
“we are all under an ego-driven temptation to project our private thoughts
out onto the real world, by supposing that the creations of one’s own imag-
ination are real properties of Nature, or that one's own ignorance signifies
some kind of indecision on the part of Nature.”

And yet, despite all aforementioned provisos, science finally succeeded
to do what the alchemists sought for so long: we are capable of producing
gold from mercury?!.
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Linear vector spaces






Finite-dimensional vector spaces and linear

algebra

‘Twould have written a shorter letter, but I did not have the time.” (Literally:
“I made this [letter] very long because I did not have the leisure to make it
shorter.”) Blaise Pascal, Provincial Letters: Letter XVI (English Translation)
“Perhaps if I had spent more time I should have been able to make a shorter
report...” James Clerk Maxwell 1 Document 15, p- 426

VECTOR SPACES are prevalent in physics; they are essential for an under-
standing of mechanics, relativity theory, quantum mechanics, and statis-
tical physics.

1.1 Conventions and basic definitions

This presentation is greatly inspired by Halmos’ compact yet comprehen-
sive treatment “Finite-Dimensional Vector Spaces” 2. I greatly encourage
the reader to have a look into that book. Of course, there exist zillions of
other very nice presentations, among them Greub’s “Linear algebra,” and

),

Strang’s “Introduction to Linear Algebra,” among many others, even freely

downloadable ones 3

competing for your attention.

Unless stated differently, only finite-dimensional vector spaces will be
considered.

In what follows the overline sign stands for complex conjugation; that
is, if a = Ra+iSa is a complex number, then a = Ra—iSa. Very often vec-
tor and other coordinates will be real- or complex-valued scalars, which
are elements of a field (see Sect. 1.1.1).

A superscript “1” means transposition.

The physically oriented notation in Mermin’s book on quantum infor-
mation theory # is adopted. Vectors are either typed in boldface, or in
Dirac’s “bra-ket” notation®. Both notations will be used simultaneously
and equivalently; not to confuse or obfuscate, but to make the reader fa-
miliar with the bra-ket notation used in quantum physics.

Thereby, the vector x is identified with the “ket vector” |x). Ket vectors

will be represented by column vectors, that is, by vertically arranged tuples

" Elisabeth Garber, Stephen G. Brush, and
C. W. Francis Everitt. Maxwell on Heat and
Statistical Mechanics: On “Avoiding All Per-
sonal Enquiries” of Molecules. Associated
University Press, Cranbury, NJ, 1995. ISBN
0934223343

2 Paul Richard Halmos. Finite-Dimensional
Vector Spaces. Undergraduate Texts in
Mathematics. Springer, New York, 1958.
ISBN 978-1-4612-6387-6,978-0-387-90093-
3. DOI: 10.1007/978-1-4612-6387-6.
URL https://doi.org/10.1007/
978-1-4612-6387-6

3 Werner Greub. Linear Algebra, volume 23
of Graduate Texts in Mathematics. Springer,
New York, Heidelberg, fourth edition, 1975;
Gilbert Strang. Introduction to linear alge-
bra. Wellesley-Cambridge Press, Welles-
ley, MA, USA, fourth edition, 2009. ISBN
0-9802327-1-6. URL http://math.mit.
edu/linearalgebra/; Howard Homes and
Chris Rorres. Elementary Linear Algebra:
Applications Version. Wiley, New York, tenth
edition, 2010; Seymour Lipschutz and Marc
Lipson. Linear algebra. Schaum’s outline se-
ries. McGraw-Hill, fourth edition, 2009; and
Jim Hefferon. Linear algebra. 320-375,
2011. URL http://joshua.smcvt.edu/
linalg.html/book.pdf

4David N. Mermin. Lecture notes
on quantum computation. accessed
Jan 2nd, 2017, 2002-2008. URL
http://www.lassp.cornell.edu/
mermin/qcomp/CS483.html

5 Paul Adrien Maurice Dirac. The Principles
of Quantum Mechanics. Oxford University
Press, Oxford, fourth edition, 1930, 1958.
ISBN 9780198520115
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of scalars, or, equivalently, as n x 1 matrices; that is,
X1
x=x=| .| (1.1)

Xn

A vector x* with an asterisk symbol “*” in its superscript denotes an el-
ement of the dual space (see later, Section 1.8 on page 15). It is also iden-
tified with the “bra vector” (x|. Bra vectors will be represented by row
vectors, that is, by horizontally arranged tuples of scalars, or, equivalently,
as 1 x n matrices; that is,

x* E<X|E(X1,XZ,...,xn). (1.2)

Dot (scalar or inner) products between two vectors x and y in Euclidean
space are then denoted by “(bra|(c)|ket)” form; that is, by (x|y).

For an n x m matrix A = a;; we shall use the following index noration:
suppose the (column) index j indicates their column number in a matrix-
like object a;; “runs horizontally,” that is, from left to right. The (row)
index i indicates their row number in a matrix-like object a;; “runs ver-
tically,” so that,withl1<i<nandl<j<sm,

an a2 . im
ari apo a2m

A=| . . . .| =aij- (1.3)
ap1 AQp2 - QGpm

Stated differently, a;; is the element of the table representing A which is in
the ith row and in the jth column.

A matrix multiplication (written with or without dot) A-B = AB of an
n x m matrix A = a;; with an m x I matrix B = by, can then be written as
an nx [ matrix A-B = a;jbjr, 1<i<n,1<j<m,1<k<=l Herethe
Einstein summation convention a;;jbjr = }.j a;jb; has been used, which
requires that, when an index variable appears twice in a single term, one
has to sum over all of the possible index values. Stated differently, if A is an
n x m matrix and B is an m x [ matrix, their matrix product AB is an n x [
matrix, in which the m entries across the rows of A are multiplied with the
m entries down the columns of B.

As stated earlier ket and bra vectors (from the original or the dual vec-
tor space; exact definitions will be given later) will be encoded - with re-
spect to a basis or coordinate system (see below) — as an n-tuple of num-
bers; which are arranged either in n x 1 matrices (column vectors), or
in 1 x n matrices (row vectors), respectively. We can then write certain
terms very compactly (alas often misleadingly). Suppose, for instance,
that |x) =x = xl,xg,...,xn)T and ly) =y = |y1,2,...,Yn| are two (col-
umn) vectors (with respect to a given basis). Then, x;y;a;; can (somewhat
superficially) be represented as a matrix multiplication x" Ay of a row vec-
tor with a matrix and a column vector yielding a scalar; which in turn can
be interpreted as a 1 x 1 matrix. Note that, as “7” indicates transposition

67) = (32 mn) |

= (yl,yg, oy yn) represents a row vector, whose

Note that double transposition yields the
identity.
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components or coordinates with respect to a particular (here undisclosed)
basis are the scalars — that is, an element of a field which will mostly be real
or complex numbers - y;.

1.1.1 Fields of real and complex numbers

In physics, scalars occur either as real or complex numbers. Thus we shall
restrict our attention to these cases.

A field (F,+,-,—,71,0,1) is a set together with two operations, usually
called addition and multiplication, denoted by “+” and “-” (often “a-b”
is identified with the expression “ab” without the center dot) respectively,
such that the following conditions (or, stated differently, axioms) hold:

(i) closure of F with respect to addition and multiplication: forall a,b € I,
both a+ b as well as ab are in F;

(ii) associativity of addition and multiplication: for all a, b, and cinF, the
following equalities hold: a+ (b+ ¢) = (a+ b) + ¢, and a(bc) = (ab)c;

(iii) commutativity of addition and multiplication: for all @ and b in F,
the following equalities hold: a+ b = b+ a and ab = ba;

(iv) additive and multiplicative identities: there exists an element of F,
called the additive identity element and denoted by 0, such that for all
ainF, a+0 = a. Likewise, there is an element, called the multiplicative
identity element and denoted by 1, such that forallainF, 1-a = a.
(To exclude the trivial ring, the additive identity and the multiplicative
identity are required to be distinct.)

(v) additive and multiplicative inverses: for every a in F, there exists an
element —a in F, such that a + (—a) = 0. Similarly, for any a in F other
than 0, there exists an element a~! in F, such that a-a~! = 1. (The ele-
ments +(—a) and a~! are also denoted —a and é, respectively.) Stated
differently: subtraction and division operations exist.

(vi) Distributivity of multiplication over addition: For all @, b and cin F,
the following equality holds: a(b + ¢) = (ab) + (ac).

1.1.2 Vectors and vector space

Vector spaces are structures or sets allowing the summation (addition,
“coherent superposition”) of objects called “vectors,” and the multiplica-
tion of these objects by scalars — thereby remaining in these structures or
sets. That is, for instance, the “coherent superposition” a+b = |a+b) of
two vectors a = |a) and b = |b) can be guaranteed to be a vector. At this
stage, little can be said about the length or relative direction or orientation
of these “vectors.” Algebraically, “vectors” are elements of vector spaces.
Geometrically a vector may be interpreted as “a quantity which is usefully
represented by an arrow” 8.

A linear vector space V', +,+,—,1,00) is a set 7 of elements called vectors,
here denoted by bold face symbols such as a,x,v,w,..., or, equivalently,
denoted by |a), [x), [V}, |w), ..., satisfying certain conditions (or, stated dif-

ferently, axioms); among them, with respect to addition of vectors:

For proofs and additional information see §2
in

Paul Richard Halmos. Finite-Dimensional
Vector Spaces. Undergraduate Texts in
Mathematics. Springer, New York, 1958.
ISBN 978-1-4612-6387-6,978-0-387-90093-
3. DOI: 10.1007/978-1-4612-6387-6.
URL https://doi.org/10.1007/
978-1-4612-6387-6
In order to define length, we have to engage
an additional structure, namely the norm ||al|
of a vector a. And in order to define relative
direction and orientation, and, in particular,
orthogonality and collinearity we have to de-
fine the scalar product (a|b) of two vectors a
and b.
8 Gabriel Weinreich. Geometrical Vectors
(Chicago Lectures in Physics). The Univer-
sity of Chicago Press, Chicago, IL, 1998
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(i) commutativity, that is, |x) + [y) = |y) + |X);
(ii) associativity, that is, (|x) + |y)) + |z) = [x) + (ly) + |12));
(iii) the uniqueness of the origin or null vector 0; as well as
(iv) the uniqueness of the negative vector;
with respect to multiplication of vectors with scalars:
(v) the existence of an identity or unit factor 1; and
(vi) distributivity with respect to scalar and vector additions; that is,

+ =ax+ Bx,
(a+ P)x=ax+ fx 14
a(x+y) = ax+ay,

with x,y € 7 and scalars «, § € [, respectively.
Examples of vector spaces are:

(i) The set C of complex numbers: C can be interpreted as a complex vec-
tor space by interpreting as vector addition and scalar multiplication as
the usual addition and multiplication of complex numbers, and with 0
as the null vector;

(ii) The set C", n € N of n-tuples of complex numbers: Let x = (x1,..., Xz)
andy= (y1,..., ¥n)- C" can be interpreted as a complex vector space by
interpreting the ordinary addition x+y = (x; + y1,..., X, + y) and the
multiplication ax = (ax1, ..., ax,) by a complex number a as vector ad-
dition and scalar multiplication, respectively; the null tuple 0 = (0,...,0)
is the neutral element of vector addition;

(iii) The set 2 of all polynomials with complex coefficients in a variable #:
27 can be interpreted as a complex vector space by interpreting the or-
dinary addition of polynomials and the multiplication of a polynomial
by a complex number as vector addition and scalar multiplication, re-
spectively; the null polynomial is the neutral element of vector addi-
tion.

1.2 Linear independence

Aset ¥ ={x1,X,...,X;} €V of vectors X; in a linear vector space is linearly
independent if x; # 0V1 < i < k, and additionally, if either k = 1, or if no
vector in . can be written as a linear combination of other vectors in this
set &; that is, there are no scalars a; satisfying x; = }1< <k, jzi @;X;.

Equivalently, if Zle a;x; =0 implies a; = 0 for each i, then the set & =
{X1,X2, ..., Xk} is linearly independent.

Note that the vectors of a basis are linear independent and “maximal”
insofar as any inclusion of an additional vector results in a linearly de-
pendent set; that ist, this additional vector can be expressed in terms of
a linear combination of the existing basis vectors; see also Section 1.4 on
page 9.
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1.3 Subspace

A nonempty subset .# of a vector space is a subspace or, used synony-
mously, a linear manifold, if, along with every pair of vectors x and y con-
tained in .#, every linear combination ax + fy is also contained in ..

If %¢ and 7 are two subspaces of a vector space, then % + 7 is the sub-
space spanned by % and 7; that is, it contains all vectors z = x +y, with
x€e% andyeV.

M is the linear span

M =span(%,V) =span(x,y) = {ax+ fyla,BeF,xe%,yeV}. (1.5)

A generalization to more than two vectors and more than two sub-
spaces is straightforward.

For every vector space 7/, the vector space containing only the null vec-
tor, and the vector space 7 itself are subspaces of 7.

1.3.1 Scalar or inner product

A scalar or inner product presents some form of measure of “distance” or
“apartness” of two vectors in a linear vector space. It should not be con-
fused with the bilinear functionals (introduced on page 15) that connect a
vector space with its dual vector space, although for real Euclidean vector
spaces these may coincide, and although the scalar product is also bilinear
in its arguments. It should also not be confused with the tensor product
introduced in Section 1.10 on page 24.

Aninner product space is a vector space 7, together with an inner prod-
uct; that is, with a map (:|-) : ¥ x ¥ — [F (usually F = C or F = R) that sat-
isfies the following three conditions (or, stated differently, axioms) for all
vectors and all scalars:

(i) Conjugate (Hermitian) symmetry: (x|y) = (y|x);

(i) linearity in the second argument:

(zlax+ By) = alzlx) + B(zly);

(iii) positive-definiteness: (x|x) = 0; with equality if and only if x = 0.

Note that from the first two properties, it follows that the inner product
is antilinear, or synonymously, conjugate-linear, in its firstargument (note
that (uv) = (u) (v) for all u, v e C):

(ax+ Pylz) = (zlax+ By) = a(z|x) + f(zly) = a(x|z) +B(y|z). (1.6)
One example of an inner product is the dot product
n
xly) = Xiyi (1.7)
i=1

of two vectors x = (x1,...,X,) and y = (y1,..., yn) in C", which, for real Eu-
clidean space, reduces to the well-known dot product (x|y) = x;y; +--- +
Xn¥n = IXIyl cos Z(x,y).

For proofs and additional information see
§10in

Paul Richard Halmos. Finite-Dimensional
Vector Spaces. Undergraduate Texts in
Mathematics. Springer, New York, 1958.
ISBN 978-1-4612-6387-6,978-0-387-90093-
3. DOI: 10.1007/978-1-4612-6387-6.
URL https://doi.org/10.1007/
978-1-4612-6387-6

For proofs and additional information see
§61in

Paul Richard Halmos. Finite-Dimensional
Vector Spaces. Undergraduate Texts in
Mathematics. Springer, New York, 1958.
ISBN 978-1-4612-6387-6,978-0-387-90093-
3. Dol: 10.1007/978-1-4612-6387-6.
URL https://doi.org/10.1007/
978-1-4612-6387-6

For real, Euclidean vector spaces, this func-
tion is symmetric; that is (x|y) = (ylx).

This definition and nomenclature is different
from Halmos’ axiom which defines linearity
in the first argument. We chose linearity in
the second argument because this is usually
assumed in physics textbooks, and because
Thomas Sommer strongly insisted.
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It is mentioned without proof that the most general form of an inner
product in C" is (x|y) = yAxT, where the symbol “1” stands for the con-
jugate transpose (also denoted as Hermitian conjugate or Hermitian ad-
joint), and A is a positive definite Hermitian matrix (all of its eigenvalues
are positive).

The norm of a vector x is defined by

IxIl = v/ xIx). (1.8)

Conversely, the polarization identity expresses the inner product of two
vectors in terms of the norm of their differences; that is,

1 . . .
xly) =7 [Ix+yl? = Ix=ylI? +i (Ix - iyl? - Ix+ iyl*)]. (1.9)

In complex vector space, a direct but tedious calculation — with
conjugate-linearity (antilinearity) in the first argument and linearity in the
second argument of the inner product - yields

1 S S
Z(IIX+y||2—IIX—y||2+lIIX—lyIIZ—lIIXHyIIZ)

((X+yIX+y) — (X—yIX—y) + i (X~ iy]x — iy) — i X+ iy|x+ iy))

NI

= i [(x[x) + (xly) + Cy1x) + (yly)) — (x]x) — xly) = (y1%) + (yly)

+i((x[x) — (x|1y) — (iyIx) + (iyliy)) — i (xIx) + (xliy) + (iylx) + (iyliy))]

= i [xI%) + (xly) + (yIx) + (yly) — x[x) + (xly) + ylx) = (yly)

+i(x[x) — i (x| iy) — i (QyIX) + i{iyliy) — i(x|x) — i (x|iy) — i (Qylx) — i{iyliy)]
= i [2(xly) + CyIx)) — 20 ((x] iy) + (iylx)) |

= % [(xly) + (ylx)) — i (i (xly) — i ¢ylx))]

1
=5 [xly) + (yIx) + xly) — (yIx) ] = xly).
(1.10)

For any real vector space the imaginary terms in (1.9) are absent, and
(1.9) reduces to

(Ix+yl2—lIx-yl?). (.11

Eal e

1
&ly) = 7 (x+ylx+y) — (x—ylx-y)) =

Two nonzero vectors X,y € 7, X,y # 0 are orthogonal, denoted by “x L y”
if their scalar product vanishes; that is, if

(xly) =0. (1.12)
Let & be any set of vectors in an inner product space 7. The symbol
&t ={x| xly)=0,xe 7, Vye &} (1.13)

denotes the set of all vectors in 7 that are orthogonal to every vector in &.

Note that, regardless of whether or not & is a subspace, &+ is a sub-
space. Furthermore, & is contained in (§4)* = &+, In case & is a sub-
space, we call &* the orthogonal complement of &.

See page 7 for a definition of subspace.
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The following projection theorem is mentioned without proof. If ./ is
any subspace of a finite-dimensional inner product space 7, then 7 is the
direct sum of .« and .#*; thatis, .4+ = 4.

For the sake of an example, suppose 7 = R?, and take & to be the set
of all vectors spanned by the vector (1,0); then &+ is the set of all vectors
spanned by (0, 1).

1.3.2 Hilbert space

A (quantum mechanical) Hilbert space is a linear vector space 7 over the
field C of complex numbers (sometimes only R is used) equipped with vec-
tor addition, scalar multiplication, and some inner (scalar) product. Fur-
thermore, completeness by the Cauchy criterion for sequences is an ad-
ditional requirement, but nobody has made operational sense of that so
far: Ifx, €7, n=1,2,..., and if lim, ;— 00 X5, — Xy, X5 —X;n) = 0, then there
exists an x € 7 with lim,,_ o, (X, —X,X;;, —X) = 0.

Infinite dimensional vector spaces and continuous spectra are non-
trivial extensions of the finite dimensional Hilbert space treatment. As a
heuristic rule — which is not always correct — it might be stated that the
sums become integrals, and the Kronecker delta function §;; defined by

0 fori#j,
5= .¢{ (1.14)
1 fori=j.

becomes the Dirac delta function 6 (x — y), which is a generalized function
in the continuous variables x, y. In the Dirac bra-ket notation, the resolu-
tion of the identity operator, sometimes also referred to as completeness,
isgiven by 1= f_t;o |x){x| dx. For a careful treatment, see, for instance, the
books by Reed and Simon 7, or wait for Chapter 7, page 161.

1.4 Basis

We shall use bases of vector spaces to formally represent vectors (ele-
ments) therein.

A (linear) basis [or a coordinate system, or a frame (of reference)] is a set
2 of linearly independent vectors such that every vector in 7 is a linear
combination of the vectors in the basis; hence 9 spans 7.

What particular basis should one choose? A priorino basis is privileged
over the other. Yet, in view of certain (mutual) properties of elements
of some bases (such as orthogonality or orthonormality) we shall prefer
some or one over others.

Note that a vector is some directed entity with a particular length, ori-
ented in some (vector) “space.” It is “laid out there” in front of our eyes, as
it is: some directed entity. A priori, this space, in its most primitive form,
is not equipped with a basis, or synonymously, a frame of reference, or ref-
erence frame. Insofar it is not yet coordinatized. In order to formalize the
notion of a vector, we have to encode this vector by “coordinates” or “com-
ponents” which are the coefficients with respect to a (de)composition into
basis elements. Therefore, just as for numbers (e.g., by different numeral

”Michael Reed and Barry Simon. Methods
of Mathematical Physics I: Functional Analy-
sis. Academic Press, New York, 1972; and
Michael Reed and Barry Simon. Methods
of Mathematical Physics IlI: Fourier Analy-
sis, Self-Adjointness. Academic Press, New
York, 1975

For proofs and additional information see §7
in

Paul Richard Halmos. Finite-Dimensional
Vector Spaces. Undergraduate Texts in
Mathematics. Springer, New York, 1958.
ISBN 978-1-4612-6387-6,978-0-387-90093-
3. DolI: 10.1007/978-1-4612-6387-6.
URL https://doi.org/10.1007/
978-1-4612-6387-6
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bases, or by prime decomposition), there exist many “competing” ways to
encode a vector.

Some of these ways appear to be rather straightforward, such as, in
particular, the Cartesian basis, also synonymously called the standard ba-
sis. It is, however, not in any way a priori “evident” or “necessary” what
should be specified to be “the Cartesian basis.” Actually, specification of
a “Cartesian basis” seems to be mainly motivated by physical inertial mo-
tion — and thus identified with some inertial frame of reference — “without
any friction and forces,” resulting in a “straight line motion at constant
speed.” (This sentence is cyclic because heuristically any such absence
of “friction and force” can only be operationalized by testing if the mo-
tion is a “straight line motion at constant speed.”) If we grant that in this
way straight lines can be defined, then Cartesian bases in Euclidean vector
spaces can be characterized by orthogonal (orthogonality is defined via
vanishing scalar products between nonzero vectors) straight lines span-
ning the entire space. In this way, we arrive, say for a planar situation, at
the coordinates characterized by some basis {(0, 1), (1,0)}, where, for in-
stance, the basis vector “(1,0)” literally and physically means “a unit arrow
pointing in some particular, specified direction.”

Alas, if we would prefer, say, cyclic motion in the plane, we might want
to call a frame based on the polar coordinates r and 6 “Cartesian,” re-
sulting in some “Cartesian basis” {(0, 1), (1,0)}; but this “Cartesian basis”
would be very different from the Cartesian basis mentioned earlier, as
“(1,0)” would refer to some specific unit radius, and “(0,1)” would refer to
some specific unit angle (with respect to a specific zero angle). In terms of
the “straight” coordinates (with respect to “the usual Cartesian basis”) x, y,
the polar coordinates are r = \/szyz and 0 = tan~! (y/x). We obtain the
original “straight” coordinates (with respect to “the usual Cartesian basis”)
back if we take x = rcosf and y = rsin6.

Other bases than the “Cartesian” one may be less suggestive at first; alas
it may be “economical” or pragmatical to use them; mostly to cope with,
and adapt to, the symmetry of a physical configuration: if the physical sit-
uation at hand is, for instance, rotationally invariant, we might want to
use rotationally invariant bases — such as, for instance, polar coordinates
in two dimensions, or spherical coordinates in three dimensions - to rep-
resent a vector, or, more generally, to encode any given representation of a
physical entity (e.g., tensors, operators) by such bases.

1.5 Dimension

The dimension of 7 is the number of elements in 28.

All bases 28 of 7 contain the same number of elements.

A vector space is finite dimensional if its bases are finite; that is, its
bases contain a finite number of elements.

In quantum physics, the dimension of a quantized system is associated
with the number of mutually exclusive measurement outcomes. For a spin
state measurement of an electron along with a particular direction, as well
as for a measurement of the linear polarization of a photon in a particular
direction, the dimension is two, since both measurements may yield two

For proofs and additional information see §8
in

Paul Richard Halmos. Finite-Dimensional
Vector Spaces. Undergraduate Texts in
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ISBN 978-1-4612-6387-6,978-0-387-90093-
3. DOI: 10.1007/978-1-4612-6387-6.
URL https://doi.org/10.1007/
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distinct outcomes which we can interpret as vectors in two-dimensional
Hilbert space, which, in Dirac’s bra-ket notation &, can be written as | 1)
and | |), or |+) and |-), or | H) and | V), or |0) and |1), or‘ G\Kf > and‘ @—@ >,
respectively.

1.6 Vector coordinates or components

The coordinates or components of a vector with respect to some basis rep-
resent the coding of that vector in that particular basis. It is important to
realize that, as bases change, so do coordinates. Indeed, the changes in
coordinates have to “compensate” for the bases change, because the same
coordinates in a different basis would render an altogether different vec-
tor. Thus it is often said that, in order to represent one and the same vec-
tor, if the base vectors vary, the corresponding components or coordinates
have to contra-vary. Figure 1.1 presents some geometrical demonstration
of these thoughts, for your contemplation.

(@) (b)

(©) (d)

Elementary high school tutorials often condition students into believ-
ing that the components of the vector “is” the vector, rather than empha-
sizing that these components represent or encode the vector with respect
to some (mostly implicitly assumed) basis. A similar situation occurs in
many introductions to quantum theory, where the span (i.e., the onedi-
mensional linear subspace spanned by that vector) {y | y = ax,a € C}, or,
equivalently, for orthogonal projections, the projection (i.e., the projection
operator; see also page 49) Ex = xox! = |x) (x| corresponding to a unit (of
length 1) vector x often is identified with that vector. In many instances,
this is a great help and, if administered properly, is consistent and fine (at
least for all practical purposes).

The Cartesian standard basis in n-dimensional complex space C" is

8 Paul Adrien Maurice Dirac. The Principles
of Quantum Mechanics. Oxford University
Press, Oxford, fourth edition, 1930, 1958.
ISBN 9780198520115

For proofs and additional information see
§46 in

Paul Richard Halmos. Finite-Dimensional
Vector Spaces. Undergraduate Texts in
Mathematics. Springer, New York, 1958.
ISBN 978-1-4612-6387-6,978-0-387-90093-
3. DoOl: 10.1007/978-1-4612-6387-6.
URL https://doi.org/10.1007/
978-1-4612-6387-6

Figure 1.1: Coordinazation of vectors: (a)
some primitive vector; (b) some primitive
vectors, laid out in some space, denoted by
dotted lines (c) vector coordinates x; and x»
of the vector x = (x1,x2) = x1€1 + x2e2 in
a standard basis; (d) vector coordinates xi
and x}, of the vector x = (x],x}) = x}e] +
x4 e/, in some nonorthogonal basis.
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the set of (usually “straight”) vectors x;,i = 1,..., n, of “unit length” — the
unit is conventional and thus needs to be fixed as operationally precisely
as possible, such as in the International System of Units (SI) —represented
by n-tuples, defined by the condition that the i’th coordinate of the j’th
basis vector e; is given by 6; ;. Likewise, §;; can be interpreted as the j'th
coordinate of the i’th basis vector. Thereby §; is the Kronecker delta func-
tion
0 fori#j,

0;i=0j;= (1.15)
v 1 fori=j.

Thus we can represent the basis vectors by

1 0
0 1 0

lep)=e =] |, ley=e=| |, len)=e, =] |. (1.16)
0 0 1

In terms of these standard base vectors, every vector x can be written as
a linear combination — in quantum physics, this is called coherent super-

position
X1
n n _X,'2
Xy=x=) xje;=) xilejy=| | (1.17)
i=1 i=1 :
Xn

with respect to the basis 28 = {ej,e»,...,e,}.
With the notation defined by

X:(XI;XZr-”’x”)T’and (1.18)

U= (ehez,---,en) = (Ie1>,|ez>,...,|en>),

such that u;; = e; j is the jth component of the ith vector, Eq. (1.17) can be
written in “Euclidean dot product notation,” that is, “column times row”
and “row times column” (the dot is usually omitted)

X1 X1

X2 X2

= (len) e, ... len))

|X> =X= (elreZ)'”)en)

Xn Xn
(1.19)
€,1 €1 - €x1||X1
€12 €92 - €po || X2
= =UX.
€in € n - €upn)\Xn

Of course, with the Cartesian standard basis (1.16), U = [,,, but (1.19) re-
mains valid for general bases.

In (1.19) the identification of the tuple X = (xl,xz,...,xn)T containing
the vector components x; with the vector [x) = x really means “coded with
respect, or relative, to the basis 9 = {ej,e»,...,e;}.” Thus in what follows,
we shall often identify the column vector (xl,xg,...,xn)T containing the

For instance, in the International System of
Units (SI) the “second” as the unit of time is
defined to be the duration of 9 192 631 770
periods of the radiation corresponding to the
transition between the two hyperfine levels
of the ground state of the cesium 133 atom.
The “meter” as the unit of length is defined to
be the length of the path traveled by light in
vacuum during a time interval of 1/299 792
458 of a second — or, equivalently, as light
travels 299 792 458 meters per second, a
duration in which 9 192 631 770 transitions
between two orthogonal quantum states of
a cesium 133 atom occur — during 9 192
631 770/299 792 458 ~ 31 transitions of two
orthogonal quantum states of a cesium 133
atom. Thereby, the speed of light in the vac-
uum is fixed at exactly 299 792 458 meters
per second .

Asher Peres. Defining length. Nature, 312:

10, 1984. DoI: 10.1038/312010b0. URL
https://doi.org/10.1038/312010b0

For reasons demonstrated later in
Eqg. (1.185) U is a unitary matrix, that is,
ul=uf= UT, where the overline stands
for complex conjugation u;; of the entries
u;j of U, and the superscript “1” indicates
transposition; that is, UT has entries Ujj.
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coordinates of the vector with the vector x = |x), but we always need to
keep in mind that the tuples of coordinates are defined only with respect to
a particular basis {ej,ey,...,e,}; otherwise these numbers lack any mean-
ing whatsoever.

Indeed, with respect to some arbitrary basis 9 = {f,...,f,} of some n-
dimensional vector space 7 with the base vectors f;, 1 < i < n, every vector
x in 7 can be written as a unique linear combination

X1
n n X2
X=x=) xfi=) xlfy=| . (1.20)
i=1 i=1 :
Xn

with respect to the basis 8 = {f,...,f,}.

The uniqueness of the coordinates is proven indirectly by reductio
ad absurdum: Suppose there is another decomposition x = }.7", y;f; =
(¥1,¥2,..., yn); then by subtraction, 0 = Z;?:] (x; —yf; = (0,0,...,0). Since
the basis vectors f; are linearly independent, this can only be valid if all co-
efficients in the summation vanish; thus x; — y; =0 for all 1 < i < n; hence
finally x; = y; for all 1 < i < n. This is in contradiction with our assump-
tion that the coordinates x; and y; (or at least some of them) are different.
Hence the only consistent alternative is the assumption that, with respect
to a given basis, the coordinates are uniquely determined.

Aset % ={ay,...,a,} of vectors of the inner product space 7 is orthonor-
malif, for all a; € 28 and a; € 2, it follows that

(a,-Iaj)=6l-j. (1.21)

Any such set is called complete if it is not a subset of any larger orthonor-
mal set of vectors of 7. Any complete set is a basis. If, instead of Eq. (1.21),
(a; |aj) = a;0;; with nontero factors a;, the set is called orthogonal.

1.7 Finding orthogonal bases from nonorthogonal ones

A Gram-Schmidt process °

is a systematic method for orthonormalising

a set of vectors in a space equipped with a scalar product, or by a syn-

onym preferred in mathematics, inner product. The Gram-Schmidt pro-

cess takes a finite, linearly independent set of base vectors and generates

an orthonormal basis that spans the same (sub)space as the original set.
The general method is to start out with the original basis, say,

{X1,X2,X3,...,X,}, and generate a new orthogonal basis
{YI,YZ»YS,, e 'yVl} by

Y1 =X,
Y2 =Xz — Py, (X2),

y3 = X3 — Py, (X3) — Py, (x3),
(1.22)

n—-1
Yn=Xn— Y Py,(xn),
i=1

9Steven J. Leon, Ake Bjorck, and Wal-
ter Gander.  Gram-Schmidt orthogonal-
ization: 100 years and more.  Numeri-
cal Linear Algebra with Applications, 20(3):
492-532, 2013. ISSN 1070-5325. DOI:
10.1002/nla.1839. URL https://doi.
org/10.1002/nla. 1839

The scalar or inner product (x|y) of two vec-
tors x and y is defined on page 7. In Eu-
clidean space such as R’?, one often identi-
fies the “dot product” x-y=x1y1 +--+Xn¥n
of two vectors x and y with their scalar or in-
ner product.
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where

Py(x) = wy, and Py (x) =x— wy (1.23)

yly) ylyd
are the orthogonal projections of x onto y and y*, respectively (the latter
is mentioned for the sake of completeness and is not required here). Note
that these orthogonal projections are idempotent and mutually orthogo-
nal; that is,

xly) <yly)
iy oy Py,
Ky (Xy) Xy yly)
<y|y>y yly)  (yly)?
Pu(PLx)) = pL _ &y &yyly
ylFy () =Py (Py(0) = w2 y=0.

Py(x) = Py(Py(x) =

(Py)?(x) = Py (Py (%) =x y=Pf®), (1.24)

For a more general discussion of projections, see also page 49.

Subsequently, in order to obtain an orthonormal basis, one can divide
every basis vector by its length.

The idea of the proof is as follows (see also Greub !0, Section 7.9). In
order to generate an orthogonal basis from a nonorthogonal one, the first
vector of the old basis is identified with the first vector of the new basis;
thatis y; = x;. Then, as depicted in Fig. 1.7, the second vector of the new
basis is obtained by taking the second vector of the old basis and subtract-
ing its projection on the first vector of the new basis.

More precisely, take the Ansatz

y2 =X + Ay, (1.25)

thereby determining the arbitrary scalar A such thaty; and y», are orthog-
onal; that s, (y2|y1) = 0. This yields

(y1ly2) = (y1lx2) + Ayily1) =0, (1.26)
and thus, sincey; #0,
_ (y11x2) ' (1.27)
{yily1)

To obtain the third vector y3 of the new basis, take the Ansatz

Y3 =X3 + Uy1 +Vyo, (1.28)

and require that it is orthogonal to the two previous orthogonal basis
vectors y; and yy; that is (yjlys) = (y2lys) = 0. We already know that
(y1ly2) = 0. Consider the scalar products of y; and y» with the Ansatz for
ys in Eq. (1.28); that is,

(y1lys? = (y11x3) + py1lyr) +v<{yily2) =0,
——

(1.29)
=0
and
(y2lys) = (y2Ix3) + p(y2ly1) +v{y2ly2) = 0. (1.30)
~—— '
=0

As aresult,

_ k) el (1.31)

yilyr)’ (yaly2)

" Werner Greub. Linear Algebra, volume 23
of Graduate Texts in Mathematics. Springer,
New York, Heidelberg, fourth edition, 1975

> > X1 =V1
PY1 (x2)

Figure 1.2: Gram-Schmidt construction for
two nonorthogonal vectors x; and xp, yield-
ing two orthogonal vectors y; and y».
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A generalization of this construction for all the other new base vectors
¥3,...,¥n, and thus a proof by complete induction, proceeds by a gener-
alized construction.

Consider, as an example, the standard Euclidean scalar product de-

0} (1
noted by “-” and the basis { (1) , (1) } Then two orthogonal bases are ob-

tained by taking

0 1
(i) either the basis vector (1), together with (1) -

1 0
(ii) or the basis vector (1), together with (1) -

1.8 Dual space

Every vector space 7 has a corresponding dual vector space (or just dual
space) V'* consisting of all linear functionals on 7.

A linear functional on a vector space 7 is a scalar-valued linear function
y defined for every vector x € 7, with the linear property that

y(a1X) + azX3) = a1y(X1) + a2y(X2). (1.32)

For example, let x = (xy,..., X5), and take y(x) = x;.

For another example, let again x = (xy,...,x,), and let ay,...,a, € C be
scalars; and take y(x) = a1 x1 + -+ + @, Xp.

The following supermarket example has been communicated to me by
Hans Havlicek '': suppose you visit a supermarket, with a variety of prod-
ucts therein. Suppose further that you select some items and collect them
in a cart or trolley. Suppose further that, in order to complete your pur-
chase, you finally go to the cash desk, where the sum total of your pur-
chase is computed from the price-per-product information stored in the
memory of the cash register.

In this example, the vector space can be identified with all conceivable
configurations of products in a cart or trolley. Its dimension is determined
by the number of different, mutually distinct products in the supermarket.
Its “base vectors” can be identified with the mutually distinct products in
the supermarket. The respective functional is the computation of the price
of any such purchase. It is based on a particular price information. Every
such price information contains one price per item for all mutually dis-
tinct products. The dual space consists of all conceivable price details.

We adopt a doublesquare bracket notation “[-,-]” for the functional

yx) = [x,¥]. (1.33)

Note that the usual arithmetic operations of addition and multiplica-
tion, that is,

(ay + bz)(x) = ay(x) + bz(x), (1.34)

For proofs and additional information see
§13-15in
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together with the “zero functional” (mapping every argument to zero) in-
duce a kind of linear vector space, the “vectors” being identified with the
linear functionals. This vector space will be called dual space ¥ *.

As a result, this “bracket” functional is bilinear in its two arguments;
that is,

[[(Z1X1+Q$2X2,y]] :alﬂxl,y]]+a2[[xz,y]], (1.35)

and

[x, a1y1 + azy2] = a1[x,y1] + a2 [x, y2]. (1.36)

Because of linearity, we can completely characterize an arbitrary linear
functional y € 7* by its values of the vectors of some basis of 7: If we know
the functional value on the basis vectors in 98, we know the functional on
all elements of the vector space 7. If 7 is an n-dimensional vector space,
andif B ={f},...,f,}isabasisof 7, and if {a;, ..., a,} is any set of n scalars,
then there is a unique linear functional y on 7 such that [f;,y] = a; for all
0<isn.

A constructive proof of this theorem can be given as follows: Because
every X € 7 can be written as a linear combination x = x1f; +--- + x,,f,, of
the basis vectors of & = {fj,...,f,} in one and only one (unique) way, we
obtain for any arbitrary linear functional y € 7* a unique decomposition
in terms of the basis vectors of 8 = {f;, ..., f,}; that is,

[x,y] = x1[f1,¥] + - + xn [£2, ] (1.37)
By identifying [f;,y] = a; we obtain

[XYYH =xiayt-t+Xpp. (1.38)

Conversely, if we definey by [x,y] = a1x1 + -+ + @, Xy, then y can be
interpreted as a linear functional in 7 * with [f;,y] = ;.

If we introduce a dual basis by requiring that [[f,-,f}’f]] =0;;j (cf. Eq. 1.39
below), then the coefficients [f;,y] = a;, 1 < i < n, can be interpreted as
the coordinates of the linear functional y with respect to the dual basis 98,
such thaty = (a1, az,...,a,)T.

Likewise, as will be shown in (1.46), x; = [x, f;* |; that is, the vector coor-
dinates can be represented by the functionals of the elements of the dual
basis.

Let us explicitly construct an example of a linear functional ¢x) =
[x,¢] that is defined on all vectors x = ae; + e, of a two-dimensional
vector space with the basis {e;,e;} by enumerating its “performance on
the basis vectors” e; = (1,0) and e, = (0, 1); more explicitly, say, for an ex-
ample’s sake, p(e;) = [e1,¢] = 2 and ¢(ez) = [es, @] = 3. Therefore, for
example, ¢((5,7) = [(5,7), 9] =5[e1, ¢] + 7[ez, ¢] =10+21 =31.

1.8.1 Dual basis

We now can define a dual basis, or, used synonymously, a reciprocal or
contravariant basis. If 7 is an n-dimensional vector space, and if 2 =

The square bracket can be identified with the
scalar dot product [x,y] = ¢x|y) only for Eu-
clidean vector spaces R", since for complex
spaces this would no longer be positive defi-
nite. That is, for Euclidean vector spaces R"
the inner or scalar product is bilinear.
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{f1,...,£,} is a basis of 7, then there is a unique dual basis 8™ = {f}, ...}
in the dual vector space 7 * defined by

£ 6 = [£,£,] =64, (1.39)

where §;; is the Kronecker delta function. The dual space 7* spanned by
the dual basis 28* is n-dimensional.

In a different notation involving subscripts (lower indices) for (basis)
vectors of the base vector space, and superscripts (upper indices) f/ = f;,
for (basis) vectors of the dual vector space, Eq. (1.39) can be written as

/(8) = [, F] =06;;. (1.40)

Suppose g is a metric, facilitating the translation from vectors of the base
vectors into vectors of the dual space and vice versa (cf. Section 2.7.1 on
page 88 for a definition and more details), in particular, f; = g;;f as well as
f;= f/ = g/*f.. Then Egs. (1.39) and (1.39) can be rewritten as

[guf' #] = [f:, g/"6i] = 6. (1.41)

Note that the vectors f;“ = f of the dual basis can be used to “retrieve”
the components of arbitrary vectors x = }_ ; x;f; through

f;k(x)Zf; (Zx]'fj)ZZXjf;f (fj)zzxj(sij:xi- (1.42)
J i i

Likewise, the basis vectors f; can be used to obtain the coordinates of any
dual vector.

In terms of the inner products of the base vector space and its dual
vector space the representation of the metric may be defined by g;; =
g(f;,£;) = (f; | f;), aswell as gij = g(fi,fj) =(ft | )y, respectively. Note, how-
ever, that the coordinates g;; of the metric g need not necessarily be pos-
itive definite. For example, special relativity uses the “pseudo-Euclidean”
metric g = diag(+1,+1,+1,-1) (or just g = diag(+, +,+,—)), where “diag”
stands for the diagonal matrix with the arguments in the diagonal.

In a real Euclidean vector space R" with the dot product as the scalar
product, the dual basis of an orthogonal basis is also orthogonal, and
contains vectors with the same directions, although with reciprocal length
(thereby explaining the wording “reciprocal basis”). Moreover, for an or-
thonormal basis, the basis vectors are uniquely identifiable by e; — e} =
elT. This identification can only be made for orthonormal bases; it is not
true for nonorthonormal bases.

A “reverse construction” of the elements f}f of the dual basis 8* -
thereby using the definition “[f;,y] = a; for all 1 < i < n” for any element
yin 7" introduced earlier — can be given as follows: for every 1 < j < n, we
can define a vector f’]k in the dual basis 9* by the requirement [[f,-,f}f]] =6;j.
That is, in words: the dual basis element, when applied to the elements of
the original n-dimensional basis, yields one if and only if it corresponds to
the respective equally indexed basis element; for all the other n — 1 basis
elements it yields zero.

What remains to be proven is the conjecture that 8* = {fj,....,f;} is a
basis of 7*; that is, that the vectors in 98* are linear independent, and that
they span 7*.

The metric tensor g;; represents a bilinear
functional g(x,y) = x! yf gij thatis symmet-
ric; that is, g(x,y) = g(x,y) and nondegen-
erate; that is, for any nonzero vector x € 7/,
x # 0, there is some vector y € 7, so that
g(x,y) #0. g also satisfies the triangle in-
equality |[x—zl| < |x—yll +ly—zll.
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First observe that 98" is a set of linear independent vectors, for if a; f] +
-+ a,f;, =0, then also

[x, a1ff +---+anfy] = a1[x£f]] +- -+ an[x.£,] =0 (1.43)
for arbitrary x € 7. In particular, by identifying x with f; € 98, for 1 < i < n,
al[[f,-,ff]] R an[[f,-,fm] = aj[[f,-,f;f]] = ajél-j =a; =0. (1.44)

Second, every y € 7" is a linear combination of elements in 8* =
{f;,....f;}, because by starting from [f;,y] = a;, with x = x1f; + -+ + x,f,
we obtain

[xy] = x1[fi,y] +- -+ xn[f0,¥] = x1@1 + -+ xpay.  (1.45)
Note that, for arbitraryxe 7,
£ ] =xi [f1, 6]+ + x,[£0, £ ] = x; [, 6] = x;6 i = x;, (1.46)
and by substituting [x, ;] for x; in Eq. (1.45) we obtain
[x,y] = x101+ -+ xpay
=[x fi]ar+--+[xf]a, (1.47)
=[x a1f; +--- + anfy],

and thereforey = a:1f; +--- + a,f, = a;f;.

How can one determine the dual basis from a given, not necessarily
orthogonal, basis? For the rest of this section, suppose that the met-
ric is identical to the Euclidean metric diag(+, +,---,+) representable as
the usual “dot product.” The tuples of column vectors of the basis % =
{f1,...,f,} can be arranged into a n x n matrix

fii - £

fio - fup
B=(If),I0), 6] = (fulo ) =| . | 48

fl,n fn,n

Then take the inverse matrix B!, and interpret the row vectors f;.“ of

@ () (o f
®&| el g, - &

B*=B"'=| _|[=||=|* = " (1.49)
(£l f;; f:;_l f:z,n

as the tuples of elements of the dual basis of 28*.

For orthogonal but not orthonormal bases, the term reciprocal basis
can be easily explained by the fact that the norm (or length) of each vector
in the reciprocal basis is just the inverse of the length of the original vector.

For a direct proof, consider B-B~! =1,,.

(i) For example, if

P ={lep,lex,...,lep)=1{er,ex...,ep} =<1 . |, (1.50)
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is the standard basis in n-dimensional vector space containing unit
vectors of norm (or length) one, then

B* ={(e1l,(ez],..., (enl}
={ej,e;,...,e;} ={(1,0,...,0),(0,1,...,0),...,(0,0,..., 1)}

(1.51)

has elements with identical components, but those tuples are the trans-
posed ones.
(i) If

X ={ailer),azlez),...,anle} ={ae;, azey,...,aye,}

a1 0 0
0 0 an

with nonzero a1, a»,...,a, € R, is a “dilated” basis in n-dimensional
vector space containing vectors of norm (or length) «;, then

. (1 1 1
‘%. E{_<el|y_<e2|y~--)_<en|}
a1 ao a

n

1 1 1
E{—ef,—ez,...,—e:‘,} (1.53)
(45} ao an

E{(aLl,o,...,o),(0,aLz,...,o),...,(o,o,...,ain)}

has elements with identical components of inverse length %, and again
1
those tuples are the transposed tuples.

1] [2
(iii) Consider the nonorthogonal basis 2 = {(3) , (4) } The associated

column matrix is

1 2
B= . (1.54)
3 4
The inverse matrix is
o (-2 1
B = 3 1) (1.55)
2

and the associated dual basis is obtained from the rows of B~! by

N B S O R

1.8.2 Dual coordinates

With respect to a given basis, the components of a vector are often written
as tuples of ordered (“x; is written before x;4+;” — not “x; < x;41”) scalars
as column vectors

0 =x= (51,80, ). 157

whereas the components of vectors in dual spaces are often written in
terms of tuples of ordered scalars as row vectors

xl=x" = (xf,x5,...,17) (1.58)

19
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The coordinates of vectors [x) = x of the base vector space 7 — and by def-
inition (or rather, declaration) the vectors |x) = x themselves — are called
contravariant. because in order to compensate for scale changes of the
reference axes (the basis vectors) |e;),|ez),...,|e;) =ej,ey,..., e, these co-
ordinates have to contra-vary (inversely vary) with respect to any such
change.

In contradistinction the coordinates of dual vectors, that is, vectors of
the dual vector space 7', (x| = x* - and by definition (or rather, declara-
tion) the vectors (x| = x* themselves — are called covariant.

Alternatively covariant coordinates could be denoted by subscripts
(lower indices), and contravariant coordinates can be denoted by super-
scripts (upper indices); that is (see also Havlicek 12, Section 11.4),

.
X=|x)= (xl,xz,---,x”) ,and

(1.59)
X* =Xl =(x],%5,...,X) = (X1, X2, ..., Xp).

This notation will be used in the chapter 2 on tensors. Note again that the
covariant and contravariant components x; and x* are not absolute, but
always defined with respect to a particular (dual) basis.

Note that, for orthormal bases it is possible to interchange contravari-
ant and covariant coordinates by taking the conjugate transpose; that is,

(xh=1x), and (x)" = xI. (1.60)

Note also that the Einstein summation convention requires that, when
an index variable appears twice in a single term, one has to sum over all of
the possible index values. This saves us from drawing the sum sign “}_;”
for the index i; for instance x; y; =Y_; X; y;.

In the particular context of covariant and contravariant components —
made necessary by nonorthogonal bases whose associated dual bases are
notidentical — the summation always is between some superscript (upper
index) and some subscript (lower index); e.g., x; yi .

Note again that for orthonormal basis, xt=x;.

1.8.3 Representation of a functional by inner product

The following representation theorem, often called Riesz representation
theorem (sometimes also called the Fréchet-Riesz theorem), is about the
connection between any functional in a vector space and its inner prod-
uct: To any linear functional z on a finite-dimensional inner product space
¥ there corresponds a unique vector y € 7, such that

z(X) = [x,z] = (y %) (1.61)

forallxe7.

A constructive proof provides a method to compute the vectory € 7
given the linear functional z € 7*. Let us first consider the case of z = 0, for
which we can ad hocidentify the zero vector with y; that is, y = 0.

For any nonzero z(x) # 0 on some x we first need to locate the subspace

M= {X)z(x) =0,x€ 7/} (1.62)

2 Hans Havlicek. Lineare Algebra fiir Tech-
nische Mathematiker. Heldermann Verlag,
Lemgo, second edition, 2008

For proofs and additional information see
§67 in

Paul Richard Halmos. Finite-Dimensional
Vector Spaces. Undergraduate Texts in
Mathematics. Springer, New York, 1958.
ISBN 978-1-4612-6387-6,978-0-387-90093-
3. DolI: 10.1007/978-1-4612-6387-6.
URL https://doi.org/10.1007/
978-1-4612-6387-6

See Theorem 4.12 in

Walter Rudin. Real and complex analy-
sis.  McGraw-Hill, New York, third edition,
1986. ISBN 0-07-100276-6. URL https:
//archive.org/details/RudinW.
RealAndComplexAnalysis3el987/page/
nod
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consisting of all vectors x for which z(x) vanishes.

In a second step consider ., the orthogonal complement of .# with
respect to 7. ./ consists of all vectors orthogonal to all vectors in .4,
such that (x| w) =0 forxe .# andwe .#*.

The assumption z(x) # 0 on some x guarantees that . does not con-
sist of the zero vector 0 alone. That is, .+ must contain a nonzero unit
vector yp € /A *.

In a next step define the vector

u=zXx)yo —z(yo)x (1.63)
for which, due to linearity of z,
z(u) = z| z(X)yo — z(yo)X | = z(X)z(yo) — z(y0)z(X) = 0. (1.64)

Thus u € ./, and therefore also (u | yp) = 0. Insertion of u from (1.63) and
antilinearity in the first argument and linearity in the second argument of
the inner product yields

(z(X)yo — z(yo)x | yo) =0,
z(X) (yo | yo) —Z(y0) (x| yo) = 0,
——

(1.65)
=1
z(x) = z(yo){yo | X) = (z(yo)yo |X).
Thus we can identify the “target” vector
vy =2(yo)Yo (1.66)

associated with the functional z.

The proof of uniqueness is by (wrongly) assuming that there exist two
(presumably different) y; and y» such that (x|y;) = (x|y») forallxe 7. Due
to linearity of the scalar product, (x|y; —y2) = 0; in particular, if we identify
X =Yy1 — Y2, then (y; —y2ly1 —y2) = 0 and thusy; =y».

This proof is constructive in the sense that it yields y, given z. Note
that, because of uniqueness, .# <+ has to be a one dimensional subspace of
¥ spanned by the unit vector yp.

Another, more direct, proof is a straightforward construction of the
“target” vector y € 7 associated with the linear functional z € 7* in terms
of some orthonormal basis 2 = {es,...,e;} of 7: We obtain the compo-
nents (coordinates) y;, 1 <i<nofy= 2?21 yjej == (yl,--- ,yn)T with re-
spect to the orthonormal basis (coordinate system) 28 by evaluating the
“performance” of z on all vectors of the basis e;, 1 < i < n in that basis:

n n
ze) =(yley=(D_ yjejlei) =) yjlejle;) =V (1.67)
ij

Hence, the “target” vector can be written as

n
y=) z(eje;. (1.68)
j=1

Both proof yield the same “target” vector y associated with z, as insertion
into (1.66) and (1.67) results in

See # 3 of https://math.
stackexchange.com/questions/43174/
a-proof-of-the-riesz-representation-theorem
accessed on Oct. 23rd, 2018

Einstein’s summation convention is used
here.
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Y=Z(Yo)yO=Z( Vi ) Yi

e €e;
vy JValy o)
Vi —— YiVi '
=W&z@UWfQQQw%=w%

In the Babylonian tradition and for the sake of an example, consider the
7
Cartesian standard basis of 7 = R?; with the two basis vectors e; = (1,0)

T
and e; = (0, 1) . Suppose further that the linear functional z is defined by
its “behavior” on these basis elements e; and e, as follows:

z(e;) =1, z(ex) = 2. (1.70)

In a first step, let us construct 4 = {x|z(x) = 0,x € R%}. Consider an
arbitrary vector x = x;e; + xpe; € /4. Then,

Z(X) = z(x1e1 + x2€2) = x1Z(e1) + x2z(e2) = X1 +2x2 =0, (1.71)
and therefore x; = —2x,. The normalized vector spanning .# thus is
e T
= (-21)

In the second step, a normalized vector yy € A = .4 orthogonal
. T s T
to ./ is constructed by \/ig (—2, 1) Yo = 0, resulting in yy = \/Lg (1,2) =
7 (e1+2ep).
In the third and final step y is constructed through

1 1 T
y=2z(yo)yo = Z(— (eq +292)) — 1,2
V5 \/5( ) (1.72)

=éMmHau@n@2f=%u+ﬂﬁzf=pzf.

It is always prudent — and in the “Babylonian spirit” — to check this out
T
by inserting “large numbers” (maybe even primes): suppose x = (1 1, 13) ;

then z(x) = 11 + 26 = 37; whereas, according to Eq. (1.61), (y | x) = (I,Z)T .

(11,13) =37.

Note that in real or complex vector space R” or C", and with the dot
product, y' = z. Indeed, this construction induces a “conjugate” (in the
complex case, referring to the conjugate symmetry of the scalar product
in Eq. (1.61), which is conjugate-linear in its second argument) isomor-
phisms between a vector space 7" and its dual space 7.

Note also that every inner product (y | x) = ¢, (x) defines a linear func-
tional ¢, (x) forallxe 7.

In quantum mechanics, this representation of a functional by the inner
product suggests the (unique) existence of the bra vector (| € 7* associ-
ated with every ket vector |[y) € V.

It also suggests a “natural” duality between propositions and states —
that is, between (i) dichotomic (yes/no, or 1/0) observables represented
by projections Ex = |x)(x| and their associated linear subspaces spanned
by unit vectors [x) on the one hand, and (ii) pure states, which are also
represented by projections p,, = [¥)(y| and their associated subspaces
spanned by unit vectors |w) on the other hand - via the scalar product
“(:|-).” In particular 13

YXx) =y |x) (1.73)

The Babylonians “proved” arithmetical state-
ments by inserting “large numbers” in the re-
spective conjectures; cf. Chapter V of )

Otto Neugebauer. Vorlesungen (ber
die Geschichte der antiken mathematischen
Wissenschaften. 1. Band: Vorgriechische
Mathematik. Springer, Berlin, 1934. page
172

¥ Jan Hamhalter. Quantum Measure The-
ory. Fundamental Theories of Physics, Vol.
134.  Kluwer Academic Publishers, Dor-
drecht, Boston, London, 2003. ISBN 1-4020-
1714-6
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represents the probability amplitude. By the Born rule for pure states, the
absolute square [(x | w)l2 of this probability amplitude is identified with
the probability of the occurrence of the proposition Ey, given the state |y).
More general, due to linearity and the spectral theorem (cf. Section
1.27.1 on page 60), the statistical expectation for a Hermitian (normal) op-
erator A = Zfzo/liEi and a quantized system prepared in pure state (cf.
Sec. 1.24) Py = |w)(y| for some unit vector |y) is given by the Born rule

(Ay = Tr(pr) =Tr

pw(i AiEi)

i=0

k
= TI'(Z /L'pwEi)

i=0

k k
= TI(Z /1i(|1//>(1lll)(|xi>(xi|)) =Tr (Z /1i|1//>(1//|Xi)<Xi|)

i=0 i=0

k
; A,-|w><wlxz-><xz-l) Ix;) (1.74)

i=0

i@‘ﬂ(

Jj=0

2

k
j=0i=0

Ai Xl (wix;) ;%)
——
k k
=Y Al wlx) = Y Al )1,
i=0 i=0
where Tr stands for the trace (cf. Section 1.17 on page 39), and we have

used the spectral decomposition A = Z{'C:o A;E; (cf. Section 1.27.1 on page
60).

1.8.4 Double dual space

In the following, we strictly limit the discussion to finite dimensional vec-
tor spaces.

Because to every vector space 7 there exists a dual vector space 7*
“spanned” by all linear functionals on 7, there exists also a dual vector
space (¥*)* = ¥** to the dual vector space 7* “spanned” by all linear
functionals on 7*. We state without proof that 7** is closely related to,
and can be canonically identified with ¥ via the canonical bijection

V - V* ix— (:|x), with

(1.75)
(X :7*—>RorC:a*— (@a*|x);
indeed, more generally,
7/57/**’
7/* 57/***,

kkk _ gokkkkk _ g%
Y=y =7,

1.9 Direct sum

Let % and 7 be vector spaces (over the same field, say C). Their direct sum
isavector space # = &7V consisting of all ordered pairs (x,y), withx € %

For proofs and additional information see
§18in

Paul Richard Halmos. Finite-Dimensional
Vector Spaces. Undergraduate Texts in
Mathematics. Springer, New York, 1958.
ISBN 978-1-4612-6387-6,978-0-387-90093-
3. Dol: 10.1007/978-1-4612-6387-6.
URL https://doi.org/10.1007/
978-1-4612-6387-6
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iny € 7, and with the linear operations defined by
(ax + B2, ay1 + fy2) = a(x1,y1) + B(X2,y2).- (1.77)

Note that, just like vector addition, addition is defined coordinate-wise.

We state without proof that the dimension of the direct sum is the sum
of the dimensions of its summands.

We also state without proof that, if %Z and 7 are subspaces of a vector
space # , then the following three conditions are equivalent:

W) #W=%Us7T;

(i) NV =rand % +7V =W, thatis, # is spanned by % and 7 (i.e., %
and 7 are complements of each other);

(iii) everyvectorze # can be written asz=x+y, withxe % andye 7, in
one and only one way.

Very often the direct sum will be used to “compose” a vector space by
the direct sum of its subspaces. Note that there is no “natural” way of com-
position. A different way of putting two vector spaces together is by the
tensor product.

1.10 Tensor product

1.10.1 Sloppy definition

For the moment, suffice it to say that the tensor product ¥ ®% of two linear
vector spaces 7 and % should be such that, to everyx e 7 and everyy € %
there corresponds a tensor product z =x®y € ¥ ® % which is bilinear; that
is, linear in both factors.

A generalization to more factors appears to present no further concep-
tual difficulties.

1.10.2 Definition

A more rigorous definition is as follows: The tensor product V ® % of two
vector spaces 7 and % (over the same field, say C) is the dual vector space
of all bilinear forms on 7 @ %.

For each pair of vectors x € 7 and y € % the tensor product z=x®y is
the element of 7 ® % such that z(w) = w(x,y) for every bilinear form w on
Vei.

Alternatively we could define the tensor product as the coherent super-
positions of products e; ® f; of all basis vectors e; € 7, with 1 < i < n,
and f; € %, with 1 < i < m as follows. First we note without proof that
if of = {eyq,...,e,} and BB = {f;,...,f,,} are bases of n- and m- dimensional
vector spaces 7 and %, respectively, then the set of vectors e; ® f; with
i=1,...nand j =1,...mis a basis of the tensor product » ® %. Then an
arbitrary tensor product can be written as the coherent superposition of
all its basis vectors e; ® f; with e; € 7, with 1 < i < n, and f; € %, with
1 <i < m; thatis,

ZZZC,‘]‘ ei®fj. (1.78)
ij

For proofs and additional information see
§19in

Paul Richard Halmos. Finite-Dimensional
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We state without proof that the dimension of 7 ® % of an n-
dimensional vector space 7 and an m-dimensional vector space % is mul-
tiplicative, that is, the dimension of 7 ® % is nm. Informally, this is evident
from the number of basis pairs e; ® f;.

1.10.3 Representation

A tensor (dyadic, outer) product z = x® y of two vectors x and y has three
equivalent notations or representations:

(i) as the scalar coordinates x;y; with respect to the basis in which the
vectors x and y have been defined and encoded;

(i) as a quasi-matrix z;; = x;y;j, whose components z;; are defined with
respect to the basis in which the vectors x and y have been defined and
encoded;

(iii) as a quasi-vector or “flattened matrix” defined by the Kronecker
product z = (x1y, X2V,..., X,yY)T = (X1¥1,X1V2,...,XnVn)T. Again, the
scalar coordinates x;y; are defined with respect to the basis in which
the vectors x and y have been defined and encoded.

In all three cases, the pairs x; y; are properly represented by distinct math-
ematical entities.

Take, for example, x = (2,3)T and y = (5,7,11)T. Then z = x®y can be
represented by (i) the four scalars x;y; = 10, x1)2 = 14, x1y3 = 22, X271 =
14 22

orby (iii) a
21 33) by (@i

10
15, x2y2 =21, x2y3 = 33, or by (ii) a 2 x 3 matrix (15

4-tuple (10, 14,22, 15,21,33)T.

Note, however, that this kind of quasi-matrix or quasi-vector represen-
tation of vector products can be misleading insofar as it (wrongly) suggests
that all vectors in the tensor product space are accessible (representable)
as quasi-vectors — they are, however, accessible by coherent superpositions
(1.78) of such quasi-vectors. For instance, take the arbitrary form of a
(quasi-)vector in C*, which can be parameterized by

T .
(al,ag,ag,a4) , with a1, a3,a3,a4 €C, 1.79)

and compare (1.79) with the general form of a tensor product of two quasi-
vectors in C?

(al, aZ)T ® (blr bZ)T = (albb aleY azblr aZbZ)T ’ with ay, a, blr bZ eC.
(1.80)
A comparison of the coordinates in (1.79) and (1.80) yields

ar=arb;, ax=arby, az=axb;, as=ab,. (1.81)

By taking the quotient of the two first and the two last equations, and by
equating these quotients, one obtains

ay b az
— =—=—, andthus aja4 = azas, (1.82)
a by ay
which amounts to a condition for the four coordinates a;,as, a3, @4 in
order for this four-dimensional vector to be decomposable into a tensor

In quantum mechanics this amounts to the
fact that not all pure two-particle states can
be written in terms of (tensor) products of
single-particle states; see also Section 1.5
of

David N. Mermin. Quantum Computer
Science. Cambridge University Press,
Cambridge, 2007. ISBN 9780521876582.
URL http://people.ccmr.cornell.
edu/~mermin/qcomp/CS483.html
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product of two two-dimensional quasi-vectors. In quantum mechanics,
pure states which are not decomposable into a product of single-particle
states are called entangled.

A typical example of an entangled state is the Bell state, |'¥~) or, more
generally, states in the Bell basis

1 1
W7y = —(0)[1) = [1)]0)), [PF)=—=(0)|1) +1)]0)),
2 V2

\/1_ 1 (1.83)
|©7) = ﬁ 100y = IDDI1)), |@F) = E (10X10) +11)[1)),
or just
¥y = L (101)—[10)), |¥*) = L (101) +110)),
\/lé \{z (1.84)
I@_)=E(|00)—|11>). |¢>+>=E(|00>+|11>)-
For instance, in the case of |'¥ ™) a comparison of coefficient yields
ay=a1b; =0, Clgzdlbg:%,
1 2 (1.85)
(ngagbl—ﬁ, ay=azb, =0;
and thus the entanglement, since
a1a4=07ﬁa2a3=%. (1.86)

This shows that |[¥ ™) cannot be considered as a two particle product state.
Indeed, the state can only be characterized by considering the relative
properties of the two particles —in the case of | ™) they are associated with
the statements '#: “the quantum numbers (in this case “0” and “1”) of the

two particles are always different.”

1.11 Linear transformation

1.11.1 Definition

A linear transformation, or, used synonymously, a linear operator, A on a
vector space 7 is a correspondence that assigns every vector x € 7" a vector
Ax €7, in alinear way; such that

A(ax+ fy) = aAX) + fA(y) = aAx + SAy, (1.87)

identically for all vectors x,y € 7 and all scalars «, 3.

1.11.2 Operations

The sum S = A+ B of two linear transformations A and B is defined by
Sx = Ax+Bxforeveryxe 7.

The product P = AB of two linear transformations A and B is defined by
Px = A(Bx) for everyxe7.

The notation A”A™ = A"*™M and (A")™ = A" with Al = A and A® =1
turns out to be useful.

" Anton Zeilinger. A foundational princi-
ple for quantum mechanics. Foundations
of Physics, 29(4):631-643, 1999. DOI:
10.1023/A:1018820410908. URL https:
//doi.org/10.1023/A:1018820410908

For proofs and additional information see
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With the exception of commutativity, all formal algebraic properties of
numerical addition and multiplication, are valid for transformations; that
isA0O=0A=0,A1=1A=A, AB+C)=AB+AC, (A+B)C =AC+BC,
and A(BC) = (AB)C. In matrix notation, 1 = 1, and the entries of 0 are 0
everywhere.

The inverse operator A~! of A is defined by AA~! = A"1A =1,

The commutator of two matrices A and B is defined by

[A,B] =AB-BA. (1.88)

In terms of this matrix notation, it is quite easy to present an example
for which the commutator [A, B] does not vanish; that is A and B do not

commute.
Take, for the sake of an example, the Pauli spin matrices which are pro-
portional to the angular momentum operators along the x, y, z-axis '°:
0 1
01=0x= ,
1 X 1 0
0 i (1.89)
O2=0y= , .
RGN PR
1 0
03=0;=
3 z 0 -1

Together with the identity, that is, with [, = diag(1, 1), they form a complete
basis of all (4 x 4) matrices. Now take, for instance, the commutator

(01,031 =0103—030
fo 1)1 o) (1 o)fo 1
|1 oJlo -1) o -1J{1 o© (1.90)
[0 1) [0 0
oo 0 0
The polynomial can be directly adopted from ordinary arithmetic; that

is, any finite polynomial p of degree n of an operator (transformation) A
can be written as

n .
p(A) =apl + a1 A + A%+ + @, A" = Y a; AL (1.91)
i=0

The Baker-Hausdorff formula

-2
e’ABe_’A=B+i[A,B]+%[A, [A,B]]+--- (1.92)

for two arbitrary noncommutative linear operators A and B is mentioned
without proof (cf. Messiah, Quantum Mechanics, Vol. 116).

If [A, B] commutes with A and B, then
eAeB = eA+B+%[A,B]. (1.93)

If A commutes with B, then

ePeB = AYB, (1.94)

The commutator should not be confused
with the bilinear fucntional introduced for
dual spaces.

S Leonard |. Schiff. Quantum Mechanics.
McGraw-Hill, New York, 1955

8 A. Messiah. Quantum Mechanics, vol-
ume |. North-Holland, Amsterdam, 1962
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1.11.3 Linear transformations as matrices

Let 7 be an n-dimensional vector space; let 8 = {|f}), |f2),...,|f,)} be any
basis of 7, and let A be a linear transformation on 7.

Because every vector is a linear combination of the basis vectors |f;),
every linear transformation can be defined by “its performance on the ba-
sis vectors;” that is, by the particular mapping of all n basis vectors into
the transformed vectors, which in turn can be represented as linear com-
bination of the n basis vectors.

Therefore it is possible to define some n x n matrix with n? coefficients
or coordinates a;; such that

Alf)) =) a;jlf) (1.95)
i

forall j =1,...,n. Again, note that this definition of a transformation ma-
trix is “tied to” a basis.

The “reverse order” of indices in (1.95) has been chosen in order for
the vector coordinates to transform in the “right order:” with (1.17) on
page 12: note that

Ax) =AY x;lf)) =) Axjif;y =) x;Alfj) =) xja;jlf) =
i i i i

Y oaijxjlfiy =G j)=) ajixilf}),
ij i

(1.96)

and thus

J

Z(ij—zij,-xi)uj):o. (1.97)
i

Due to the linear independence of the basis vectors |f i), and by compar-
ison of the coefficients Ax; — Y ; aj;x; of |f;), with respect to the basis
B ={f1),|5),..., £}, it follows that

ij:Zaj,-xi. (1.98)
i

For orthonormal bases there is an even closer connection — repre-
sentable as scalar product — between a matrix defined by an n-by-n square
array and the representation in terms of the elements of the bases: by in-
serting two resolutions of the identity [, = Zle |f;)(f;| (see Section 1.14 on
page 34) before and after the linear transformation A,

n n
A=1,Al, = ) IE)EIAIG = ) aijlfi)E;l, (1.99)
ij=1 ij=1

whereby insertion of (1.95) yields

(E;IAIf;) = (F;|Af})

= (£l (Zalj|fl>) =) aEilf) =) a6 =a;j
7 ] ]

an aiz - Qi (1.100)

a1 Q22 - A2p

An1 Ap2 -+ Anpn
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1.12 Change of basis

Let 7 be an n-dimensional vector space and let & = {ey,...,e;} and & =
{f1,...,£,} be two bases of 7.

Take an arbitrary vector z € 7. In terms of the two bases & and %, z
can be written as

n n

z=) xie; = yif;, (1.101)
i=1 i=1

where x; and y; stand for the coordinates of the vector z with respect to

the bases & and &, respectively.
The following questions arise:

(i) What is the relation between the “corresponding” basis vectors e; and
f;?

(i) What is the relation between the coordinates x; (with respect to
the basis &) and y; (with respect to the basis %) of the vector z in
Eq. (1.101)?

(iii) Suppose one fixes an n-tuple v = (ul, U2,..., vn). What is the relation
betweenv=3" v;e;andw=}"_, v;f;?

1.12.1 Settlement of change of basis vectors by definition

As an Ansatz for answering question (i), recall that, just like any other vec-
tor in 7, the new basis vectors f; contained in the new basis % can be
(uniquely) written as a linear combination (in quantum physics called co-
herent superposition) of the basis vectors e; contained in the old basis &'.
This can be defined via a linear transformation A between the correspond-
ing vectors of the bases Z and % by

(£1-08a) = [(e1--ren)-A]

where i = 1,...,n is a column index. More specifically, let a;; be the ma-

(1.102)

trix of the linear transformation A in the basis & = {e;,...,e;}, and let us
rewrite (1.102) as a matrix equation

n n
fi=) ajiej=) (ahije;. (1.103)
i1

j=1

If A stands for the matrix whose components (with respect to &) are aj;,
and AT stands for the transpose of A whose components (with respect to
&) are a;j, then

f1 (]

fg (5]
=AT| [ (1.104)

£, €n

For proofs and additional information see
§46 in

Paul Richard Halmos. Finite-Dimensional
Vector Spaces. Undergraduate Texts in
Mathematics. Springer, New York, 1958.
ISBN 978-1-4612-6387-6,978-0-387-90093-
3. Dol: 10.1007/978-1-4612-6387-6.
URL https://doi.org/10.1007/
978-1-4612-6387-6
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That is, very explicitly,
n
fi = [(el,...,en) .A]l = Z ajie; =ape; +azex+---+amey,
i=1

n
f2 = [(el,...,en) A]Z = Z Aj2€; = a12€] + dpo€s + -+ dy€,ey,
=t (1.105)

n
=) aine; = aiyer + azpey+--+ Anpey.
i=1

f,=

(el,...,en)-A

n

This Ansatzincludes a convention; namely the order of the indices of the
transformation matrix. You may have wondered why we have taken the
inconvenience of defining f; by Z?zl aj;ej rather than by Z}?zl a;je;. That
is, in Eq. (1.103), why not exchange aj; by a; ;, so that the summation index
J is “next to” e;? This is because we want to transform the coordinates
according to this “more intuitive” rule, and we cannot have both at the
same time. More explicitly, suppose that we want to have

n
yi= Zbijx]', (1.106)
=1

or, in operator notation and the coordinates as n-tuples,
y=Bx. (1.107)

Then, by insertion of Egs. (1.103) and (1.106) into (1.101) we obtain

n n n n n n
z=) xje;=) yifi=) (Z bijxj) (Z akiek) = Y ayibijxje,
i=1 i=1 i=1\j=1 k=1 ij k=1
(1.108)

which, by comparison, can only be satisfied if Zle agibij = 6r;j. There-
fore, AB =1, and B is the inverse of A. This is quite plausible since any
scale basis change needs to be compensated by a reciprocal or inversely
proportional scale change of the coordinates.

* Note that the n equalities (1.105) really represent n? linear equations
for the n? unknowns a; j» 1 =1, ] < n, since every pair of basis vectors
{f;,e;}, 1 =i < n has n components or coefficients.

¢ If one knows how the basis vectors {e,...,e;} of & transform, then one
knows (by linearity) how all other vectors v= 31, v;e; (represented in

this basis) transform; namely A(v) = X", v; [(el, . .,en) -A] .
1

e Finally note that, if & is an orthonormal basis, then the basis transfor-
mation has a diagonal form

n n
A=) fiel =) [fi) el (1.109)
i=1 i=1

because all the off-diagonal components a;;, i # j of A explicitly writ-
ten down in Eqgs.(1.105) vanish. This can be easily checked by apply-
ing A to the elements e; of the basis &. See also Section 1.21.2 on
page 47 for a representation of unitary transformations in terms of ba-
sis changes. In quantum mechanics, the temporal evolution is repre-
sented by nothing but a change of orthonormal bases in Hilbert space.

If, in contrast, we would have started with
f; = Z;.l:lal-jej and still pretended to
define y; = Z;l:lbijxjs then we would
have ended up with z = ¥ x;e; =

n n o n .

i=1 (zj:1 bt]"]) (Zkzl “lkek)
ZZj,kzl aikbijxjek = Z?:l Xje; which, in
order to represent B as the inverse of A,

would have forced us to take the transpose
of either B or A anyway.



Finite-dimensional vector spaces and linear algebra 31

1.12.2 Scale change of vector components by contra-variation

Having settled question (i) by the Ansatz (1.102), we turn to question (ii)

next. Since
n n n n n(n X
z=) yifj=) v [(el,...,en) ~A] =) yid aijei=). (Z z;y’)ei;
j=1 j=1 Ioj=1 =1 i=1\j=1
(1.110)
we obtain by comparison of the coefficients in Eq. (1.101),
n
Xi=Y aijyj. (1.111)
i=1

That is, in terms of the “old” coordinates x’, the “new” coordinates are

1=

(a” )]lxl Z(“ )]zzatkyk
(1.112)

HM:s o

If we prefer to represent the vector coordinates of x and y as n-tuples,

(@ Njiai | ye= Z 5{;yk =Y.
k=1

then Egs. (1.111) and (1.112) have an interpretation as matrix multiplica-
tion; that is,
x=Ay, andy= (A )x. (1.113)

Finally, let us answer question (iii) — the relation between v = Z L vie;
and w = Zi:l v;f; for any n-tuple v = (vl, vy,..., vn) — by substituting the
transformation (1.103) of the basis vectors in w and comparing it with v;
that is,

Z :Z (Za”e,) Z(Zal]v])x,,orw Av. (1.114)

1. For the sake of an example consider a change of basis in the plane R?
by rotation of an angle ¢ = 7 around the origin, depicted in Fig. 1.3.
According to Eq. (1.102), we have

fi =ane +axey,
(1.115)
f, = ape; + ages,
which amounts to four linear equations in the four unknowns a1, a2,
ayy, and ano.

By inserting the basis vectors e, e, f;, and f, one obtains for the rota-
tion matrix with respect to the basis &

ol
ol

the first pair of equations yielding a;; = a»; = \%, the second pair of

(1.116)

equations yielding a;, = —% and ayy = \Lf Thus,

a a 1 [1 -1
A= - = . (1.117)
aiz azp| V21 1

ey =(0,1)7

e = (1,007

Figure 1.3: Basis change by rotation of ¢ =

7 around the origin.
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As both coordinate systems & = {e;, e} and % = {f},f,} are orthogonal,
we might have just computed the diagonal form (1.109)

1 [ -1
= (1)(1,0)+(1)(0,1)
1 [(10,0) (-10,1)
NG (1(1,0))+(1(0,1)) (119
St o) fo -1\ 11 <1
ool 1Tl 1)

Note, however that coordinates transform contra-variantly with AL

Likewise, the rotation matrix with respect to the basis % is
1 0 1 1 1
(0) (1,1)+(1)(—1,1) :—( ) (1.119)

V21 -1 1
2. By asimilar calculation, taking into account the definition for the sine
and cosine functions, one obtains the transformation matrix A(¢) as-

1

V2

!

sociated with an arbitrary angle ¢,

A= (C?S(P _Sm(p). (1.120)
sing  cosg

The coordinates transform as

Al=| %9 Sm‘p). (1.121)

—sing cosg

3. Consider the more general rotation depicted in Fig. 1.4. Again, by in-
serting the basis vectors e}, e, f}, and f,, one obtains

(3 -]

(1.122)
1(1 1 0 e =(0,1)7T
5 V3 =ap 0 + az2 1l \ f,=10,v3)T
yielding a;; = ax = ‘/75, the second pair of equations yielding a;» = p=1x f1 = 3(/3,17
az = %
Thus, W o= .
b e =(1,0
a b\ 1(v3 1 —
A= == . (1.123) , )
b a 211 \/§ Figure 1.4: More general basis change by

rotation.
The coordinates transform according to the inverse transformation,
which in this case can be represented by

1 a -bl (V3 -1
Al=—— = . 1.124
a? — b? (—b a) (—l \/5) ( )
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1.13 Mutually unbiased bases

Two orthonormal bases 98 = {ey,...,e,} and %’ = {f,...,f,} are said to be
mutually unbiased if their scalar or inner products are

il 12 =~ (1.125)
n

for all 1 < i, j < n. Note without proof — that is, you do not have to be

concerned that you need to understand this from what has been said so far

—that “the elements of two or more mutually unbiased bases are mutually

maximally apart.”

In physics, one seeks maximal sets of orthogonal bases who are maxi-
mally apart 17 . Such maximal sets of bases are used in quantum informa-
tion theory to assure the maximal performance of certain protocols used
in quantum cryptography, or for the production of quantum random se-
quences by beam splitters. They are essential for the practical exploita-
tions of quantum complementary properties and resources.

Schwinger presented an algorithm (see '8 for a proof) to construct a
new mutually unbiased basis % from an existing orthogonal one. The
proof idea is to create a new basis “inbetween” the old basis vectors. by
the following construction steps:

(i) take the existing orthogonal basis and permute all of its elements by
“shift-permuting” its elements; that is, by changing the basis vectors
according to their enumerationi — i+1fori=1,...,n—1,and n — 1; or
any other nontrivial (i.e., do not consider identity for any basis element)
permutation;

(i) consider the (unitary) transformation (cf. Sections 1.12 and 1.21.2)
corresponding to the basis change from the old basis to the new, “per-
mutated” basis;

(iii) finally, consider the (orthonormal) eigenvectors of this (unitary; cf.
page 44) transformation associated with the basis change. These eigen-
vectors are the elements of a new bases %’. Together with 28 these two
bases - that is, 2 and %’ - are mutually unbiased.

Consider, for example, the real plane R2, and the basis

% ={ey,ex} ={le),lex)} = (0
—1€1,€25 = 1/,1€275 = 0']_ .

The shift-permutation [step (i)] brings £ to a new, “shift-permuted” basis

#; that is,
0l |1
fer, e} — .7 ={f; =ey,f) =eq} E{(l)’(o)}'

The (unitary) basis transformation [step (ii)] between 98 and . can be

7 William K. Wootters and B. D. Fields.
Optimal state-determination by mutually
unbiased measurements. Annals of Physics,
191:363-381, 1989. DOI: 10.1016/0003-
4916(89)90322-9. URL https://doi.
0rg/10.1016/0003-4916(89)90322-9;

and Thomas Durt, Berthold-Georg Englert,
Ingemar Bengtsson, and Karol Zyczkowski.
On mutually unbiased bases. International
Journal of Quantum Information, 8:535-640,
2010. DoI: 10.1142/S0219749910006502.

URL https://doi.org/10.1142/
50219749910006502
8 Julian  Schwinger. Unitary  op-

erators  bases. Proceedings  of
the National Academy of Sciences
(PNAS), 46:570-579, 1960. DOI:
10.1073/pnas.46.4.570. URL https:
//doi.org/10.1073/pnas.46.4.570

For a Mathematica(R) program, see
http://tph.tuwien.ac.at/
~svozil/publ/2012-schwinger.m
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https://doi.org/10.1142/S0219749910006502
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constructed by a diagonal sum

T T

_ T t_
U=fe, +fe, =eze| +eje,

= [fi)(er| + [£2)(ez| = |ex)(e1| + |er)(ey|

_ (0) a 0)+(1)(o D
Tl of
(1.126)
_ 0(1,0) N 1(0,1)
1,0/ {o,1)
0 0 0 1 0 1
= + = .
o) fo o0 o
The set of eigenvectors [step (iii)] of this (unitary) basis transformation U
forms a new basis

1 1
B = {ﬁ(fl —e1)»ﬁ(fz +e)}

\/_2 ' \/_2

1
= {—2(|ez> —le1)), —=(le1) +le2))}

TS

For a proof of mutually unbiasedness, just form the four inner products of
one vector in %8 times one vector in %', respectively.

In three-dimensional complex vector space C3, a similar con-
struction from the Cartesian standard basis 2 = {ej,ez,e3} =
{(I,O,O)T,(O,I,O)T,(O,O,I)T}yields

1\ [ 3V3i-1] | (31-VEi-1]
1|,|3[-v3i-1]|.| 3[v3i-1] |¢. (1.128)
1 1 1

1

B =—
V3

So far, nobody has discovered a systematic way to derive and construct
a complete or maximal set of mutually unbiased bases in arbitrary dimen-
sions; in particular, how many bases are there in such sets.

1.14 Completeness or resolution of the identity operator in
terms of base vectors

The identity [, in an n-dimensional vector space 7 can be represented
in terms of the sum over all outer (by another naming tensor or dyadic)
products of all vectors of an arbitrary orthonormal basis 28 = {ey,...,e;} =
{le1),...,le,)}; that s,

n n
=) le(eil =) eel. (1.129)
i=1 i=1

This is sometimes also referred to as completeness.
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For a proof, consider an arbitrary vector |[x) € 7. Then,

11%) = (Z |ei><el~|) Ix) = (Z |ei><ei|)
i=1 i=1

n

Z leej))

= (1.130)
n n n

= ) xjle)eilejy= ) xjle)dij=)_ xile;) =Ix).

ij=1 ij=1 i=1

Consider, for example, the basis & = {|e}),|e2)} = {(1,0)7,(0,1)T}. Then
the two-dimensional resolution of the identity operator [, can be written
as

I =ler)<e1| +|ex){ez|

1(1,0) 0(0,1)
=(1,00"(1,0)+ (0,1)7(0,1) =
(1,0)7(1,0)+(0,1)7(0, 1) (0(1.0))+(1(o,1))

o o)l 3l )

. T L T
{\/2( LD ,ﬁ(l,l) }.
Then the two-dimensional resolution of the identity operator [, can be

(1.131)

Consider, for another example, the basis %’

written as

1 1 1 1
I = —2(—1,1)T—(—1,1) +—=0,DT—(1,1)

V2 V2 V2 V2

_l(-1enn) o) _1fr -1 11 1 (10 (1.132)
"2l ) 2lhian) T2l 1) T2l 1) 7o 1)

1.15 Rank

The (column or row) rank, p(A), or rk(A), of a linear transformation A
in an n-dimensional vector space 7 is the maximum number of linearly
independent (column or, equivalently, row) vectors of the associated n-
by-n square matrix A, represented by its entries a; ;.

This definition can be generalized to arbitrary m-by-n matrices A, rep-
resented by its entries a; ;. Then, the row and column ranks of A are iden-
tical; that is,

row rk(A) = column rk(A) = rk(A). (1.133)

19 Pirst we show that

For a proof, consider Mackiw’s argument
row rk(A) < column rk(A) for any real (a generalization to complex vec-
tor space requires some adjustments) m-by-n matrix A. Let the vectors
{e1,ey,...,e} with e; e R”, 1 < i < r, be a basis spanning the row space of
A; that is, all vectors that can be obtained by a linear combination of the
m row vectors

(ai, arz,...,a1pn)

(agy, az, ..., azn)

(aml’ an2,..., amn)

of A can also be obtained as a linear combination ofe;, ey, ...,e,. Note that
r<m.

' George Mackiw. A note on the equality of
the column and row rank of a matrix. Mathe-
matics Magazine, 68(4):pp. 285-286, 1995.
ISSN 0025570X. URL http://www.jstor.
org/stable/2690576
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Now form the column vectors Ae] for 1 < i <r, thatis, Ae], Aej,..., Ae]
via the usual rules of matrix multiplication. Let us prove that these result-
ing column vectors AelT. are linearly independent.

Suppose they were not (proof by contradiction). Then, for some scalars
c1,C2,...,Cr €ER,

crAe] +cyAe) +...+crAel = A(cre] +coe) +...+cref) =0

without all ¢;’s vanishing.

That is, v = c1e] + coe; + ...+ cre}, must be in the null space of A de-
fined by all vectors x with Ax = 0, and A(v) = 0. (In this case the inner
(Euclidean) product of x with all the rows of A must vanish.) But since the
e;’s form also a basis of the row vectors, v' is also some vector in the row
space of A. The linear independence of the basis elements ey, ey,...,e, of
the row space of A guarantees that all the coefficients c¢; have to vanish;
thatis,ci=cy=---=¢,=0.

At the same time, as for every vector x € R”, Ax is a linear combination
of the column vectors

arn a2 ain
azy azo (2230

) ) ) )
am1 am2 Amn

the r linear independent vectors Aej, AeJ,..., Ae] are all linear combina-
tions of the column vectors of A. Thus, they are in the column space of
A. Hence, r < column rk(A). And, as r = row rk(A), we obtain row rk(A) <
column rk(A).

By considering the transposed matrix AT, and by an analogous ar-
gument we obtain that row rk(AT) < column rk(AT). But row rk(AT) =
column rk(A) and column rk(AT) = rowrk(A), and thus row rk(AT) =
column rk(A) < column rk(AT) = row rk(A). Finally, by considering both
estimates row rk(A) < column rk(A) as well as column rk(A) < row rk(A),
we obtain that row rk(A) = column rk(A).

1.16 Determinant

1.16.1 Definition

In what follows, the determinant of a matrix A will be denoted by detA or,
equivalently, by |Al.

Suppose A = a;; is the n-by-n square matrix representation of a linear
transformation A in an n-dimensional vector space 7. We shall define its
determinantin two equivalent ways.

The Leibniz formula defines the determinant of the n-by-n square ma-
trix A = a;; by

detA= ) sgn(o) ﬁ Ao i, j» (1.134)

o€S, i=1

where “sgn” represents the sign function of permutations ¢ in the permu-
tation group S, on n elements {1,2,...,n}, which returns —1 and +1 for
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odd and even permutations, respectively. o (i) stands for the element in
position i of {1,2,..., n} after permutation o.
An equivalent (no proof is given here) definition

detA =g jy..i,, A1i) A2, *** Qi (1.135)

makes use of the totally antisymmetric Levi-Civita symbol (2.100) on page
100, and makes use of the Einstein summation convention.

The second, Laplace formula definition of the determinant is recursive
and expands the determinant in cofactors. It is also called Laplace expan-
sion, or cofactor expansion . First, a minor M;; of an n-by-n square matrix
A is defined to be the determinant of the (n — 1) x (n — 1) submatrix that
remains after the entire ith row and jth column have been deleted from
A.

A cofactor A;j of an n-by-n square matrix A is defined in terms of its
associated minor by

Ajj= (D" M. (1.136)
The determinant of a square matrix A, denoted by detA or | A|, is a scalar
recursively defined by
n n
detA= Z aijAij= Z a;jAij (1.137)
j=1 i=1

for any i (row expansion) or j (column expansion), with i, j = 1,..., n. For
1 x 1 matrices (i.e., scalars), detA = a;;.

1.16.2 Properties

The following properties of determinants are mentioned (almost) without
proof:

(i) If A and B are square matrices of the same order, then detAB =
(detA)(detB).

(i) If either two rows or two columns are exchanged, then the determi-
nant is multiplied by a factor “~1.”

(iii) The determinant of the transposed matrix is equal to the determinant
of the original matrix; that is, det(AT) = detA .

(iv) The determinant detA of a matrix A is nonzero if and only if A is in-
vertible. In particular, if A is not invertible, detA = 0. If A has an inverse
matrix A”L, then det(A™!) = (detA)~!.

This is a very important property which we shall use in Eq. (1.222) on
page 57 for the determination of nontrivial eigenvalues A (including the
associated eigenvectors) of a matrix A by solving the secular equation
det(A—Al) =0.

(v) Multiplication of any row or column with a factor a results in a deter-
minant which is a times the original determinant. Consequently, mul-
tiplication of an n x n matrix with a scalar a results in a determinant
which is a” times the original determinant.
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(vi) The determinant of an identity matrix is one; that is, detl, = 1. Like-
wise, the determinant of a diagonal matrix is just the product of the
diagonal entries; that is, det[diag(A;,...,A,)]1 = A1 A,

(vii) The determinant is not changed if a multiple of an existing row is
added to another row.

This can be easily demonstrated by considering the Leibniz formula:
suppose a multiple a of the j’th column is added to the k’th column

since

= Ei1i2"'ij“'ik"'i;z ayi, Ay aji]. s Ayt iyt (1.138)
a£i1 iz"'l'j---l'k"'[;l ay i “21'2 Tt ajij T ajik T am‘n-
The second summation term vanishes, since aji;Aji, = aji, Aji; is to-
tally symmetric in the indices i; and iy, and the Levi-Civita symbol
Eiyigerijigin
(viii) The absolute value of the determinant of a square matrix A =
(e1,...e,) formed by (not necessarily orthogonal) row (or column) vec-

tors of a basis B = {e,...e\} is equal to the volume of the paral-
lelepiped {x|x=Y" tie;,0<t;<1,0=<i<n} formed by those vec-

tors.
This can be demonstrated by supposing that the square matrix A con- see, for instance, Section 4.3 of Strang’s ac-
sists of all the n row (column) vectors of an orthogonal basis of di- count , ,

. . . . . . . Gilbert Strang. Introduction to linear al-
mension n. Then AAT = AT A is a diagonal matrix which just contains gebra. Wellesley-Cambridge Press, Welles-
the square of the length of all the basis vectors forming a perpendic- ley, MA, USA, fourth edition, 2009. ISBN

. . .. . . 0-9802327-1-6. URL http://math.mit.
ular parallelepiped which is just an n dimensional box. Therefore the . P
edu/linearalgebra/

volume is just the positive square root of det(AAT) = (detA)(detAT) =
(detA)(detAT) = (detA)?.

For any nonorthogonal basis, all we need to employ is a Gram-Schmidt
process to obtain a (perpendicular) box of equal volume to the orig-
inal parallelepiped formed by the nonorthogonal basis vectors — any
volume that is cut is compensated by adding the same amount to the
new volume. Note that the Gram-Schmidt process operates by adding
(subtracting) the projections of already existing orthogonalized vectors
from the old basis vectors (to render these sums orthogonal to the ex-
isting vectors of the new orthogonal basis); a process which does not
change the determinant.

This result can be used for changing the differential volume element in
integrals via the Jacobian matrix J (2.20), as

dxydxy---dx, =|det]|dx; dxp - dxy

d dx;
t —_—
€ dxj

The result applies also for curvilinear coordinates; see Section 2.13.3 on

2 (1.139)
dxidxy---dx,.

page 104.

(ix) The sign of a determinant of a matrix formed by the row (column)
vectors of a basis indicates the orientation of that basis.


http://math.mit.edu/linearalgebra/
http://math.mit.edu/linearalgebra/
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1.17 Trace

1.17.1 Definition

The trace of an n-by-n square matrix A = a;j, denoted by Tr4, is a scalar
defined to be the sum of the elements on the main diagonal (the diagonal
from the upper left to the lower right) of A; that is (also in Dirac’s bra and
ket notation),
n
TrA=an +ag+-+am =) aii = ajj (1.140)
i=1
Traces are noninvertible (irreversible) almost by definition: for n = 2
and for arbitrary values a;; € R,C, there are “many” ways to obtain the
same value of Y7 | a;;.
Traces are linear functionals, because, for two arbitrary matrices A, B
and two arbitrary scalars «, f,

n n n
Tr(@A+BB) =) (aa;i+Pbi)=a) ai+p) bi=aTr(A) +pTr(B).
i=1 i=1 i=1 (1‘141)
Traces can be realized via some arbitrary orthonormal basis 98 =
{e1,..., ey} by “sandwiching” an operator A between all basis elements —
thereby effectively taking the diagonal components of A with respect to
the basis 28 — and summing over all these scalar components; that is, with
definition (1.95),

TrA=) (eilAle;) =) (eilAe;)

i=1 i=1

=2 2 (eillaylen) =) 3 aiileile) (1.142)

i=1l=1

Il
—
~
Il
—

This representation is particularly useful in quantum mechanics.

Suppose an operator is defined by the dyadic product A = |u)(v) of two
vectors |u) and |v). Then its trace can be rewritten as the scalar product of
the two vectors (in exchanged order); that is, for some arbitrary orthonor-
mal basis 2 = {|e1),...,lex)}

TrA= Z(ei|A|ei> = Z(ei|u>(v|e,-)
n = = (1.143)
=Y (vle;)(e;u) = (vil,lu) = (vil,u) = (viu).
i=1

In general, traces represent noninvertible (irreversible) many-to-one
functionals since the same trace value can be obtained from different in-
puts. More explicitly, consider two nonidentical vectors |u) # |v) in real
Hilbert space. In this case,

Tr A =Tr [u){v) = (vlu) = (u|v) = Tr |v)(u) = Tr AT (1.144)

This example shows that the traces of two matrices such as Tr A and
Tr AT can be identical although the argument matrices A = |u){v) and
AT = |v){u) need not be.

Note that antilinearity of the scalar product
does not apply for the extraction of a;; here,
as, strictly speaking, the Euclidean scalar
products should be formed after summation.

Example 1.10 of

Dietrich Grau. Ubungsaufgaben zur Quan-
tentheorie. Karl Thiemig, Karl Hanser,
Minchen, 1975, 1993, 2005. URL http:
//www.dietrich-grau.at


http://www.dietrich-grau.at
http://www.dietrich-grau.at
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1.17.2 Properties

The following properties of traces are mentioned without proof:
(i) Tr(A+B)=TrA+TrB;
(i) Tr(aA)=aTrA, with a € C;

(iii) Tr(AB) = Tr(BA), hence the trace of the commutator vanishes; that is,
Tr([A,B]) = 0;

(iv) TrA=TrAT;
(v) Tr(A® B) = (TrA)(TrB);

(vi) the trace is the sum of the eigenvalues of a normal operator (cf. page
60);

(vi) det(e”) =e™4;
(viii) the trace is the derivative of the determinant at the identity;

(ix) the complex conjugate of the trace of an operator is equal to the trace
of its adjoint (cf. page 42); that is (TrA) = Tr(A");

(x) the trace is invariant under rotations of the basis as well as under
cyclic permutations.

(xi) the trace of an n x n matrix A for which AA = a A for some a € R is
TrA = arank(A), where rank is the rank of A defined on page 35. Con-
sequently, the trace of an idempotent (with a = 1) operator — that is, a
projection - is equal to its rank; and, in particular, the trace of a one-
dimensional projection is one.

(xii) Only commutators have trace zero.

A trace class operator is a compact operator for which a trace is finite
and independent of the choice of basis.

1.17.3 Partial trace

The quantum mechanics of multi-particle (multipartite) systems allows
for configurations — actually rather processes — that can be informally de-
scribed as “beam dump experiments;” in which we start out with entan-
gled states (such as the Bell states on page 26) which carry information
about joint properties of the constituent quanta and choose to disregard one
quantum state entirely; that is, we pretend not to care about, and “look the
other way” with regards to the (possible) outcomes of a measurement on
this particle. In this case, we have to trace out that particle; and as a result,
we obtain a reduced state without this particle we do not care about.
Formally the partial trace with respect to the first particle maps the gen-
eral density matrix p; = Ziljl irjo Pirj1izj2 |11 €j11 ® [i2){j2] on a composite
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Hilbert space #, ® /5 to a density matrix on the Hilbert space ./, of the
second particle by

Tr1p12=Tr1( > Pi1j1i2j2|i1><j1|®|i2><j2|):

i1j1i2j2
= Z <ek1 ek1> =
k1

Y Pijiinjs (Z<ekl |i1><jl|ek1>) lig)(jol = (1.145)

( Z pi1j1i2j2|il><jl|®|i2><j2|)

i1j1i2j2

i1j1i2j2 k1
= Y Pujinp (Z<jl|ek1><ekl|i1>)|i2><j2|=
i1j1i2j2 k1
= Z Piyjrizjp S TIED 2 (ol = Z Qiyjria o (J11EDE2) ol
i1j1i2)2 i1j1i2j2

Suppose further that the vectors |i;) and |j;) by associated with the first
particle belong to an orthonormal basis. Then (jili1) = 6;,;, and (1.145)
reduces to
Trip12 = Z Piriy i2j2|i2><j2|- (1.146)
nizj2

The partial trace in general corresponds to a noninvertible map corre-
sponding to an irreversible process; that is, it is an m-to-n with m > n,
or a many-to-one mapping: Piiij, = L, P12ij, = P21irjy = P22inj, = 0
and p224,j, = 1, P12i,j, = P21irj» = P11irj, = 0 are mapped into the same
i Pirivinjo- This can be expected, as information about the first particle
is “erased.”

For an explicit example’s sake, consider the Bell state [V ™) defined in
Eq. (1.83). Suppose we do not care about the state of the first particle,
then we may ask what kind of reduced state results from this pretension.
Then the partial trace is just the trace over the first particle; that is, with
subscripts referring to the particle number,

Try [P
1
= Y @GPPI
i1=0
= (01 /WY W T101) + (1) (P TI1y)
(1.147)

1 1
=(01]—=(10112) —11102)) —= ({0112 — (17021 |0
(1|\/§(|12) |12))\/§((12| (1102)101)

1 1
+({11]—=(10112) = 1102)) — ({0;1»]| — (1;0 1
(1|\/§(|12> |12))\/§((12| (1102) 111)

1
=3 (112)¢12] +102)¢02]).

The resulting state is a mixed state defined by the property that its trace
is equal to one, but the trace of its square is smaller than one; in this case
the trace is %, because

1
Tr, > (112) (12| +102)¢02])

1 1
= E(Ozl (112) (12| +102)€021) [02) + §<12| (112121 +102)¢02[) [12)  (1.148)

1 1
:—+—:]_;
2 2

The same is true for all elements of the Bell
basis.

Be careful here to make the experiment in
such a way that in no way you could know
the state of the first particle. You may ac-
tually think about this as a measurement of
the state of the first particle by a degenerate
observable with only a single, nondiscrimi-
nating measurement outcome.



42 Mathematical Methods of Theoretical Physics

but

1 1
Tro §(|12>(12|+|02>(02|)E(llz)(12|+|02)<02|)
(1.149)

1 1
=Tr, 1 (1123 12| +102)¢02|) = >

This mixed stateis a 50:50 mixture of the pure particle states [02) and |1»),
respectively. Note that this is different from a coherent superposition
|02)+|12) of the pure particle states |02) and |1,), respectively —also formal-
izing a 50:50 mixture with respect to measurements of property 0 versus 1,
respectively.

In quantum mechanics, the “inverse” of the partial trace is called pu-
rification: it is the creation of a pure state from a mixed one, associated
with an “enlargement” of Hilbert space (more dimensions). This cannot
be done in a unique way (see Section 1.30 below ). Some people — mem-
bers of the “church of the larger Hilbert space” — believe that mixed states
are epistemic (that is, associated with our own personal ignorance rather
than with any ontic, microphysical property), and are always part of an,
albeit unknown, pure state in a larger Hilbert space.

1.18 Adjoint or dual transformation

1.18.1 Definition

Let 7 be a vector space and let y be any element of its dual space 7 *.
For any linear transformation A, consider the bilinear functional y' (x) =
[x,¥'] = [Ax,y] = y(Ax). Let the adjoint (or dual) transformation A* be de-
fined by y' (x) = A*y(x) with

A'y(x) = [x,A"y] = [Ax,y] = y(Ax). (1.150)

1.18.2 Adjoint matrix notation

In matrix notation and in complex vector space with the dot product, note
that there is a correspondence with the inner product (cf. page 20) so that,
forallze 7 and for all x € 7, there exist a unique y € 7 with

[Ax,z] = (AX]y) =
(1.151)

=Aijxjyi=xjAijyi =Xj(AD)jiyi =%ATy,

and another unique vector y’ obtained from y by some linear operator A*
such thaty’ = A*y with

[x,A"z] = (x|yy = x| A"y) =

li = j1 = %] A%,y =%A"y.

(1.152)

Therefore, by comparing Es. (1.152) and /1.151), we obtain A* = F, so that

T

A*=AT=A". (1.153)

That is, in matrix notation, the adjoint transformation is just the transpose
of the complex conjugate of the original matrix.

For additional information see page 110,
Sect. 2.51in

Michael A. Nielsen and I. L. Chuang.
Quantum Computation and Quantum Infor-
mation. Cambridge University Press, Cam-
bridge, 2010. 10th Anniversary Edition

Here [-,-] is the bilinear functional, not the
commutator.

Recall that, for @, € C, (af) = @B, and

[@] = a, and that the Euclidean scalar
product is assumed to be linear in its first
argument and antilinear in its second argu-
ment.
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Accordingly, in real inner product spaces, A* = A =ATis just the trans-
pose of A:

[x,ATy] = [AX,Y]. (1.154)

In complex inner product spaces, define the Hermitian conjugate matrix
by AT = A* =AT=A", so that

(x,A'y] = [Ax,y]. (1.155)

1.18.3 Properties

We mention without proof that the adjoint operator is a linear operator.
Furthermore, 0* =0, 1* =1, (A+B)* = A* + B*, (aA)* = aA*, (AB)* =
B*A*, and (A"1)* = (A*)"L.

A proof for (AB)* = B*A* is [x,(AB)*y] = [ABx,y] = [Bx,A*y] =
[x,B*A*y].

Note that, since (AB)* = A*B*, by identifying B with A and by repeating
this, (A™)* = (A*)™. In particular, if E is a projection, then E* is a projec-
tion, since (E*)% = (E2)* = E*.

For finite dimensions,

A* = A, (1.156)

as, per definition, [Ax,y] = [x, A*y] = [(A*)*x,y].

1.19 Self-adjoint transformation

The following definition yields some analogy to real numbers as compared
to complex numbers (“a complex number z is real if z = 2”), expressed in
terms of operators on a complex vector space.

An operator A on a linear vector space 7 is called self-adjoint, if

A*=A (1.157)

and if the domains of A and A* - that is, the set of vectors on which they
are well defined - coincide.

In finite dimensional real inner product spaces, self-adjoint operators
are called symmetric, since they are symmetric with respect to transposi-
tions; that is,

A*=AT=A. (1.158)

In finite dimensional complex inner product spaces, self-adjoint oper-
ators are called Hermitian, since they are identical with respect to Hermi-
tian conjugation (transposition of the matrix and complex conjugation of
its entries); that is,

A*=AT=A. (1.159)

In what follows, we shall consider only the latter case and identify self-
adjoint operators with Hermitian ones. In terms of matrices, a matrix A
corresponding to an operator A in some fixed basis is self-adjoint if

A= (A;)T =45 =A;j = A. (1.160)

That is, suppose A;; is the matrix representation corresponding to a linear
transformation A in some basis 28, then the Hermitian matrix A* = A" to
the dual basis 9% is (A;;)T.

Recall again that, for @, € C, (af) = @p.
(AB)T = ATBT can be explicitly demon-
strated in index notation: because for any

ciT]. = Cjjs and because of linearity of

the sum, (AB)T = (“ikbkj)T = ajkbk,- =

ca:.=bl al .=BTAT
bkl(ljk—bl.kakj_B Al

For infinite dimensions, a distinction must
be made between self-adjoint operators and
Hermitian ones; see, for instance,

Dietrich Grau. Ubungsaufgaben zur
Quantentheorie. Karl Thiemig, Karl
Hanser, Minchen, 1975, 1993, 2005.
URL http://www.dietrich-grau.at;
Frangois Gieres. Mathematical sur-
prises and Dirac’s formalism in quan-
tum mechanics. Reports on Progress
in  Physics, 63(12):1893-1931, 2000.
DOI: https://doi.org/10.1088/0034-
4885/63/12/201. URL 10.1088/
0034-4885/63/12/201; and Guy Bon-
neau, Jacques Faraut, and Galliano Valent.
Self-adjoint extensions of operators and the
teaching of quantum mechanics. Amer-
ican Journal of Physics, 69(3):322-331,
2001. Dpol: 10.1119/1.1328351.  URL
https://doi.org/10.1119/1.1328351


http://www.dietrich-grau.at
10.1088/0034-4885/63/12/201
10.1088/0034-4885/63/12/201
https://doi.org/10.1119/1.1328351
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For the sake of an example, consider the Pauli spin matrices

0 1
0]1=0yx= s
1 X 1 0

0 —i

@:%:t 0/

(1.161)

1 0
0o -1)

0'1=0'z=(

which, together with the identity, that is, I, = diag(1, 1), are all self-adjoint.
The following operators are not self-adjoint:

A

Note that the coherent real-valued superposition of a self-adjoint

(1.162)

transformations (such as the sum or difference of correlations in the
Clauser-Horne-Shimony-Holt expression 2°) is a self-adjoint transforma-
tion.

For a direct proof, suppose that @; € Rfor all 1 <i < n are n real-valued
coefficients and Ay, ... A,, are n self-adjoint operators. Then B = Z;’Zl a;A;
is self-adjoint, since

n

n
B*=) @iA] =) a;A;=B. (1.163)
i=1 i=1

1.20 Positive transformation

Alinear transformation A on an inner product space 7’ is positive (or, used
synonymously, nonnegative), that is, in symbols A = 0, if (Ax | x) = 0 for all
xe V. If (Ax|x) = 0 impliesx =0, A is called strictly positive.

Positive transformations — indeed, transformations with real inner
products such that (Ax|x) = (x]Ax) = (x|Ax) for all vectors x of a complex
inner product space 7 - are self-adjoint.

For a direct proof, recall the polarization identity (1.9) in a slightly dif-
ferent form, with the first argument (vector) transformed by A, as well as
the definition of the adjoint operator (1.150) on page 42, and write

1
(x|A*y) = (Ax]y) = 1 [(Ax+y)x+y) —(Ax-y)x-y)
+i(AXx—iy)lx—iy) — i{(AX+ iy)|x+ iy)]
1 (1.164)
=1 [(x+ylAx+Y)) - (x—yIAX-Y))

+i(x—iylA(x—iy)) — i(x+ iy|AXx+ iy))| = (x|Ay).

1.21 Unitary transformation and isometries

1.21.1 Definition

Note that a complex number z has absolute value oneif zz=1,orz=1/z.
In analogy to this “modulus one” behavior, consider unitary transforma-

20 Stefan Filipp and Karl Svozil. Generalizing
Tsirelson’s bound on Bell inequalities using
a min-max principle. Physical Review Let-
ters, 93:130407, 2004. pol: 10.1103/Phys-
RevLett.93.130407. URL https://doi.
org/10.1103/PhysRevLett.93.130407

For proofs and additional information see
§71-73in

Paul Richard Halmos. Finite-Dimensional
Vector Spaces. Undergraduate Texts in
Mathematics. Springer, New York, 1958.
ISBN 978-1-4612-6387-6,978-0-387-90093-
3. pol: 10.1007/978-1-4612-6387-6.
URL https://doi.org/10.1007/
978-1-4612-6387-6


https://doi.org/10.1103/PhysRevLett.93.130407
https://doi.org/10.1103/PhysRevLett.93.130407
https://doi.org/10.1007/978-1-4612-6387-6
https://doi.org/10.1007/978-1-4612-6387-6
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tions, or, used synonymously, (one-to-one) isometries U for which

u*=u'=u! oruu’ =ufu=1 (1.165)

The following conditions are equivalent:

i U*=U'=uU"!oruuf=uUfu=1

(i) (Ux|Uy)=x|y forallx,ye7?;

(iii) Uis an isometry, that is, preserving the norm ||Ux|| = ||x|| forallxe 7.

(iv) U represents a change of orthonormal basis 2': Let 8 = {f},f,,...,f,}
be an orthonormal basis. Then U% = &’ = {Uf;,Uf;,...,Uf,} is also an
orthonormal basis of 7. Conversely, two arbitrary orthonormal bases
% and %' are connected by a unitary transformation U via the pairs f;
and Uf; for all 1 < i < n, respectively. More explicitly, denote Uf; = e;;
then (recall f; and e; are elements of the orthonormal bases 98 and U4,
respectively) Upp =37, e,-f‘; =31 lepfil.

For a direct proof, suppose that (i) holds; that is, U* = U" = U~!. then,
(i) follows by

(Ux|Uy) = (U*Ux |y) = (U'Ux | y) = x| y) (1.166)
for all x,y.
In particular, ify = x, then
IUx]I* = [(Ux | Ux)| = [¢x | )] = [x]1* (1.167)

for all x.
In order to prove (i) from (iii) consider the transformation A = U*U -1,
motivated by (1.167), or, by linearity of the inner product in the first argu-

ment,

IUx]| — [Ix]l = (Ux | Ux) — (x| x) = (U"Ux | X) — (X | X) =

(1.168)
=(U*Ux|x)—(Ix|x) = ((U*U-Dx|x)=0
for all x. A is self-adjoint, since
A*=(U"U)" 1" =U* (U*)" -1=U*U-1=A. (1.169)

We need to prove that a necessary and sufficient condition for a self-
adjoint linear transformation A on an inner product space to be 0 is that
(Ax | x) = 0 for all vectors x.

Necessity is easy: whenever A = 0 the scalar product vanishes. A proof
of sufficiency first notes that, by linearity allowing the expansion of the
first summand on the right side,

(Ax|y) +(Ay |x) = (Ax+Yy) | x+y) — (Ax|X) — (Ay | ). (1.170)
Since A is self-adjoint, the left side is
(AX|y) +(Ay | x) = (AX | y) + (y | A*x) = (Ax | y) + (y | AX) = (L171)

= (Ax|y) + (Ax|y) = 2R ((Ax|y)).

2! Julian  Schwinger. Unitary  op-
erators  bases. Proceedings  of
the National Academy of Sciences
(PNAS), 46:570-579, 1960. pol:
10.1073/pnas.46.4.570. URL https:
//doi.org/10.1073/pnas.46.4.570
See also § 74 of

Paul Richard Halmos. Finite-Dimensional
Vector Spaces. Undergraduate Texts in
Mathematics. Springer, New York, 1958.
ISBN 978-1-4612-6387-6,978-0-387-90093-
3. Dol: 10.1007/978-1-4612-6387-6.
URL https://doi.org/10.1007/
978-1-4612-6387-6

Cf. page 138, § 71, Theorem 2 of

Paul Richard Halmos. Finite-Dimensional
Vector Spaces. Undergraduate Texts in
Mathematics. Springer, New York, 1958.
ISBN 978-1-4612-6387-6,978-0-387-90093-
3. DOI: 10.1007/978-1-4612-6387-6.
URL https://doi.org/10.1007/
978-1-4612-6387-6
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Note that our assumption implied that the right hand side of (1.170) van-
ishes. Thus,

2R(AX | y) = 0. (1.172)

Since the real part R(Ax | y) of (Ax | y) vanishes, what remains is to show
that the imaginary part 3(Ax |y) of (Ax|y) vanishes as well.

As long as the Hilbert space is real (and thus the self-adjoint transfor-
mation A is just symmetric) we are almost finished, as (Ax | y) is real, with
vanishing imaginary part. That is, R(Ax |y) = (Ax | y) = 0. In this case, we
are free to identify y = Ax, thus obtaining (Ax | Ax) = 0 for all vectors x. Be-
cause of the positive-definiteness [condition (iii) on page 7] we must have
Ax = 0 for all vectors x, and thus finally A=U*U—-01=0,and U*U =1.

In the case of complex Hilbert space, and thus A being Hermitian, we
can find an unimodular complex number 6 such that |f] = 1, and, in par-
ticular, 0 = 0(x,y) = +i for S(Ax|y) <0 or 0(x,y) = —i for S(Ax |y) = 0,
such that ¢Ax | y) = |S(Ax | y)| = [(Ax | y)| (recall that the real part of
(Ax|y) vanishes).

Now we are free to substitute Ox for x. We can again start with our as-
sumption (iii), now with x — 6x and thus rewritten as 0 = (A(6x) | y), which
we have already converted into 0 = R(A(0x) | y) for self-adjoint (Hermi-
tian) A. By linearity in the first argument of the inner product we obtain

0=RAOX) |y) =ROAx|y) =R (0(Ax|y)) =

(1.173)
=R (I(Ax | y)]) = [(AX| y)| = (Ax | y).

Again we can identify y = Ax, thus obtaining (Ax | Ax) = 0 for all vectors
x. Because of the positive-definiteness [condition (iii) on page 7] we must
have Ax = 0 for all vectors x, and thus finally A=U*U-1=0,and U*U =1.

A proof of (iv) from (i) can be given as follows. Note that every uni-
tary transformation U takes elements of some “original” orthonormal ba-
sis &8 = {f1,5,,...,f,} into elements of a “new” orthonormal basis defined
by U% = %' = {Uf},Uf,...,Uf,}; with Uf; = e;. Thereby, orthonormality is
preserved: since U* = U,

(e; lej) = (Uf; | UE;) = (UUS; | £;) = (UT'US; [ £)) = (F; | £,) =655 (1.174)

U2 forms a new basis: both 28 as well as U2 have the same number of

mutually orthonormal elements; furthermore, completeness of U% fol-

lows from the completeness of 8: (x| Uf;) = (U*x | f;) = 0 for all basis

elements f; implies U*x = U~!x = 0 and thus x = U0 = 0. All that needs to

be done is to explicitly identify Uwith U, =37, eifz =X lepfil.
Conversely, since

n n n
sz =) (e)ED* =) («ED* (le)* =) Ifi)(eil =Uye, (1.175)
i=1 i=1 i=1
and therefore
UgpUer = UreUer
= (If;)(e; 1) (lej) ;1) = If;) (e;le ;) (Ej| = If) (Fil =1, (1.176)
——

=5;

Rz and Yz stand for the real and imaginary
parts of the complex number z =Rz +iSz.
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so that Ugfl =U;.

An alternative proof of sufficiency makes use of the fact that, if both Uf;
are orthonormal bases with f; € 28 and Uf; € U2 = 98’, so that (Uf; | uf;) =
£ | fj), then by linearity (Ux | Uy) = (x| y) for all x,y, thus proving (ii) from
(iv).

Note that U preserves length or distances and thus is an isometry, as for
allx,y,

[Ux—Uyl = [U(x-y) Il = IIx-yl. (1.177)

Note also that U preserves the angle 8 between two nonzero vectors x
and y defined by

_ x|y
Iyl

(1.178)

as it preserves the inner product and the norm.

Since unitary transformations can also be defined via one-to-one trans-
formations preserving the scalar product, functions such as f : x — x' = ax
with a # e?, ¢ € R, do not correspond to a unitary transformation in a
one-dimensional Hilbert space, as the scalar product f : (x|y) — (x'|y) =
|| (x| ¥) is not preserved; whereas if @ is a modulus of one; that is, with
a = el?, ¢ R, lal? = 1, and the scalar product is preserved. Thus,
u:x— x' = e'?x, ¢ € R, represents a unitary transformation.

1.21.2 Characterization in terms of orthonormal basis

A complex matrix U is unitary if and only if its row (or column) vectors
form an orthonormal basis.

This can be readily verified 22 by writing U in terms of two orthonor-
mal bases % = {e1,ey,...,e,} = {le1),lez),...,lex)} B = {f1,5,....f,} =
{If1), 12, ..., If)} as

n n
Uer = eifl =) lenfil. (1.179)
i=1 i=1

Together with Ug, =} f,-e:.r =Y, Ifi){e;| we form

S

n
elUcr=e Z =Z Lenf] = Z%fT fl. (1.180)
i=1 i=1 i=1
In a similar way we find that
Ueffk = ek,fLUfe = e;rc, Ureer = . (1.181)

Moreover,

n

Uerfe = Z Z(|e ><fz|)(|f]><e] = Z Z el>6l] (ejl= Z le;)(e;l =1.

i=1j= i=1
(1.182)
In a similar way we obtain U ¢,U.s =1. Since
n n
ul, = Z(fj)T = Zlfiej =Use, (1.183)
i=

we obtain that U =WUep)” land UT =WUge)” 1

2 Julian  Schwinger. Unitary  op-
erators  bases. Proceedings  of
the National Academy of Sciences
(PNAS), 46:570-579, 1960. DOI:
10.1073/pnas.46.4.570. URL https:

//doi.org/10.1073/pnas.46.4.570
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Note also that the compositionholds; thatis, U,fUfg = Ueg.

If we identify one of the bases % and %' by the Cartesian standard
basis, it becomes clear that, for instance, every unitary operator U can
be written in terms of an orthonormal basis of the dual space %* =
{11, (B|..., (E,1} by “stacking” the conjugate transpose vectors of that or-
thonormal basis “on top of each other;” that is

0 0 ) (&l
0 £ |kl
_ i i S R
U: : f1+ f2+"'+ : fl’l: . = . (1.184)
0 0 n ]\l

Thereby the conjugate transpose vectors of the orthonormal basis 28 serve
as the rows of U.

In a similar manner, every unitary operator U can be written in terms
of an orthonormal basis & = {f},f,,...,f,} by “pasting” the vectors of that
orthonormal basis “one after another;” that is

U=t (1,0,...,0)+f2(0,1,...,0)+---+fn(o,0,...,1)

= (fl,fz,... ,fn) = (|f1), £, |fn>). (1.185)

Thereby the vectors of the orthonormal basis 98 serve as the columns of U.
Note also that any permutation of vectors in 98 would also yield unitary
matrices.

1.22 Orthonormal (orthogonal) transformation

Orthonormal (orthogonal) transformations are special cases of unitary
transformations restricted to real Hilbert space.

An orthonormal or orthogonal transformation R is a linear transforma-
tion whose corresponding square matrix R has real-valued entries and
mutually orthogonal, normalized row (or, equivalently, column) vectors.
As a consequence (see the equivalence of definitions of unitary definitions
and the proofs mentioned earlier),

RR"=R'R=1[, orR™' =RT. (1.186)

As all unitary transformations, orthonormal transformations R preserve a
symmetric inner product as well as the norm.

IfdetR = 1, R corresponds to a rotation. If detR = —1, R corresponds to a
rotation and a reflection. A reflection is an isometry (a distance preserving
map) with a hyperplane as set of fixed points.

For the sake of a two-dimensional example of rotations in the plane R?,
take the rotation matrix in Eq. (1.120) representing a rotation of the basis
by an angle ¢.

1.23 Permutation

Permutations are “discrete” orthogonal transformations in the sense that
they merely allow the entries “0” and “1” in the respective matrix repre-
sentations. With regards to classical and quantum bits 23 they serve as a

For a quantum mechanical application, see

Michael Reck, Anton Zeilinger, Herbert J.
Bernstein, and Philip Bertani. Exper-
imental realization of any discrete uni-
tary operator.  Physical Review Letters,
73:58-61, 1994. pol: 10.1103/Phys-
RevLett.73.58. URL https://doi.org/
10.1103/PhysRevLett.73.58
For proofs and additional information see
§5.11.3, Theorem 5.1.5 and subsequent
Corollary in

Satish D. Joglekar. Mathematical Physics:
The Basics. CRC Press, Boca Raton,
Florida, 2007

ZDavid N. Mermin. Lecture notes
on quantum computation. accessed
Jan 2nd, 2017, 2002-2008. URL
http://www.lassp.cornell.edu/
mermin/qcomp/CS483.html; and David N.
Mermin. Quantum Computer Science.
Cambridge University Press, Cambridge,
2007. ISBN 9780521876582. URL
http://people.ccmr.cornell.edu/


https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1103/PhysRevLett.73.58
http://www.lassp.cornell.edu/mermin/qcomp/CS483.html
http://www.lassp.cornell.edu/mermin/qcomp/CS483.html
http://people.ccmr.cornell.edu/~mermin/qcomp/CS483.html
http://people.ccmr.cornell.edu/~mermin/qcomp/CS483.html
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sort of “reversible classical analog” for classical reversible computation,
as compared to the more general, continuous unitary transformations of
quantum bits introduced earlier.

Permutation matrices are defined by the requirement that they only
contain a single nonvanishing entry “1” per row and column; all the other
row and column entries vanish; that is, the respective matrix entry is “0.”
For example, the matrices [, = diag(l,...,1), or

——

n times
01 0
0 1
o] = ,or [1 0 O
1 0
0 0 1

are permutation matrices.

Note that from the definition and from matrix multiplication follows
that, if P is a permutation matrix, then PPT = PTP =1,. That is, PT repre-
sents the inverse element of P. As P is real-valued, it is a normal operator
(cf. page 60).

Note further that, as all unitary matrices, any permutation matrix can
be interpreted in terms of row and column vectors: The set of all these
row and column vectors constitute the Cartesian standard basis of n-
dimensional vector space, with permuted elements.

Note also that, if P and Q are permutation matrices, so is PQ and QP.
The set of all n! permutation (n x n)—matrices corresponding to permu-
tations of n elements of {1,2,..., n} form the symmetric group S,,, with [,
being the identity element.

1.24 Projection or projection operator

The more I learned about quantum mechanics the more I realized the im-

portance of projection operators for its conceptualization 24:

(i) Pure quantum states are represented by a very particular kind of pro-
jections; namely, those that are of the trace class one, meaning their
trace (cf. Section 1.17 below) is one, as well as being positive (cf. Sec-
tion 1.20 below). Positivity implies that the projection is self-adjoint (cf.
Section 1.19 below), which is equivalent to the projection being orthog-
onal (cf. Section 1.22 below).

Mixed quantum states are compositions — actually, nontrivial convex
combinations - of (pure) quantum states; again they are of the trace
class one, self-adjoint, and positive; yet unlike pure states, they are
no projectors (that is, they are not idempotent); and the trace of their
square is not one (indeed, it is less than one).

(i) Mixed states, should they ontologically exist, can be composed of pro-
jections by summing over projectors.

(iii) Projectors serve as the most elementary observables — they corre-
spond to yes-no propositions.

(iv) In Section 1.27.1 we will learn that every observable can be decom-
posed into weighted (spectral) sums of projections.

24John von Neumann. Mathematis-
che Grundlagen der Quantenmechanik.
Springer, Berlin, Heidelberg, second edition,
1932, 1996. ISBN 978-3-642-61409-
5,978-3-540-59207-5,978-3-642-64828-
1. DolI: 10.1007/978-3-642-61409-5.
URL https://doi.org/10.1007/
978-3-642-61409-5. English translation
in Ref. ; and Garrett Birkhoff and John von
Neumann. The logic of quantum mechanics.
Annals of Mathematics, 37(4):823-843,
1936. DOI: 10.2307/1968621. URL
https://doi.org/10.2307/1968621

John von Neumann. Mathematical Foun-
dations of Quantum Mechanics. Princeton
University Press, Princeton, NJ, 1955. ISBN
9780691028934. URL http://press.
princeton.edu/titles/2113.html.
German original in Ref.
For a proof, see pages 52-53 of

L. E. Ballentine. Quantum Mechanics.
Prentice Hall, Englewood Cliffs, NJ, 1989


https://doi.org/10.1007/978-3-642-61409-5
https://doi.org/10.1007/978-3-642-61409-5
https://doi.org/10.2307/1968621
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(v) Furthermore, from dimension three onwards, Gleason’s theorem (cf.
Section 1.32.1) allows quantum probability theory to be based upon
maximal (in terms of co-measurability) “quasi-classical” blocks of pro-
jectors.

(vi) Such maximal blocks of projectors can be bundled together to show
(cf. Section 1.32.2) that the corresponding algebraic structure has no
two-valued measure (interpretable as truth assignment), and therefore
cannot be “embedded” into a “larger” classical (Boolean) algebra.

1.24.1 Definition

If 7 is the direct sum of some subspaces .# and .4 so that everyz e 7 can
be uniquely written in the form z=x+y, withx € .# and withy € .4/, then
the projection, or, used synonymously, projection on .4 along ./, is the
transformation E defined by Ez = x. Conversely, Fz =y is the projection on
N along .

A (nonzero) linear transformation E is a projector if and only if one
of the following conditions is satisfied (then all the others are also satis-
fied) 2°:

(i) Eisidempotent; thatis, EE =E #0;
(i) EFisa projector for all k e N;

(iii) 1-Eis a projection: if E is the projection on .« along .4/, then 1 -E
is the projection on .4 along ./ ;

(iv) ET isa projector;
(v) A=2E -1 isan involution; thatis, A2 =1=1;

(vi) E admits the representation

,
E=) xiy}, (1.187)

i=1
where k is the rank of E and {x;,...,Xx} and {yy,...,yx} are biorthogonal
systems of vectors (not necessarily bases) of the vector space such that
(yilxj) = 6;;. If the systems of vectors are identical; that is, if y; = x;,
the products x,-x;‘ = |x;)(X;| project onto one-dimensional subspaces
spanned by x;, and the projection is self-adjoint, and thus orthogonal.

For a proof of (i) note that, if E is the projection on .# along ./, and if
z=x+Yy, withx € 4 and with y € .4, the decomposition of x yields x + 0,
so that E?z = EEz = Ex = x = Ez. The converse — idempotence “EE = E”
implies that E is a projection — is more difficult to prove.

For the necessity of (iii) note that (1 — E)2=1-E-E+E2=1-E; fur-
thermore, E1 —E) = (1-E)E=E-E2? =0.

We state without proof2® that, for all projections which are neither null
nor the identity, the norm of its complementary projection is identical
with the norm of the projection; that is,

IEl=11-El. (1.188)

For proofs and additional information see
§41in

Paul Richard Halmos. Finite-Dimensional
Vector Spaces. Undergraduate Texts in
Mathematics. Springer, New York, 1958.
ISBN 978-1-4612-6387-6,978-0-387-90093-
3. DolI: 10.1007/978-1-4612-6387-6.
URL https://doi.org/10.1007/
978-1-4612-6387-6

% Gotz Trenkler. Characterizations of
oblique and orthogonal projectors. In
T. Calinski and R. Kala, editors, Pro-
ceedings of the International Conference
on Linear Statistical Inference LINSTAT
‘93, pages 255-270. Springer Nether-
lands, Dordrecht, 1994. ISBN 978-94-011-
1004-4. DOI: 10.1007/978-94-011-1004-
4 28. URL https://doi.org/10.1007/
978-94-011-1004-4_28

See § 5.8, Corollary 1 in

Peter Lancaster and Miron Tismenetsky.
The Theory of Matrices: With Applications.
Computer Science and Applied Mathemat-
ics. Academic Press, San Diego, CA, second
edition, 1985. ISBN 0124355609,978-0-08-
051908-1. URL https://www.elsevier.
com/books/the-theory-of-matrices/
lancaster/978-0-08-051908-1

The vector norm (1.8) on page 8 induces an
operator norm by [|A]l = sup)x=1 I AX|.

% Daniel B. Szyld. The many proofs
of an identity on the norm of oblique
projections. Numerical Algorithms, 42
(8):309-323, Jul 2006. ISSN 1572-
9265. DoI: 10.1007/s11075-006-9046-
2. URL https://doi.org/10.1007/
511075-006-9046-2
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1.24.2 Orthogonal (perpendicular) projections

Orthogonal, or, used synonymously, perpendicular projections are associ-
ated with a direct sum decomposition of the vector space 7; that is,

MO M=, (1.189)

whereby .4 = P 4 (¥) is the image of some projector E = P 4, along ./,
and .#" is the kernel of P . Thatis, 4+ = {xe ¥ | P 4 (x) = 0} is the sub-
space of 7 whose elements are mapped to the zero vector 0 by P .

Let us, for the sake of concreteness, suppose that, in n-dimensional
complex Hilbert space C", we are given a k-dimensional subspace

A =span (Xy,...,X;) =span (|x1),...,Xk)) (1.190)

spanned by k < n linear independent base vectors Xy, ...,X,. In addition,
we are given another (arbitrary) vectory € C".

Now consider the following question: how can we project y onto .#
orthogonally (perpendicularly)? That is, can we find a vector y' € .4 so
that y- =y -y is orthogonal (perpendicular) to all of ./?

The orthogonality of y* on the entire .# can be rephrased in terms of
all the vectors xj,..., X spanning .#; that is, for allx; € 4, 1 < i < k we
must have (x; IyJ-) = 0. This can be transformed into matrix algebra by
considering the n x k matrix [note that x; are column vectors, and recall
the construction in Eq. (1.185)]

A= (xl,...,xk) = (le),...,lxk)), (1.191)
and by requiring
Aflyh =Afyt =AT (y-y)=ATy-ATy =0, (1.192)
yielding
Afly) =ATy= ATy =ATly). (1.193)

On the other hand, y’ must be a linear combination of xy,...,x; with the
k-tuple of coefficients ¢ defined by

y/=clx1+~-+ckxk=(xl,...,xk) . | =Ac. (1.194)

Insertion into (1.193) yields

Afy=A'Ac. (1.195)

Taking the inverse of ATA (thisisa kx k diagonal matrix which is invertible,
since the k vectors defining A are linear independent), and multiplying
(1.195) from the left yields

-1
c= (ATA) Aly. (1.196)
With (1.194) and (1.196) we find y’ to be
-1
Yy =Ac=A (A*A) Aly. (1.197)

For proofs and additional information see
§42, 8§75 & §76 in

Paul Richard Halmos. Finite-Dimensional
Vector Spaces. Undergraduate Texts in
Mathematics. Springer, New York, 1958.
ISBN 978-1-4612-6387-6,978-0-387-90093-
3. DoI: 10.1007/978-1-4612-6387-6.
URL https://doi.org/10.1007/
978-1-4612-6387-6

http:/faculty.uml.edu/dklain/projections.pdf

Recall that (AB)T = BTAT, and (AT)T = A.
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We can define .
E,= A(A*A) Al (1.198)

to be the projection matrix for the subspace ./ . Note that

EN, = [A(A*A)_IAT oA [(A*A)_I]TAT =A [A’l (A*)_TAT

(1.199)
-1 -1
=AA"' (A7) AT=AA! (AT) AT =A(ATA] AT=E,,
that s, E 4 is self-adjoint and thus normal, as well as idempotent:
-1 -1
E%, = (A (aa) A*) (A (aa) AT)
(1.200)

= Af (ATA)_1 (aTa) (ATA)_l A=A (A*A)_l A=E.

Conversely, every normal projection operator has a “trivial” spectral
decomposition (cf. later Sec. 1.27.1 on page 60) E 4 =1-E 4 +0-E 41 =
1-E 4 +0-(1—-E_y) associated with the two eigenvalues 0 and 1, and thus
must be orthogonal.

If the basis 2 = {x,...,X;} of 4 is orthonormal, then

x| xplxp) .o XX
Ata=| : (lxl>,...,IXk>)= : : D= a.2on
Xl XXy .o Xelxp)

represents a k-dimensional resolution of the identity operator. Thus,
(ATA)_1 = (Ip)~! is also a k-dimensional resolution of the identity oper-
ator, and the orthogonal projector E_ in Eq. (1.198) reduces to

E,=AA'= i ;) (X; 1. (1.202)
i=1

The simplest example of an orthogonal projection onto a one-
dimensional subspace of a Hilbert space spanned by some unit vector |x)
is the dyadic or outer product Ey = [x)(x|.

If two unit vectors [x) and |y) are orthogonal; that is, if (x|y) = 0, then
Exy = [x) x|+ |y){yl is an orthogonal projector onto a two-dimensional
subspace spanned by [x) and |y).

In general, the orthonormal projection corresponding to some arbi-
trary subspace of some Hilbert space can be (non-uniquely) constructed
by (i) finding an orthonormal basis spanning that subsystem (this is
nonunique), if necessary by a Gram-Schmidt process; (ii) forming the pro-
jection operators corresponding to the dyadic or outer product of all these
vectors; and (iii) summing up all these orthogonal operators.

The following propositions are stated mostly without proof. A linear
transformation E is an orthogonal (perpendicular) projection if and only
if is self-adjoint; that is, E = E> = E*.

Perpendicular projections are positive linear transformations, with
IEx|l < [ x|l for allx € 7. Conversely, if a linear transformation E is idempo-
tent; that is, EZ = E, and |Ex|| < ||x| for all x € 7, then is self-adjoint; that
is, E=E™.

Recall that for real inner product spaces, the self-adjoint operator can
be identified with a symmetric operator E = ET, whereas for complex inner
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product spaces, the self-adjoint operator can be identified with a Hermi-
tian operator E = E'.

If E},Ey,...,E, are (perpendicular) projections, then a necessary and
sufficient condition that E = E; + E» + --- + E,; be a (perpendicular) pro-
jection is that E;E; = 6;;E; = 6;;E;; and, in particular, E;E; = 0 whenever
i # j; thatis, that all E; are pairwise orthogonal.

For a start, consider just two projections E; and E,. Then we can assert
that E; + E; is a projection if and only if E;E» = E2E; = 0.

Because, for E; + E; to be a projection, it must be idempotent; that is,

(E; +Ep)? = (E; + Ey)(E; + Ep) = E? + E1Ey + E2E) + E5 = E; +E». (1.203)
As a consequence, the cross-product terms in (1.203) must vanish; that is,
E,E, +E;E; =0. (1.204)
Multiplication of (1.204) with E; from the left and from the right yields
E.E E; + E{E2E; =0,
E,E, + E1E>E; =0; and

(1.205)
E,E>E; +E2E;E; =0,
E,E>E, + E;E; =0.
Subtraction of the resulting pair of equations yields
E\E; - EzE; = [E;,E2] =0, (1.206)
or
E,E; = EE;. (1.207)

Hence, in order for the cross-product terms in Egs. (1.203 ) and (1.204) to
vanish, we must have
E,E;, =E,E; =0. (1.208)

Proving the reverse statement is straightforward, since (1.208) implies
(1.203).

A generalisation by induction to more than two projections is straight-
forward, since, for instance, (E, + E») E3 = 0 implies E,E3 + ExE3 = 0. Mul-
tiplication with E; from the left yields E;E1E3 + E;E2E3 = E;E3 = 0.

1.24.3 Construction of orthogonal projections from single unit vec-
tors

How can we construct orthogonal projections from unit vectors or systems
of orthogonal projections from some vector in some orthonormal basis
with the standard dot product?

Let x be the coordinates of a unit vector; that is [|x|| = 1. Transposition
is indicated by the superscript “7” in real vector space. In complex vector
space, the transposition has to be substituted for the conjugate transpose
(also denoted as Hermitian conjugate or Hermitian adjoint), “f,” stand-
ing for transposition and complex conjugation of the coordinates. More
explicitly,

— T
X1 X1

.
(v, 0ma) =t [and | 1| =G T, (1.209)
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Note that, just as for real vector spaces, (x")T = x, or, in the bra-ket nota-
tion, (x)T)T = [x), so is (xT)Jr =X, or (|x>“t)T = |x) for complex vector spaces.

As already mentioned on page 20, Eq. (1.60), for orthonormal bases of
complex Hilbert space we can express the dual vector in terms of the orig-
inal vector by taking the conjugate transpose, and vice versa; that is,

| = (x), and x) = (x))". (1.210)

In real vector space, the dyadic product, or tensor product, or outer
product

X1

X2
Ex=xox =0xl=| . |(x1,22,..., 1)

Xn
(1.211)
X1|X1,X2,...,Xn X1X1 X1X2 o+ X1Xp
X2 | X1, X2,..., Xn X2X1  X2X2 o X2Xp
Xn (xl,xg,...,x,,) XnX1  XpX2 ot XpXp

is the projection associated with x.
If the vector x is not normalized, then the associated projection is

(1.212)

This construction is related to Px on page 14 by Px(y) = Exy.
For a proof, consider only normalized vectors x, and let Ex = x®xT, then

ExEx = (Ix)(x]) (Ix)(x]) = |x) (x|x) (x| = Ex.
——
=1
More explicitly, by writing out the coordinate tuples, the equivalent proof
is

ExEx = x®x")  x®x)

X1 X1

X2 X2
= (-xly-XZy--~r-xn) . (xl)x27~--vxil)

Xn Xn

(1.213)
X1 X1
X2 X2
= . [ [Gxeeex0) | || G, X2, x0) = Ex.

Xn Xn

=1

In complex vector space, transposition has to be substituted by the con-
jugate transposition; that is

Ey=x®x = [x)(x| (1.214)
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For two examples, letx = (1,0)T and y = (1,—1)T; then
1 1(1,0) 10
Ex=| |a,0= - ,
* (0)( ) (0(1,0)) (o 0)
(1) 1(1(1,—1)) 1(1 —1)
1,-1)=- == )
-1 2{-10,-1) 2|-1 1

Exly) = Exy = Xly)x, = xXly)[x), (1.215)

and

Ey =

o=

Note also that

which can be directly proven by insertion.

1.24.4 Examples of oblique projections which are not orthogonal
projections

Examples for projections which are not orthogonal are

1 0 «a
1 «a 01 B
)Or )
0 0
0 0 O

with a # 0. Such projectors are sometimes called oblique projections.
For two-dimensional Hilbert space, the solution of idempotence

[

yields the three orthogonal projections

1 olfo o 1 0
, , and ,
o oo %)y )

as well as a continuum of oblique projections

00_0®(1)10and a b
¢ 1) {1)7 e o) al-a 1_gq)

with a, b, c #0.
1
0 e
c 1 1 c O

One can also utilize Eq. (1.187) and define two sets of vectors {e;, e,}
and {f;,f,} withe; = (a, b)T, e = (c, d)T, f; = (e,f)T, aswell as ) = (g, h)T.
Biorthogonality requests that e;f] =1, e;f; =0, e>f] =0, exf; = 0.

This results in four families of solutions: The first solution requires ad #
bc; with e = ﬁ, f=—-25:8= —ﬁ, and h = _Z%-. It amounts to
two mutually orthogonal (oblique) projections

a 1 1 ad -—ac
G = (b) e Ul R (bd —bc)’

(1.216)
c 1 1 —bc ac
G2 = (d) ® ad—be )= aa—pe (—bd ad)‘

55
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The second solution requires a,c,d # 0; withb=g =0, e = é, f=-2

h= é. It amounts to two mutually orthogonal (oblique) projections

(1.217)

The third solution requires a,d # 0; with b= f =g=0,e=1, h= 1 It
amounts to two mutually orthogonal (orthogonal) projections
_|a 1y _ (1 0
e
(1.218)

o}

The fourth and last solution requires a, b,d # 0; with c = f =0, e = o
g= —a—bd, h= é. It amounts to two mutually orthogonal (oblique) projec-

tions

(1.219)

1.25 Proper value or eigenvalue

1.25.1 Definition

Ascalar A is a proper value or eigenvalue, and a nonzero vector x is a proper
vector or eigenvector of a linear transformation A if

Ax = Ax= Alx. (1.220)

In an n-dimensional vector space 7" The set of the set of eigenvalues and
the set of the associated eigenvectors {{11,..., A}, {X1,...,X,}} of a linear
transformation A form an eigensystem of A.

1.25.2 Determination

Since the eigenvalues and eigenvectors are those scalars A vectors x for
which Ax = 1x, this equation can be rewritten with a zero vector on the
right side of the equation; that is (I = diag(l,...,1) stands for the identity
matrix),

(A-ADhx=0. (1.221)

Suppose that A — Al is invertible. Then we could formally write x = (A -
Al)~10; hence x must be the zero vector.

We are not interested in this trivial solution of Eq. (1.221). Therefore,
suppose that, contrary to the previous assumption, A— Al is notinvertible.

For proofs and additional information see
§54 in

Paul Richard Halmos. Finite-Dimensional
Vector Spaces. Undergraduate Texts in
Mathematics. Springer, New York, 1958.
ISBN 978-1-4612-6387-6,978-0-387-90093-
3. DoI: 10.1007/978-1-4612-6387-6.
URL https://doi.org/10.1007/
978-1-4612-6387-6
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We have mentioned earlier (without proof) that this implies that its deter-
minant vanishes; that is,

det(A—Al) =|A-Al| =0. (1.222)

This determinant is often called the secular determinant; and the corre-
sponding equation after expansion of the determinant is called the secu-
lar equation or characteristic equation. Once the eigenvalues, that is, the
roots (that is, the solutions) of this equation are determined, the eigenvec-
tors can be obtained one-by-one by inserting these eigenvalues one-by-
one into Eq. (1.221).

For the sake of an example, consider the matrix

1 0 1
A=]0 1 0 (1.223)
1 0 1
The secular equation is
1-A 0 1
0 1-1 0 [=0,
0 1-1

yielding the characteristic equation (1 — AP—1-1=>0-1[1-1?%-
11=(1-2A)[A?=2A] = —A(1-A1)(2 - A) = 0, and therefore three eigenvalues
A1 =0, 1, =1, and A3 = 2 which are the roots of A(1-1)(2- A1) =0.

Next let us determine the eigenvectors of A, based on the eigenvalues.
Insertion 1; =0 into Eq. (1.221) yields

1 0 1 0 0 O X1 1 0 1\(x 0
01 0/—]0 0 O X2|=10 1 Of|x2]=1]0]; (1.224)
1 0 1 0 0 O X3 1 0 1)\xs3 0

therefore x; + x3 = 0 and x» = 0. We are free to choose any (nonzero) x; =
—x3, but if we are interested in normalized eigenvectors, we obtain x; =
1/v2)(1,0,-1)7.

Insertion A, = 1 into Eq. (1.221) yields

1 0 1 1 0 0 X1 0 0 1\[x 0
01 0|—-|0 1 O X2|=(0 0 Of|lx2|[=]0]}; (1.225)
1 01 0 0 1 X3 1 0 0)\x3 0

therefore x; = x3 = 0 and x; is arbitrary. We are again free to choose any
(nonzero) x, but if we are interested in normalized eigenvectors, we ob-
tainx, = (0,1,0)T.

Insertion A3 = 2 into Eq. (1.221) yields

1 0 1 2 00 X1 -1 0 1) ([x; 0
01 0]—]10 2 O X2[=10 =1 0 |[x|=]|0|; (1.226)
1 0 1 0 0 2 X3 1 0 -1)\x3 0

therefore —x; + x3 = 0 and x» = 0. We are free to choose any (nonzero)
X1 = x3, but if we are once more interested in normalized eigenvectors, we
obtain x3 = (1/v/2)(1,0,1)7.
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Note that the eigenvectors are mutually orthogonal. We can construct
the corresponding orthogonal projections by the outer (dyadic or tensor)
product of the eigenvectors; that is,

1 1(1,0,-1) 1 0 -1
E1=x1®xI=5(1,0,—1)T(1,0,—1)=§ 0(1,0,-1) =3 0o 0 O
-1(1,0,-1) -1 0 1
0(0,1,0) 0 0 O
E;=x ®x£=(0,1,0)T(0,1,0)= 1(0,1,00|=]0 1 O
0(0,1,0) 0 0 O
1(1,0,1) 1 0 1
E3=X3®x§=%(I,O,I)T(I,O,l)zE 01,0, |==]0 0 O
1(1,0,1) 1 0 1
(1.227)

Note also that A can be written as the sum of the products of the eigenval-
ues with the associated projections; that is (here, E stands for the corre-
sponding matrix), A = 0E; + 1E, + 2E3. Also, the projections are mutually
orthogonal — that is, E;E, = E;E3 = E;E3 = 0 — and add up to the identity;
thatis, Ey + E; + E3 =1.

If the eigenvalues obtained are not distinct and thus some eigenvalues
are degenerate, the associated eigenvectors traditionally — that is, by con-
vention and not a necessity — are chosen to be mutually orthogonal. A
more formal motivation will come from the spectral theorem below.

For the sake of an example, consider the matrix

1 0 1
B=(0 2 0]. (1.228)
1 0 1

The secular equation yields

1-1 0 1
0 2-1 0 |=0,
1 0 1-1

which yields the characteristic equation (2 —-1)(1 — A2+[-2=-N]=2-
DA =1)%2=1]1=-A12-21)?% =0, and therefore just two eigenvalues 1, =0,
and 1, = 2 which are the roots of 1(2 — 1)% = 0.

Let us now determine the eigenvectors of B, based on the eigenvalues.
Insertion 1; =0 into Eq. (1.221) yields

1 01 0 0 O X1 1 0 1)\(x 0
0 2 0|-]0 0 O X2[=10 2 Of]x2|=]0]}; (1.229)
1 0 1 0 0 O X3 1 0 1)\x3 0

therefore x; + x3 = 0 and x, = 0. Again we are free to choose any (nonzero)
X1 = —x3, but if we are interested in normalized eigenvectors, we obtain
x = (1/v2)(1,0,-1)7.

Insertion A, = 2 into Eq. (1.221) yields

1 0 1 2 0 0 X1 -1 0 1 X1 0
0 2 0|-10 2 O Xx2|=10 0 O x2|=10]; (1.230)
1 0 1 0 0 2 X3 1 0 -1/)\x3 0
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therefore x; = x3; x» is arbitrary. We are again free to choose any values
of x1, x3 and x, as long x; = x3 as well as x, are satisfied. Take, for the
sake of choice, the orthogonal normalized eigenvectors x, ; = (0,1,0)T and
X2 = (1/v/2)(1,0,1)T, which are also orthogonal to x; = (1/v/2)(1,0,—1)T.

Note again that we can find the corresponding orthogonal projections
by the outer (dyadic or tensor) product of the eigenvectors; that is, by

1 1,0-n) (1 0 -1
E1=m®x}=5@a—nwLa—n=§ 0(1,0,-1) =3 0 0 0
-1(1,0,-1) -1 0 1
0(0,1,0) 0 0 O
E2,1=X2,1®X£1=(0,1,0)T(0,1,0)= 100,1,0)|=]0 1 0
0(0,1,0) 0 0 O
1(1,0,1) 1 0 1
&z:m2®g2:%manwLan:5 0(1,0,1) :%0 0 0
1(1,0,1) 1 0 1

(1.231)

Note also that B can be written as the sum of the products of the eigen-
values with the associated projections; that is (here, E stands for the corre-
sponding matrix), B = 0E; +2(E; +E»2). Again, the projections are mutu-
ally orthogonal - that is, E1E»; = E1E2 2 = Ep 1 Ez» = 0—and add up to the
identity; that s, E; + Ep,; + E» 2 =[. This leads us to the much more general
spectral theorem.

Another, extreme, example would be the unit matrix in n dimensions;
thatis, [,, = diag(l,...,1), which has an n-fold degenerate eigenvalue 1 cor-

——

n times
responding to a solution to (1 —A)" = 0. The corresponding projection

operator is [,,. [Note that (1,)? =1,, and thus [, is a projection.] If one
(somehow arbitrarily but conveniently) chooses a resolution of the iden-
tity operator [, into projections corresponding to the standard basis (any
other orthonormal basis would do as well), then

I, = diag(1,0,0,...,0) +diag(0,1,0,...,0) +--- + diag(0,0,0,...,1)

100 - 0y (100 - 0
010 - 0of Jo oo - o0
001 - 0o|]=|0o 00 - of,
000 - 1/ o o0 - 0 (1232
00 0 0 00 0 0
010 0 000 - 0
+o 0 o0 0[4+...4]0 0 © 0],
00 0 0 00 0 1

where all the matrices in the sum carrying one nonvanishing entry “1” in
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their diagonal are projections. Note that
e; =le;)
T
o,...,0,1,0,...,0
= | ~~—— ——
n—i times

i—1 times

= diag(0o,...,0,1, 0,...,0)
S~—— ~——r

(1.233)

n—i times

=E;.

i—1 times

The following theorems are enumerated without proofs.

If A is a self-adjoint transformation on an inner product space, then ev-
ery proper value (eigenvalue) of A is real. If A is positive, or strictly positive,
then every proper value of A is positive, or strictly positive, respectively

Due to their idempotence EE = E, projections have eigenvalues 0 or 1.

Every eigenvalue of an isometry has absolute value one.

If A is either a self-adjoint transformation or an isometry, then proper
vectors of A belonging to distinct proper values are orthogonal.

1.26 Normal transformation

A transformation A is called normal if it commutes with its adjoint; that is,

[A,A*]=AA"-A*A=0. (1.234)

It follows from their definition that Hermitian and unitary transforma-
tions are normal. That is, A* = At, and for Hermitian operators, A = At
and thus [A,A"] = AA - AA = (A)?> — (A)?> = 0. For unitary operators,
AT =A"! and thus [A, AT =AA"! —A"TA=1-1=0.

We mention without proof that a normal transformation on a finite-
dimensional unitary space is (i) Hermitian, (ii) positive, (iii) strictly posi-
tive, (iv) unitary, (v) invertible, (vi) idempotent if and only if all its proper
values are (i) real, (ii) positive, (iii) strictly positive, (iv) of absolute value
one, (v) different from zero, (vi) equal to zero or one.

1.27 Spectrum

1.27.1 Spectral theorem

Let 7 be an n-dimensional linear vector space. The spectral theorem states
that to every normal transformation A on an n-dimensional inner product
space 7 being

(a) self-adjoint (Hermiteian), or
(b) positive, or

(c) strictly positive, or

(d) unitary, or

(e) invertible, or

(f) idempotent

For proofs and additional information see
§ 78 and § 80 in

Paul Richard Halmos. Finite-Dimensional
Vector Spaces. Undergraduate Texts in
Mathematics. Springer, New York, 1958.
ISBN 978-1-4612-6387-6,978-0-387-90093-
3. Dol: 10.1007/978-1-4612-6387-6.
URL https://doi.org/10.1007/
978-1-4612-6387-6
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there exist eigenvalues A1, 15,..., A of A which are
(@) real, or

(b’) positive, or

(c) strictly positive, or

(d) of absolute value one, or

(e) different from zero, or

(f") equal to zero or one,

called the spectrum and their associated orthogonal projections
E),Ey,...,Ex where 0 < k < n is a strictly positive integer so that

(i) the A; are pairwise distinct;
(i) the E; are pairwise orthogonal and different from 0;

(iii) the set of projectors is complete in the sense that their sum Z;‘zl E; =
I, is a resolution of the identity operator; and

(iv) A= Zle A;E; is the spectral form of A.

With respect to the orthonormal basis of the vectors associated with
the orthogonal projections Ej,Ey,...,Ex occurring in the spectral form
the operator A can be represented in a diagonal matrix form A =

diag(A1,..., Ak

——
n times
Rather than proving the spectral theorem in its full generality, we sup-

pose that the spectrum of a Hermitian (self-adjoint) operator A is nonde-
generate; that is, all n eigenvalues of A are pairwise distinct. That is, we are
assuming a strong form of (i), with k = n.

As will be shown this distinctness of the eigenvalues then translates
into mutual orthogonality of all the eigenvectors of A. Thereby, the set
of n eigenvectors forms some orthogonal (orthonormal) basis of the n-
dimensional linear vector space 7. The respective normalized eigenvec-
tors can then be represented by perpendicular projections which can be
summed up to yield the identity (iii).

More explicitly, suppose, for the sake of a proof (by contradiction) of
the pairwise orthogonality of the eigenvectors (ii), that two distinct eigen-
values 1; and A, # 1; belong to two respective eigenvectors |x;) and [x»)
which are not orthogonal. But then, because A is self-adjoint with real
eigenvalues,

A{xlx2) = (A1x11x2) = (Ax [x7)

(1.235)
= (x1|A"X2) = (x1|AX2) = (X1 | (A2[%2)) = A2(x1 [X2),

which implies that
(A1 —A2) (xilx2) = 0. (1.236)

Equation (1.236) is satisfied by either A = 1, — which is in contradic-
tion to our assumption that 1; and A, are distinct — or by (x; [x2) = 0 (thus
allowing A; # A2) — which is in contradiction to our assumption that |x;)

For k < n the higher-than-one dimensional
projections can be represented by sums of
dyadic products of orthonormal bases span-
ning the associated subspaces of 7.
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and |x») are nonzero and not orthogonal. Hence, if we maintain the dis-
tinctness of 1; and 1,, the associated eigenvectors need to be orthogonal,
thereby assuring (ii).

Since by our assumption there are n distinct eigenvalues, this implies
that, associated with these, there are n orthonormal eigenvectors. These
n mutually orthonormal eigenvectors span the entire n-dimensional vec-
tor space 7; and hence their union {x;,...,Xx,} forms an orthonormal ba-
sis. Consequently, the sum of the associated perpendicular projections
E; = % is a resolution of the identity operator [, (cf. section 1.14 on
page 34); thereby justifying (iii).

In the last step, let us define the i’th projection of an arbitrary vector
|z) €7 by |¢;) = Ejlz) = [x;)(X;|z) = a;[x;) with a; = (x;|z), thereby keeping
in mind that this vector is an eigenvector of A with the associated eigen-
value A;; that is,

ALy = Aa;lx) = a;AlX) = a;id;lx;) = Aiailx;) = 1;1E0). (1.237)
Then,
n n
Alz) = Al,|z) = A(Z Ei) lzy=A[> Ei|z>) =
= = (1.238)
n n n n n
=AY |§i>) =) A&y =) MAil&iy =) AEilz) = (Z /L'Ei) |z),
i=1 i=1 i=1 i=1 i=1

which is the spectral form of A.

1.27.2 Composition of the spectral form

If the spectrum of a Hermitian (or, more general, normal) operator A is
nondegenerate, that is, k = n, then the ith projection can be written as
the outer (dyadic or tensor) product E; = x; ®xlT of the ith normalized
eigenvector x; of A. In this case, the set of all normalized eigenvectors
{x1,...,X,} is an orthonormal basis of the vector space 7. If the spectrum
of A is degenerate, then the projection can be chosen to be the orthogonal
sum of projections corresponding to orthogonal eigenvectors, associated
with the same eigenvalues.

Furthermore, for a Hermitian (or, more general, normal) operator A, if
1 =i < k, then there exist polynomials with real coefficients, such as, for

instance,
r—A;
= [l (1.239)
lsj<k b
J#i

so that p;(A;) = §;;; moreover, for every such polynomial, p;(A) = E;.

For a proof, it is not too difficult to show that p;(1;) = 1, since in this
case in the product of fractions all numerators are equal to denominators.
Furthermore, p;(A;) = 0 for j # i, since some numerator in the product of
fractions vanishes; and therefore, p;(1;) = 0; je

Now, substituting for ¢ the spectral form A = Zf;l AiE; of A, as well as
insertion of the resolution of the identity operator in terms of the projec-
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tions E; in the spectral form of A — that s, [,, = Zf_] E; —yields

A—A:l Y ME -4 2R E
pid = ] o == IZELZ (1,240
1<j<k, j#i Ai=Aj 1<j<k, j#i Ai=Aj

Because of the idempotence and pairwise orthogonality of the projections
E;

Yk B4 -1))
pmy= ] =L
<j<k, j#i i A
==k Y (1.241)

k M-A; K k
=) E ] 1T -2 =) Eipi(A) =) E;8;1=E;.
I=1 1sjs<k,jzi M~ =1 =1

With the help of the polynomial p;(#) defined in Eq. (1.239), which re-
quires knowledge of the eigenvalues, the spectral form of a Hermitian (or,
more general, normal) operator A can thus be rewritten as

k k A-Ajl,
A=Y ip@W=Y A [ (1.242)
i=1 i=1 1sjs<k, j#i i

Thatis, knowledge of all the eigenvalues entails construction of all the pro-
jections in the spectral decomposition of a normal transformation.
For the sake of an example, consider the matrix

1 0 1
A=]0 1 O (1.243)
1 0 1

introduced in Eq. (1.223). In particular, the projection E; associated with
the first eigenvalue 1; = 0 can be obtained from the set of eigenvalues

0,1,2} by
A=l [A— A3l
P1(A)=(/11_/12 (/11—/13)
1 0 1 1 0 0 1 0 1 1 0 O
0 1 0|-1-{0 1 0] IO 1 0|-2-]0 1 O
1 0 1 0 0 1 1 0 1 0 0 1 (1.244)
B 0-1) ' 0-2)
0 0 1}y(-1 O 1 1 0 -1
Z% 0 0 O 0 -1 0|==]0 0 O0]|=E
1 0 0 1 0 -1 -1 0 1

For the sake of another, degenerate, example consider again the matrix

1 0 1
B=(0 2 0 (1.245)
1 0 1

introduced in Eq. (1.228).

Again, the projections E;, E, can be obtained from the set of eigenval-
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ues {0,2} by
0 1 1 0 0
0 2 0[-2-]10 1
BB_/12|]101 0 0 110_1E
p1(B) = = =-|0 0 0 ]=Ey,
-2 0-2 2
1= A2 ( ) 10 1
0 1 1 0 0
0 2 0|[-0-10 1 O
B- 2l 0 1 0 0 1 1 1ol
B) = = =-|lo 2 o|=E
P = 2-0) 2 2
1 0 1
(1.246)

Note that, in accordance with the spectral theorem, E;E; =0, E; +E» =1
and0-E;+2-E; =B

1.28 Functions of normal transformations

Suppose A = Zle A;E; is anormal transformation in its spectral form. If f
is an arbitrary complex-valued function defined at least at the eigenvalues
of A, then a linear transformation f(A) can be defined by

i=1

FA=f (Z/ll 1) Zf(/l)El (1.247)

Note that, if f has a polynomial expansion such as analytic functions, then
orthogonality and idempotence of the projections E; in the spectral form
guarantees this kind of “linearization.”

If the function f is a polynomial of some degree N —say; if f(x) = p(x) =
YN, a;x' -then

:ngla (Z AiE “) (Z /li,Ei,) g (2 IEI) (1.248)

i1=1 =1

[ times

N k k (N k
= Z o (Z ﬂ,ﬁEi) = Z (Z alﬂtﬁ) E; = Z p(/lg)El'.
i=1 i=1\Il=1 i=1

A very similar argument applies to functional representations as Lau-
Al
rent or Taylor series expansions, — say, e 720 l, Z ( o0 T ) E; =
Zle eME; —in which case the coefficients a; have to be identified with the
coefficients in the series expansions.

For the definition of the “square root” for every positive operator A,
consider

k
VA=Y VAE;. (1.249)
i=1

With this definition, (\/K)Z =vVAVA=A.

Consider, for instance, the “square root” of the not operator

The denomination “not” for not can be mo-
tivated by enumerating its performance at
the two “classical bit states” |0) = (1,0)T and
[1)=(0,1)T: not|0) = |1) and not|1) = |0).
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b
not = . (1.250)
1 0

To enumerate vnot we need to find the spectral form of not first. The
eigenvalues of not can be obtained by solving the secular equation

0 1 10 -1 1
det (not— Al,) = det -2 = det =22-1=0
10 0 1 1 -2

A? =1 yields the two eigenvalues A1 = 1 and A; = —1. The associ-
ated eigenvectors x; and x, can be derived from either the equations
notx; =x; and notx, = —X, or by inserting the eigenvalues into the poly-
nomial (1.239).

We choose the former method. Thus, for A; =1,

0 1)(x X
o et (1.252)
1 0 X1,2 X1,2
which yields x;,; = x;,2, and thus, by normalizing the eigenvector, x; =

(1/+/2)(1,1)7. The associated projection is

1(1 1
— T__
E1 —xlxl = 5 (1 1) . (1.253)

Likewise, for 1, = -1,
0 Il(x X
i . e (1.254)
1 O xZ'z .X,'zyz

which yields xz; = —x2,2, and thus, by normalizing the eigenvector, x; =
(1/v/2)(1,-1)T. The associated projection is

R 2
2—X2X2—2 -1 1 . (1. 55)

Thus we are finally able to calculate v/not through its spectral form
vnot=y/ AlEl + vV /12E2 =

11 1 1{1 -1
:ﬁ§(1 1)+\/__15(—1 1):

Clf1+d o1-d) 1 (1 —i
T2l1-i 1+i) 1-il-i 1)

It can be readily verified that v'notv'not = not. Note that this form is not
unique: +1v/A1E; + +21/A2E», where +, and +, represent separate cases,

(1.256)

yield alternative expressions of v'not.

1.29 Decomposition of operators

1.29.1 Standard decomposition

In analogy to the decomposition of every imaginary number z =Rz + i3z
with Rz, 3z € R, every arbitrary transformation A on a finite-dimensional



66 Mathematical Methods of Theoretical Physics

vector space can be decomposed into two Hermitian operators B and C
such that

A =B+ iC; with

1
B= E(A+A*), (1.257)
1
= —(A-A").
(o] 2i( )
Proof by insertion; that is,
A=B+iC
—1(A+AT)+i i(AfA*)]
2 2i '
B = [E(A + A"‘)r . AT+ ah']
2 2
] (1.258)
_ t _
- - [A +A] =B,
2
c’:[ (A_Al)]T__l[A| (A’)']
i 2i
1
=-—|at-a|=c
2i

1.29.2 Polar decomposition

In analogy to the polar representation of every imaginary number z = Re’%
with R,p € R, R =0, 0 < ¢ < 27, every arbitrary transformation A on a
finite-dimensional inner product space can be decomposed into a unique
positive transform P and an isometry U, such that A = UP. If Ais invertible,
then U is uniquely determined by A. A necessary and sufficient condition
that A is normal is that UP = PU.

P can be obtained by taking the square root of A* A, which is self-adjoint
as (A*A)* = A* (A*)* = A*A: multiplication of A = UP from the left with its
adjoint A* = P*U* = PU™! yields A*A = PU"!UP = P?; and therefore,

I

P=VA*A. (1.259)

If the inverse A™1 = P~1U~! of A and thus also the inverse P~1 = A™1U of P
exist, then U = AP~! is unique.

1.29.3 Decomposition of isometries

Any unitary or orthogonal transformation in finite-dimensional inner
product space can be composed of a succession of two-parameter uni-
tary transformations in two-dimensional subspaces, and a multiplication
of a single diagonal matrix with elements of modulus one in an algorith-
mic, constructive and tractable manner. The method is similar to Gaus-
sian elimination and facilitates the parameterization of elements of the
unitary group in arbitrary dimensions (e.g., Ref. 27, Chapter 2).

It has been suggested to implement these group theoretic results by re-
alizing interferometric analogs of any discrete unitary and Hermitian op-
erator in a unified and experimentally feasible way by “generalized beam

splitters”?8.

For proofs and additional information see
§83in

Paul Richard Halmos. Finite-Dimensional
Vector Spaces. Undergraduate Texts in
Mathematics. Springer, New York, 1958.
ISBN 978-1-4612-6387-6,978-0-387-90093-
3. Dol: 10.1007/978-1-4612-6387-6.
URL https://doi.org/10.1007/
978-1-4612-6387-6

P is positive and thus self-adjoint; that is,
P*=P.

27 Francis D. Murnaghan. The Unitary and
Rotation Groups, volume 3 of Lectures
on Applied Mathematics. Spartan Books,
Washington, D.C., 1962

2 Michael Reck, Anton Zeilinger, Herbert J.
Bernstein, and Philip Bertani. Experimental
realization of any discrete unitary opera-
tor.  Physical Review Letters, 73:58-61,
1994. poI: 10.1103/PhysRevlLett.73.58.
URL https://doi.org/10.1103/
PhysRevLett.73.58; and Michael Reck
and Anton Zeilinger. Quantum phase tracing
of correlated photons in optical multiports.
In F. De Martini, G. Denardo, and Anton
Zeilinger, editors, Quantum Interferometry,
pages 170-177, Singapore, 1994. World
Scientific
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1.29.4 Singular value decomposition

The singular value decomposition (SVD) of an (m x n) matrix A is a factor-
ization of the form

A=UxV, (1.260)

where U is a unitary (m x m) matrix (i.e. an isometry), V is a unitary (n x n)
matrix, and X is a unique (m x n) diagonal matrix with nonnegative real
numbers on the diagonal; that is,

o1 |

=1 _ ' . (1.261)

The entries 01 = 02 -+ = 0,>0 of X are called singular values of A. No proof
is presented here.

1.29.5 Schmidt decomposition of the tensor product of two vectors

Let % and 7 be two linear vector spaces of dimension n = m and m, re-
spectively. Then, for any vector z € % ®7 in the tensor product space, there
exist orthonormal basis sets of vectors {uy,...,u,} c% and {vy,..., v} ¥
such that

m m

lzZy=z=) o ®v;=) o;lu)lv), (1.262)

i=1 i=1
where the o;s are nonnegative scalars and the set of scalars is uniquely
determined by z. If z is normalized, then the o;’s are satisfying )_; 0? =1
they are called the Schmidt coefficients.

For a proof by reduction to the singular value decomposition, let |i)
and |j) be any two fixed orthonormal bases of % and 7, respectively.
Then, |z) can be expanded as |z) = Z,-j aijli)|j), where the a;;s can be
interpreted as the components of a matrix A. A can then be subjected
to a singular value decomposition A = UXV, or, written in index form
[note that X~ = diag(o,...,0,) is a diagonal matrix], a;; =} ; Ujlovgj; and
hence |z) = Z,-jl ujo vl j. Finally, by identifying |u;) = }_; u;;|i) as
well as [v;) = ¥, v;1j) one obtains the Schmidt decomposition (1.262).
Since u;; and v;; represent unitary matrices, and because [i) as well as
|j) are orthonormal, the newly formed vectors |u;) as well as |v;) form
orthonormal bases as well. The sum of squares of the o;’s is one if
|z) is a unit vector, because (note that o;s are real-valued) (z|z) = 1 =
Yim 010 m W) ViV =X 1m 010 m01m = X U%-

Note that the Schmidt decomposition cannot, in general, be extended
if there are more factors than two. Note also that the Schmidt decompo-

9

sition needs not be unique 2%; in particular, if some of the Schmidt coef-

ficients o; are equal. For the sake of an example of nonuniqueness of the

For additional information see page 109,
Sect. 2.51in

Michael A. Nielsen and I. L. Chuang.
Quantum Computation and Quantum Infor-
mation. Cambridge University Press, Cam-
bridge, 2000

2 Artur Ekert and Peter L. Knight. Entangled
quantum systems and the Schmidt decom-
position. American Journal of Physics, 63(5):
415-423,1995. poI: 10.1119/1.17904. URL
https://doi.org/10.1119/1.17904
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Schmidt decomposition, take, for instance, the representation of the Bell
state with the two bases

{ler)=(1,0)7,le2) = (0,1)T} and

{|f>— L 0T 1) = —( 11)T} (1:269
1 _\/E ) y 12 —\/z y .

as follows:
¥P™) = % (lerdle2) —lez)ler))
= L [(1(0,1),0(0,1))T - (0(1,0),1(1,0))T] = L(0, 1,-1,07;
2 V2

1
V7)) = — (fplf) — 1) If 1.264
I¥™) \/z(h)lz) f2)11))  ( )

L [(1(—1, 1),1(-1,1)T - (-1(1,1),1(1, 1))T]
22

1 1
- = (_lrl)_l)I)T_(_lr_lrlyl)T =_(O;1y_1r0)T-
| -2

2V2

1.30 Purification

In general, quantum states p satisfy two criteria 3°: they are (i) of trace
class one: Tr(p) = 1; and (ii) positive (or, by another term nonnegative):
x|p|x) = (x|px) = 0 for all vectors x of the Hilbert space.

With finite dimension # it follows immediately from (ii) that p is self-
adjoint; that is, pT = p), and normal, and thus has a spectral decomposi-
tion

n
p=) pilviyil (1.265)
i=1
into orthogonal projections |w;)(y;|, with (i) yielding 2?21 pi =1 (hint:
take a trace with the orthonormal basis corresponding to all the |v;)); (ii)
yielding p; = p;; and (iii) implying p; = 0, and hence [with ()] 0<p; <1
foralll<i<n.

As has been pointed out earlier, quantum mechanics differentiates be-

tween “two sorts of states,” namely pure states and mixed ones:

(i) Pure states p,, are represented by one-dimensional orthogonal pro-
jections; or, equivalently as one-dimensional linear subspaces by some
(unit) vector. They can be written as p,, = |y)(y| for some unit vector
|y (discussed in Sec. 1.24), and satisfy (p p)z =P,

(i) General, mixed states p,,, are ones that are no projections and there-
fore satisfy (p,,)? # p,,- They can be composed of projections by their
spectral form (1.265).

The question arises: is it possible to “purify” any mixed state by (maybe
somewhat superficially) “enlarging” its Hilbert space, such that the result-
ing state “living in a larger Hilbert space” is pure? This can indeed be
achieved by a rather simple procedure: By considering the spectral form
(1.265) of a general mixed state p, define a new, “enlarged,” pure state
W) (Y|, with

¥y =) voilwdly:). (1.266)
i=1

For additional information see page 110,
Sect. 2.5in

Michael A. Nielsen and I. L. Chuang.
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mation. Cambridge University Press, Cam-
bridge, 2010. 10th Anniversary Edition
%0L. E. Ballentine. Quantum Mechanics.
Prentice Hall, Englewood Cliffs, NJ, 1989
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That |W)(W| is pure can be tediously verified by proving that it is idem-
potent:

2
(I‘P)<‘P|)Z={ Z\/PiW/i)W/i)] Z\/ijfjl(%'l”
i=1 j=1

X

= Z \/Pillwh)l%])] [Z VP W Ky |

=1 =1

Y \/Pizlllfwll//iz)] > \/sz<1l/j2|<1l/jz|]

ir=1 Jo=1

- Z \/Pi1|1l/i1>|1l/i1>] [Z Z Y% levpi2(5i2jl)2

ll=1 j1=1i2=1

2 \/szﬂl/sz(u/jzl]
jo=1

J2=

Ljipp=l

=1 \ﬁpillwimw] [ ) \ﬁpmwmw] =1¥)(¥.

i1=1 Jo=1
(1.267)

Note that this construction is not unique — any construction |¥') =
Y VPilwig;) involving auxiliary components |¢);) representing the el-
ements of some orthonormal basis {|¢;),..., ¢} would suffice.

The original mixed state p is obtained from the pure state (1.266) cor-
responding to the unit vector |¥) = [y)|y?) = |[wy?) — we might say that
“the superscript a stands for auxiliary” - by a partial trace (cf. Sec. 1.17.3)
over one of its components, say |%).

For the sake of a proof let us “trace out of the auxiliary components
lw),” that is, take the trace

Trg (WD = ) el (W(PDIw ) (1.268)
k=1

of |W)(¥| with respect to one of its components |[w%):

:Tra(

<w§§ Z\/Elwnlwﬁ] [Z \/p_j<wjf|<wj|]
1 i=1 j=1

Tra (IW) (YD)

> \/Elw»lw?)] Z \/p_j<w?|<wf|])
i=1 j=1

k

”’z> (1.269)

=) > ) SkibkjVPi/Pjlwi Y|l
=1i=1j=1

n
=Y prlvidwel =p.
k=1

1.31 Commutativity

IfA= Zle A;E; is the spectral form of a self-adjoint transformation A on
a finite-dimensional inner product space, then a necessary and sufficient
condition (“if and only if = iff”) that a linear transformation B commutes
with A is that it commutes with each E;, 1 <i < k.

For proofs and additional information see
§79 & §84 in

Paul Richard Halmos. Finite-Dimensional
Vector Spaces. Undergraduate Texts in
Mathematics. Springer, New York, 1958.
ISBN 978-1-4612-6387-6,978-0-387-90093-
3. DolI: 10.1007/978-1-4612-6387-6.
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Sufficiency is derived easily: whenever B commutes with all the procec-
tors E;, 1 < i < k in the spectral decomposition A = Zle A;E; of A, then it
commutes with A; that is,

BA=B

k k
Z ) > MiBE; =

(1.270)
|B=aB.

k
=) MEB= (Z AE;
i=1 i=1

Necessity follows from the fact that, if B commutes with A then it also

commutes with every polynomial of A, since in this case AB = BA, and
thus A”B = A" 'AB = A" 1BA=... = BA™. In particular, it commutes
with the polynomial p;(A) = E; defined by Eq. (1.239).

IfA= ZleliE,- and B = Z _1 MjF; are the spectral forms of a self-
adjoint transformations A and B on a finite-dimensional inner product
space, then a necessary and sufficient condition (“if and only if = iff”) that
A and B commute is that the projections E;, 1 <i<kandF;, 1< j=<1I
commute with each other; i.e., [E;,F;] = E;F; —F,E; =0.

Again, sufficiency can be derived as follows: suppose all projection op-
erators F;, 1 < j < [ occurring in the spectral decomposition of B commute
with all projection operators E;, 1 < i < k in the spectral composition of A,
then

(£ [$ 0] £ S s

3
éi AEF]_(;klAE)(é (1.271)

Necessity follows from the fact that, if F;, 1 < j < [ commutes with
A then, by the same argument as mentioned earlier, it also commutes
with every polynomial of A; and hence also with p;(A) = E; defined by
Eq. (1.239). Conversely, if E;, 1 < i < k commutes with B then it also
commutes with every polynomial of B; and hence also with the associated
polynomial q;(A) = E; defined by Eq. (1.239).

If E; = |e;){e;| and F; = |f;){f;| are two commuting projection opera-
tors into one-dimensional subspaces of 7 corresponding to the normal-
ized vectors e; and f;, respectively; that is, if E;,F;] = E;F; —F;E; =0,
then they are either identical (that is, the vectors are collinear) or orthog-
onal (that is, the vector e; is orthogonal to f;).

For a proof, note that if E; and F; commute, then multiplying the com-
mutator [E;,F;] = 0 both with E; from the right and with F; from the left
one obtains

EiF]‘ = FjEl',
E;F,E; =F;E: =F,E;,
F,E:F; =F.E; =FE;,
(1.272)
FjE,'Fj = El'FjEl',
I£;)(Ele) (e If;)(E;| = |e;)(e;|f;)(F;le;)e;l,
(el [ I8¢t = [(ealf)|* e e,
which only holds if either e; and f; are collinear — in which case E; = F; -
or orthogonal - in which case E; 1L Fj, and thus E;F; = 0.
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Therefore, for two or more mutually commuting nondegenerate oper-
ators, the (re)arrangement of the respective orthogonal projection oper-
ators (and their associated orthonormal bases) in the respective spectral
forms by permution and identifying identical projection operators yields
consistent and identical systems of projection operators (and their associ-
ated orthonormal bases) — commuting normal operators “share the same
projection operators” in their spectral form.

This result can be expressed in the following way: Consider some set
M={A,A;,..., A} of self-adjoint transformations on a finite-dimensional
inner product space. These transformations A; € M, 1 < i < k are mutually
commuting - that is, [A;,A;] =0 for all 1 < i, j < k - if and only if there
exists a maximal (with respect to the set M) self-adjoint transformation R
and a set of real-valued functions F = {f, f2,..., fx} of a real variable so
that A} = fi(R), A2 = f2(R), ..., Ax = fr(R). If such a maximal operator R
exists, then it can be written as a function of all transformations in the set
M; that is, R = G(A},A,,...,A}), where G is a suitable real-valued function
of n variables (cf. Ref. 3!, Satz 8).

For a proof involving two operators A; and A, we note that suffi-
ciency can be derived from commutativity, which follows from A;A; =
iR f2(R) = fi(R) f2(R) = A2A;.

Necessity follows by first noticing that, as derived earlier, the projec-
tion operators E; and F; in the spectral forms of A; = Zle A;E; and
A = Zj’:l u;jF; mutually commute; that is, E;F; = F;E;.

For the sake of construction, design g(x,y) € R to be any real-valued
function (which can be a polynomial) of two real variables x, y € R with the
property that all the coefficients ¢;; = g(A;, ;) are distinct. Next, define
the maximal operator R by

[
R=g(A,A) =) ) cjEFj, (1.273)
i=1j=1

and the two functions fi and f> such that fi(c;;) = A;, as well as f>(c;;) =
i, which result in

k ] k J k 1
LIS ST ShRCLUR P [ oL B
i=1j=1 i=1j=1 i=1 =1
———
0
k J k J k 1
LRY=) ) folci)EF;=) ) wiEiF;= (Z Ei) (Z (iFj| = A
i=1j=1 i=1j=1 i=1 =1
———
0
(1.274)

The maximal operator R can be interpreted as encoding or containing
all the information of a collection of commuting operators at once. Stated
pointedly, rather than to enumerate all the k operators in M separately, a
single maximal operator R represents M; in this sense, the operators A; e M
are all just (most likely incomplete) aspects of — or individual, “lossy” (i.e.,
one-to-many) functional views on — the maximal operator R.

Let us demonstrate the machinery developed so far by an example.

31 John von Neumann. Uber Funktionen von
Funktionaloperatoren. Annalen der Mathe-
matik (Annals of Mathematics), 32, 04 1931.
pol: 10.2307/1968185. URL https://
doi.org/10.2307/1968185
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Consider the normal matrices

A= ,B=

S = O
S O =
o O O
S W N

3
2
0

o O© O

5 7
,C=1|7 5
0 0 11
which are mutually commutative; that is, [A,B] = AB—BA = [A,C] = AC —
BC=[B,C]=BC-CB=0.
The eigensystems — that is, the set of the set of eigenvalues and the set
of the associated eigenvectors — of A, B and C are

{{1) _1,0},{(1, l,O)T, (_ly 110)T1 (0) Or I)T}}r
{{5,-1,05,{(1,1,0)7, (=1,1,0)7,(0,0, )T}, (1.275)
{{12,-2,11},{(1,1,007,(=1,1,0)7, (0,0, ) T}}.

They share a common orthonormal set of eigenvectors

1 -1
1 1

, 11,]0
2 2
vz 0 vz 0 1
which form an orthonormal basis of R® or C3. The associated projections
are obtained by the outer (dyadic or tensor) products of these vectors; that
is,

m

fub

Il

|
S = =
S =

(1.276)

Es

|
—
—
_ o O O O o o o o

Il
o O© O
o o O

Thus the spectral decompositions of A, B and C are

A:El —E2+0E3,
B =5E; —E; +0E3, (1.277)
C=12E; -2E; +11E;3,

respectively.
One way to define the maximal operator R for this problem would be

R= CZEI + ﬁEZ +YE3,

with @, B,y € R—0 and a # B # y # a. The functional coordinates f;(a),
fi(B), and f;(y), i € {A,B,C}, of the three functions fa(R), fg(R), and fc(R)
chosen to match the projection coefficients obtained in Eq. (1.277); that
is,
A= fa(R) = E; —E; + 03,
B = fg(R) = 5E; — E; + OEg, (1.278)
C=fc(R)=12E; —2E; + 11E;3.
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As a consequence, the functions A, B, C need to satisfy the relations

fal@) =1, fa(B)=-1, faly) =0,
fel@) =5, fs(B)=-1, fe(y) =0, (1.279)
fel@) =12, fo(B) = -2, fo(y) =11.

It is no coincidence that the projections in the spectral forms of A, B
and C are identical. Indeed it can be shown that mutually commuting nor-
mal operators always share the same eigenvectors; and thus also the same
projections.

Let the set M = {A,A,,...,Ar} be mutually commuting normal (or Her-
mitian, or self-adjoint) transformations on an n-dimensional inner prod-
uct space. Then there exists an orthonormal basis 2 = {f, ..., f,} such that
every f; € 28 is an eigenvector of each of the A; € M. Equivalently, there ex-
ist n orthogonal projections (let the vectors f; be represented by the coor-
dinates which are column vectors) E; = f; ®fj. such thateveryE;, 1< j<n
occurs in the spectral form of each of the A; € M.

Informally speaking, a “generic’ maximal operator R on an n-
dimensional Hilbert space 7 can be interpreted in terms of a particular
orthonormal basis {f;,f,,...,f,} of 7 —indeed, the n elements of that ba-
sis would have to correspond to the projections occurring in the spectral
decomposition of the self-adjoint operators generated by R.

Likewise, the “maximal knowledge” about a quantized physical system
—in terms of empirical operational quantities — would correspond to such
a single maximal operator; or to the orthonormal basis corresponding to
the spectral decomposition of it. Thus it might not be unreasonable to
speculate that a particular (pure) physical state is best characterized by a
particular orthonormal basis.

1.32 Measures on closed subspaces

In what follows we shall assume that all (probability) measures or states
behave quasi-classically on sets of mutually commuting self-adjoint op-
erators, and, in particular, on orthogonal projections. One could call this
property subclassicality.

This can be formalized as follows. Consider some set {|x;), [X2),..., [Xi)}
of mutually orthogonal, normalized vectors, so that (x;|x;) = §;;; and
associated with it, the set {E;,E,,...,Ex} of mutually orthogonal (and
thus commuting) one-dimensional projections E; = [|x;)(x;| on a finite-
dimensional inner product space 7.

We require that probability measures p on such mutually commuting
sets of observables behave quasi-classically. Therefore, they should be ad-
ditive; that is,

k k
N(Z E,') =) u(E). (1.280)
i=1 i=1

Such a measure is determined by its values on the one-dimensional pro-
jections.

Stated differently, we shall assume that, for any two orthogonal projec-
tions E and F if EF = FE = 0, their sum G = E + F has expectation value
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w(G) =(G) = (E) + (F) = u(E) + u(F).

Any such measure pu satisfying (1.280) can be expressed in terms of a

(1.281)

(positive) real valued function f on the unit vectors in 7 by

H(Ex) =f(x) = fx), (1.282)

(where E, = |x) (x| for all unit vectors |x) € ¥) by requiring that, for every or-
thonormal basis 2 = {|e}),|e2),...,|e,)}, the sum of all basis vectors yields
1; that is,

n n
Y faen=Y fle)=1 (1.283)
i=1 i=1

f is called a (positive) frame function of weight 1.

1.32.1 Gleason’s theorem

From now on we shall mostly consider vector spaces of dimension three
or greater, since only in these cases two orthonormal bases intertwine in a
common vector, making possible some arguments involving multiple in-
tertwining bases — in two dimensions, distinct orthonormal bases contain
distinct basis vectors.

Gleason’s theorem 32 states that, for a Hilbert space of dimension three
or greater, every frame function defined in (1.283) is of the form of the

inner product
k<n k=n
FE=Fx)=&px)=Y pi&ly)ylx) =Y pilxly)®,  (1.284)
i=1 i=1

where (i) p is a positive operator (and therefore self-adjoint; see Sec-
tion 1.20 on page 44), and (ii) p is of the trace class, meaning its trace (cf.
Section 1.17 on page 39) is one. That is, p = Zfslnpilllli)(wil with p; € R,

pi =0, and fol” pi = 1. No proof is given here.

In terms of projections [cf. Egs.(1.74) on page 23], (1.284) can be written
as

u(Ex) =Tr(pEy) (1.285)

Therefore, for a Hilbert space of dimension three or greater, the spectral
theorem suggests that the only possible form of the expectation value of a
self-adjoint operator A has the form

(A) =Tr(pA). (1.286)

In quantum physical terms, in the formula (1.286) above the trace is taken
over the operator product of the density matrix [which represents a posi-
tive (and thus self-adjoint) operator of the trace class] p with the observ-
able A=Yk AE;.

In particular, if A is a projection E = |e)(e| corresponding to an elemen-
tary yes-no proposition “the system has property Q,” then (E) = Tr(pE) =
I{e|p)|? corresponds to the probability of that property Q if the system is
in state p = |p){p| [for a motivation, see again Egs. (1.74) on page 23].

Indeed, as already observed by Gleason, even for two-dimensional
Hilbert spaces, a straightforward Ansatz yields a probability measure sat-
isfying (1.280) as follows. Suppose some unit vector |p) corresponding to

%2 Andrew M. Gleason. Measures on the
closed subspaces of a Hilbert space. Jour-
nal of Mathematics and Mechanics (now
Indiana University Mathematics Journal),
6(4):885-893, 1957. ISSN 0022-2518.
DOl: 10.1512/iumj.1957.6.56050". URL
https://doi.org/10.1512/iumj.1957.
6.56050; Anatolij DvureCenskij. Gleason’s
Theorem and lts Applications, volume 60 of
Mathematics and its Applications. Kluwer
Academic Publishers, Springer, Dordrecht,
1993. ISBN 9048142091,978-90-481-4209-
5,978-94-015-8222-3. DoOI: 10.1007/978-
94-015-8222-3. URL https://doi.org/
10.1007/978-94-015-8222-3; Itamar
Pitowsky. Infinite and finite Gleason’s theo-
rems and the logic of indeterminacy. Journal
of Mathematical Physics, 39(1):218-228,
1998. DOl: 10.1063/1.532334. URL
https://doi.org/10.1063/1.532334;
Fred Richman and Douglas Bridges.
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//doi.org/10.1006/jfan.1998.3372;
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and Methods. Kluwer Academic Publishers,
Dordrecht, 1993; and Jan Hambhalter.
Quantum Measure Theory. Fundamental
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a pure quantum state (preparation) is selected. For each one-dimensional
closed subspace corresponding to a one-dimensional orthogonal projec-
tion observable (interpretable as an elementary yes-no proposition) E =
|e)(e| along the unit vector |e), define wy(|e)) = [<e|p) 12 to be the square of
the length |(p|e)| of the projection of | p) onto the subspace spanned by |e).

The reason for this is that an orthonormal basis {|e;)} “induces” an ad
hoc probability measure w, on any such context (and thus basis). To see
this, consider the length of the orthogonal (with respect to the basis vec-
tors) projections of |p) onto all the basis vectors |e;), that is, the norm of
the resulting vector projections of |p) onto the basis vectors, respectively.
This amounts to computing the absolute value of the Euclidean scalar
products (e;|p) of the state vector with all the basis vectors.

In order that all such absolute values of the scalar products (or the as-
sociated norms) sum up to one and yield a probability measure as re-
quired in Eq. (1.280), recall that |p) is a unit vector and note that, by the
Pythagorean theorem, these absolute values of the individual scalar prod-
ucts — or the associated norms of the vector projections of |p) onto the ba-
sis vectors — must be squared. Thus the value w,(|e;)) must be the square
of the scalar product of |p) with |e;), corresponding to the square of the
length (or norm) of the respective projection vector of |p) onto |e;). For
complex vector spaces one has to take the absolute square of the scalar
product; that is, f,(le;)) = [(e;|p)|.

Pointedly stated, from this point of view the probabilities w,(le;})) are
just the (absolute) squares of the coordinates of a unit vector |p) with
respect to some orthonormal basis {|e;)}, representable by the square
I(e;|p)|? of the length of the vector projections of |p) onto the basis vec-
tors |e;) — one might also say that each orthonormal basis allows “a view”
on the pure state |p). In two dimensions this is illustrated for two bases in
Fig. 1.5. The squares come in because the absolute values of the individual
components do not add up to one, but their squares do. These consider-
ations apply to Hilbert spaces of any, including two, finite dimensions. In
this non-general, ad hoc sense the Born rule for a system in a pure state
and an elementary proposition observable (quantum encodable by a one-
dimensional projection operator) can be motivated by the requirement of
additivity for arbitrary finite-dimensional Hilbert space.

1.32.2 Kochen-Specker theorem

For a Hilbert space of dimension three or greater, there does not exist any
two-valued probability measures interpretable as consistent, overall truth
assignment 33, As a result of the nonexistence of two-valued states, the
classical strategy to construct probabilities by a convex combination of all
two-valued states fails entirely.

In Greechie diagram3*, points represent basis vectors. If they belong to
the same basis — in this context also called context - they are connected by
smooth curves.

A parity proof by contradiction exploits the particular subset of real
four-dimensional Hilbert space with a “parity property,” as depicted in
Fig. 1.6. It represents the most compact way of deriving the Kochen-

If2) Ify)

e Kelf)l

1o

7 ol

—Ifp)

Figure 1.5: Different orthonormal bases

and {If1),|f2)} offer different
“views” on the pure state |p). As |p) is a unit
vector it follows from the Pythagorean the-
orem that = Kplf)I? +
I{plf2)|? = 1, thereby motivating the use of
the aboslute value (modulus) squared of the
amplitude for quantum probabilities on pure
states.

3 Ernst Specker. Die Logik nicht gle-
ichzeitig entscheidbarer Aussagen. Di-
alectica, 14(2-3):239-246, 1960. DOI:
10.1111/j.1746-8361.1960.tb00422.x.

URL https://doi.org/10.1111/j.
1746-8361.1960.tb00422.x; and Simon
Kochen and Ernst P. Specker. The problem
of hidden variables in quantum mechanics.
Journal of Mathematics and Mechanics
(now Indiana University Mathematics Jour-
nal), 17(1):59-87, 1967. ISSN 0022-2518.
DOI: 10.1512/iumj.1968.17.17004.  URL
https://doi.org/10.1512/iumj.1968.
17.17004

34 Richard J. Greechie. Orthomodular lat-
tices admitting no states. Journal of Com-
binatorial Theory. Series A, 10:119-132,
1971. DOI: 10.1016/0097-3165(71)90015-
X. URL https://doi.org/10.1016/
0097-3165(71)90015-X
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35

Specker theorem in four dimensions The configuration consists of
18 biconnected (two contexts intertwine per atom) atoms a,..., a;g in 9
contexts. It has a (quantum) realization in R* consisting of the 18 pro-
jections associated with the one dimensional subspaces spanned by the
vectors from the origin (0,0,0,0)T to a; = (0,0,1,-1)T, a» = (1,-1,0,0)7,
as = (1,1,-1,-17, a, = (1,1,,1)7, a5 = (1,-1,1,-1T, ag = (1,0,—1,0)7,
a; = (0,1,0,-1)7, ag = (1,0,1,0)7, a9 = (1,1,-1,1)7, a;p = (-1,1,1,1)T,
an =(1,1,1,-1D7, a;2 = (1,0,0,1)T, a3 = (0,1,-1,0)7, ay4 = (0,1,1,0)7,
a;5=1(0,0,0,1)7, a;6=(1,0,0,0)T, @17 = (0,1,0,0)7, @15 = (0,0,1,1)T, respec-
tively 36 (for alternative realizations see Refs. 37).

Note that, on the one hand, each atom/point/vector/projector belongs
to exactly two — that is, an even number of — contexts; that is, it is bicon-
nected. Therefore, any enumeration of all the contexts occurring in the
graph would contain an even number of 1s assigned. Because due to non-
contextuality and biconnectivity, any atom a with v(a) = 1 along one con-
text must have the same value 1 along the second context which is inter-
twined with the first one — to the values 1 appear in pairs.

Alas, on the other hand, in such an enumeration there are nine — that
is, an odd number of — contexts. Hence, in order to obey the quantum pre-
dictions, any two-valued state (interpretable as truth assignment) would
need to have an odd number of 1s — exactly one for each context. There-
fore, there cannot exist any two-valued state on Kochen-Specker type
graphs with the “parity property.”

More concretely, note that, within each one of those 9 contexts, the sum
of any state on the atoms of that context must add up to 1. That is, one

Figure 1.6: Orthogonality diagram of a
configuration of observables without a two-
valued state, used in parity proofs of the
Kochen-Specker theorem.
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obtains a system of 9 equations

v(a)=v(a) +v(az) +viasg) + viag) =1,
v(b) = v(ag) +vias) + v(ag) + via;) =1,
v(c) = viaz) + viag) + v(ay) + viaio) = 1,
v(d) = v(ai) + v(ai1) + v(a2) + v(aiz) =1,
vie) = vias) + v(ar) + v(ais) + viae) =1, (1.287)

v(f) = v(aie) + v(ai7) + v(ag) + viar) =1,

v(h) =v(az) + v(as) + v(ap) + v(a) =1,
v(i) = v(ap) + v(ag) + v(ai1) + viaig) = 1.

By summing up the left hand side and the right hand sides of the equa-
tions, and since all atoms are biconnected, one obtains

18

Y v(ay)

i=1

2 =9. (1.288)

Because v(a;) € {0,1} the sum in (1.288) must add up to some natural num-
ber M. Therefore, Eq. (1.288) is impossible to solve in the domain of nat-
ural numbers, as on the left and right-hand sides, there appear even (2M)
and odd (9) numbers, respectively.

Of course, one could also prove the nonexistence of any two-
valued state (interpretable as truth assignment) by exhaustive attempts
(possibly exploiting symmetries) to assign values 0s and 1s to the
atoms/points/vectors/projectors occurring in the graph in such a way
that both the quantum predictions as well as context independence are
satisfied. This latter method needs to be applied in cases with Kochen-
Specker type diagrams without the “parity property;” such as in the origi-
nal Kochen-Specker proof 38.

% Simon Kochen and Ernst P. Specker.
The problem of hidden variables in
quantum mechanics.  Journal of Math-
ematics and Mechanics (now Indiana
University ~ Mathematics  Journal), 17
(1):59-87, 1967. ISSN  0022-2518.
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https://doi.org/10.1512/iumj.1968.
17.17004
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Multilinear Algebra and Tensors

In the following chapter multilinear extensions of linear functionals will
be discussed. Tensors will be introduced as multilinear forms, and their
transformation properties will be derived.

For many physicists, the following derivations might appear confusing
and overly formalistic as they might have difficulties to “see the forest for
the trees.” For those, a brief overview sketching the most important as-
pects of tensors might serve as a first orientation.

Let us start by defining, or rather declaring or supposing the follow-
ing: basis vectors of some given (base) vector space are said to “(co-)vary.”
This is just a “fixation,” a designation of notation; important insofar as it
implies that the respective coordinates, as well as the dual basis vectors
“contra-vary;” and the coordinates of dual space vectors “co-vary.”

Based on this declaration or rather convention — that is, relative to the
behavior with respect to variations of scales of the reference axes (the basis
vectors) in the base vector space — there exist two important categories:
entities which co-vary, and entities which vary inversely, that is, contra-
vary, with such changes.

* Contravariant entities such as vectors in the base vector space: These
vectors of the base vector space are called contravariant because their
components contra-vary (that is, vary inversely) with respect to varia-
tions of the basis vectors. By identification, the components of con-
travariant vectors (or tensors) are also contravariant. In general, a mul-
tilinear form on a vector space is called contravariant if its components
(coordinates) are contravariant; that is, they contra-vary with respect
to variations of the basis vectors.

¢ Covariant entities such as vectors in the dual space: The vectors of the
dual space are called covariant because their components contra-vary
with respect to variations of the basis vectors of the dual space, which
in turn contra-vary with respect to variations of the basis vectors of the
base space. Thereby the double contra-variations (inversions) cancel
out, so that effectively the vectors of the dual space co-vary with the
vectors of the basis of the base vector space. By identification, the com-
ponents of covariant vectors (or tensors) are also covariant. In general,
a multilinear form on a vector space is called covariant if its compo-

The dual space is spanned by all linear func-
tionals on that vector space (cf. Section 1.8
on page 15).
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nents (coordinates) are covariant; that is, they co-vary with respect to
variations of the basis vectors of the base vector space.

e Covariant and contravariant indices will be denoted by subscripts
(lower indices) and superscripts (upper indices), respectively.

e Covariant and contravariant entities transform inversely. Informally,
this is due to the fact that their changes must compensate each other,
as covariant and contravariant entities are “tied together” by some in-
variant (id)entities such as vector encoding and dual basis formation.

* Covariant entities can be transformed into contravariant ones by the
application of metric tensors, and, vice versa, by the inverse of metric
tensors.

2.1 Notation

In what follows, vectors and tensors will be encoded in terms of indexed
coordinates or components (with respect to a specific basis). The biggest
advantage is that such coordinates or components are scalars which can
be exchanged and rearranged according to commutativity, associativity,
and distributivity, as well as differentiated.

Let us consider the vector space 7 = R" of dimension n. A covariant
basis B = {e},ey,...,e,} of ¥ consists of n covariant basis vectors e;. A
contravariant basis 6" = {e],e5,...,e;} = {el,e?,...,e"} of the dual space
V* (cf. Section 1.8.1 on page 16) consists of n basis vectors e, where e} =
e’ is just a different notation.

Every contravariant vector x € 7 can be coded by, or expressed in
terms of, its contravariant vector components x!,x?,...,x" € R by x =
pIyaN x'e;. Likewise, every covariant vector x € 7 * can be coded by, or ex-
pressed in terms of, its covariant vector components xi, Xz, ..., X, € R by
x=Y" xe =Y", x;el.

Suppose that there are k arbitrary contravariant vectors x;,Xp, ..., Xy in
¥ which are indexed by a subscript (lower index). This lower index should
not be confused with a covariant lower index. Every such vectorx;, 1< j <
k has contravariant vector components le.j R xjj eers x;lj € Rwith respect to
a particular basis ‘B such that

n 7.
xj= Y x;.’el-].. 2.1
=1

lj:

Likewise, suppose that there are k arbitrary covariant vectors
x!,x?,...,x* in the dual space 7* which are indexed by a superscript (up-
per index). This upper index should not be confused with a contravariant
upper index. Every such vector x/, 1 < j < k has covariant vector compo-

nents x{ ‘,xé‘,...,xf,. € R with respect to a particular basis 3* such that
J J J
j— ij
x/ = .lel.je!. 2.2)
lj=

Tensors are constant with respect to variations of points of R”. In con-
tradistinction, fensor fields depend on points of R" in a nontrivial (non-

For a more systematic treatment, see for in-
stance Klingbeil's or Dirschmid’s introduc-
tions.

Ebergard Klingbeil. Tensorrechnung
fur Ingenieure. Bibliographisches Institut,
Mannheim, 1966; and Hans J6rg Dirschmid.
Tensoren und Felder. ~ Springer, Vienna,
1996
For a detailed explanation of covariance and
contravariance, see Section 2.2 on page 81.

Note that in both covariant and contravariant
cases the upper-lower pairings “-; -” and
“.I.;"of the indices match.

This notation “xl.] ” for the ith component of
the jth vector is redundant as it requires two
indices j; we could have just denoted it by
“x'J  The lower index j does not correspond
to any covariant entity but just indexes the
Jjth vector x;.

Again, this notation xl] for the ith com-
ponent of the jth vector] is redundant as it
requires two indices j; we could have just
denoted it by “x,-j ” The upper index j does
not correspond to any contravariant entity
but just indexes the jth vector x/.



constant) way. Thus, the components of a tensor field depend on the co-

ordinates. For example, the contravariant vector defined by the coordi-
T

nates (5.5,3.7,..., 10.9) with respect to a particular basis B is a tensor;

. . . . . . T
while, again with respect to a particular basis ‘B, (smxl,cos xg,...,ex")

or (xl,xg,...,xn)T, which depend on the coordinates x1, x2,...,x, € R, are
tensor fields.

We adopt Einstein’s summation convention to sum over equal indices.
If not explained otherwise (that is, for orthonormal bases) those pairs have
exactly one lower and one upper index.

In what follows, the notations “x-y”, “(x,y)” and “(x | y)” will be used
synonymously for the scalar product or inner product. Note, however,
that the “dot notation x - y” may be a little bit misleading; for example,
in the case of the “pseudo-Euclidean” metric represented by the matrix
diag(+,+,+,--+,+,-), it is no more the standard Euclidean dot product
diag(+,+,+,---,+,4).

2.2 Change of Basis

2.2.1 Transformation of the covariant basis

Let B and B’ be two arbitrary bases of R”. Then every vector f; of B’
can be represented as linear combination of basis vectors of B [see also
Egs. (1.102) and (1.103)]:

n .
fi=) alje;, i=1,..,n (2.3)
j=1
The matrix
1 1 1

ai ao n

o |ads an - d¥y
A=dal;=| . . . (2.4)

a®y a', - a',

is called the transformation matrix. As defined in (1.3) on page 4, the sec-
ond (from the left to the right), rightmost (in this case lower) index i vary-
ing in row vectors is the column index; and, the first, leftmost (in this case
upper) index j varying in columns is the row index, respectively.

Note that, as discussed earlier, it is necessary to fix a convention for the
transformation of the covariant basis vectors discussed on page 30. This
then specifies the exact form of the (inverse, contravariant) transforma-
tion of the components or coordinates of vectors.

Perhaps not very surprisingly, compared to the transformation (2.3)
yielding the “new” basis B’ in terms of elements of the “old” basis B,
a transformation yielding the “old” basis B in terms of elements of the
“new” basis B’ turns out to be just the inverse “back” transformation of
the former: substitution of (2.3) yields

n . n . n
€; = Z a'],-f,- = Z a’]i Z akjek =
j=1 j=1 k=1

no(onoo
Z a'],-a jlekx (2.5)
k=1 \j=1

which, due to the linear independence of the basis vectors e; of 8, can
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only be satisfied if
akja’j,- = 6? or AA'=1. (2.6)
Thus A’ is the inverse matrix A~! of A. In index notation,
ali=w@h, 2.7)

and

n .
ei=) (a V. 2.8)
j=1

2.2.2 Transformation of the contravariant coordinates

Consider an arbitrary contravariant vector x € R” in two basis representa-
tions: (i) with contravariant components x’ with respect to the basis B,
and (ii) with y’ with respect to the basis ’. Then, because both coor-
dinates with respect to the two different bases have to encode the same
vector, there has to be a “compensation-of-scaling” such that

n . n .
x:Zx’ei=Zylfl-. (2.9
i=1 i=1
Insertion of the basis transformation (2.3) and relabelling of the indices
i — jyields

x=) x'e;=) y'Ei=) y' > alie;
‘ i=1 i=1  j=1
(2.10)
€e;.

=2 2 aiyej=3 |} aiy
i=1j=1 '

j=1

n
ej=2
i=1

n . .
2 a'jy
=1

A comparison of coefficients yields the transformation laws of vector com-
ponents [see also Eq. (1.111)]

. n . .
x'=)dyl. (2.11)
j=1

In the matrix notation introduced in Eq. (1.19) on page 12, (2.11) can be
written as
X =AY. (2.12)

A similar “compensation-of-scaling” argument using (2.8) yields the
transformation laws for

. n . .
y=Y (ahlix 2.13)
i=1

with respect to the covariant basis vectors. In the matrix notation intro-
duced in Eq. (1.19) on page 12, (2.13) can simply be written as

Y=(A")X. 2.14)

If the basis transformations involve nonlinear coordinate changes —
such as from the Cartesian to the polar or spherical coordinates discussed
later — we have to employ differentials

dx' =) al;dy’, (2.15)
i=1



so that, by partial differentiation,

B ox/
= Y

af,-

(2.16)

By assuming that the coordinate transformations are linear, a;/ can be
expressed in terms of the coordinates x/

-
al;= —. (2.17)
Likewise,
. n 7 .
dy’ =Y (@’ dx, (2.18)
i=1
so that, by partial differentiation,
L oyl
@h’i= a—zi =Jji, (2.19)

J . .
where Jj; = % stands for the jth row and ith column component of the
Jacobian matrix

1 ayl 0}’1
y o o
1 @ a A D .
T, 6 E (2 Z)x| ¢ = : (2.20)
n ayn ayn
Y o oam
Potential confusingly, its determinant
a(yly‘__’y") ox! ox"
JE ————~v=det| 1 . (2.21)
n
e N I
dx! ox"

is also often referred to as “the Jacobian.”

2.2.3 Transformation of the contravariant (dual) basis

Consider again, as a starting point, a covariant basis ‘B = {ej,e»,...,e;}
consisting of n basis vectors e;. A contravariant basis can be de-
fined by identifying it with the dual basis introduced earlier in Sec-
tion 1.8.1 on page 16, in particular, Eq. (1.39). Thus a contravariant ba-
sis B* = {e!,e?,...,e"} is a set of n covariant basis vectors e’ which satisfy

Eqs. (1.39)-(1.41)

e/ (e) = [e; /] = [[ei,e;]] =67 =6;;. (2.22)

In terms of the bra-ket notation, (2.22) somewhat superficially trans-
forms into (a formal justification for this identification is the Riesz repre-
sentation theorem)

[le:), e/1] = (e/le;y = 6. 2.23)
Furthermore, the resolution of identity (1.129) can be rewritten as
n .
In=)_ le')eil. (2.24)

i=1
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As demonstrated earlier in Eq. (1.42) the vectors e = e’ of the dual basis
can be used to “retrieve” the components of arbitrary vectors x = }_; xle 3
through

elx) =e (ijej):ijei (ej):ijéj-:xi. (2.25)

Likewise, the basis vectors e; of the “base space” can be used to obtain the
coordinates of any dual vectorx=3_; x; e/ through

e;(xX)=e; (ijej) =) xje; (ej):Zx]ﬁ{:x,-. (2.26)
i 7 7

As also noted earlier, for orthonormal bases and Euclidean scalar (dot)
products (the coordinates of) the dual basis vectors of an orthonormal ba-
sis can be coded identically as (the coordinates of) the original basis vec-
tors; that is, in this case, (the coordinates of) the dual basis vectors are just
rearranged as the transposed form of the original basis vectors.

In the same way as argued for changes of covariant bases (2.3), that is,
because every vector in the new basis of the dual space can be represented
as a linear combination of the vectors of the original dual basis — we can
make the formal Ansatz:

=3 blie, (2.27)
i

where B = b/, is the transformation matrix associated with the contravari-
ant basis. How is b, the transformation of the contravariant basis, related
to a, the transformation of the covariant basis?

Before answering this question, note that, again — and just as the neces-
sity to fix a convention for the transformation of the covariant basis vectors
discussed on page 30 — we have to choose by convention the way transfor-
mations are represented. In particular, if in (2.27) we would have reversed
the indices b/; — b;/, thereby effectively transposing the transformation
matrix B, this would have resulted in a changed (transposed) form of the
transformation laws, as compared to both the transformation a of the co-
variant basis, and of the transformation of covariant vector components.

By exploiting (2.22) twice we can find the connection between the
transformation of covariant and contravariant basis elements and thus
tensor components; that is (by assuming Einstein’s summation conven-
tion we are omitting to write sums explicitly),

5{ 25,‘]' :fj(fi) = [[fl',fj]] = [[akiek,bjlel]] =

. . . . (2.28)
= ak,-b]l [[ek,el]] = akib]lﬁgc = ak,-bfl6kl = bfkaki.
Therefore,
B=A"lorb/;=(a"), (2.29)
and
=Y (a1) e (2.30)

i
In short, by comparing (2.30) with (2.13), we find that the vectors of the
contravariant dual basis transform just like the components of contravari-
ant vectors.



2.2.4 Transformation of the covariant coordinates

For the same, compensatory, reasons yielding the “contra-varying” trans-
formation of the contravariant coordinates with respect to variations of
the covariant bases [reflected in Egs. (2.3), (2.13), and (2.19)] the coor-
dinates with respect to the dual, contravariant, basis vectors, transform
covariantly. We may therefore say that “basis vectors e;, as well as dual
components (coordinates) x; vary covariantly.” Likewise, “vector compo-
nents (coordinates) x’, as well as dual basis vectors e’ = e’ vary contra-
variantly.”

A similar calculation as for the contravariant components (2.10) yields
a transformation for the covariant components:

n n

. . n . .
= Z Vi Z sze] = ( bljyl')e]. (2.31)
i1 = =iz

M=

n . n )
x=) xjel =) y;ff
i=1 i=1

Thus, by comparison we obtain

n

. n .
Xi= Z b]iJ/j = Z (a‘l)]iyj, and
= = 2.32)

In short, by comparing (2.32) with (2.3), we find that the components of
covariant vectors transform just like the vectors of the covariant basis vec-
tors of “base space.”

2.2.5 Orthonormal bases

For orthonormal bases of n-dimensional Hilbert space,

5{ =e;-e/ ifand onlyife; = e’ forall1<1i,;j<n. (2.33)

Therefore, the vector space and its dual vector space are “identical” in
the sense that the coordinate tuples representing their bases are identi-
cal (though relatively transposed). That is, besides transposition, the two
bases are identical

B =B" (2.34)

and formally any distinction between covariant and contravariant vectors
becomes irrelevant. Conceptually, such a distinction persists, though. In
this sense, we might “forget about the difference between covariant and
contravariant orders.”

2.3 Tensor as multilinear form

A multilinear form a : ¥* — R or C is a map from (multiple) arguments x;
which are elements of some vector space 7 into some scalars in R or C,

satisfying

a(Xy,X2,..., Ay + Bz,...,X;) = Aa(X1,X2,...,Y,...,Xk)
(2.35)
+Ba(x1,X2,...,Z,...,Xk)

for every one of its (multi-)arguments.
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Note that linear functionals on 7, which constitute the elements of the
dual space 7* (cf. Section 1.8 on page 15) is just a particular example of a
multilinear form - indeed rather a linear form — with just one argument, a
vectorin 7.

In what follows we shall concentrate on real-valued multilinear forms
which map k vectors in R” into R.

2.4 Covariant tensors

Mind the notation introduced earlier; in particular in Egs. (2.1) and (2.2).
A covariant tensor of rank k

a:vk—R (2.36)

is a multilinear form

n n n
i i
Xz, X)) = ) ) ) i x L xfale; e, ). (2.37)
=lip=1 ig=1
The
def
Ailiz“‘ik = a(e,-l,e,-z,...,e,-k) (2.38)

are the covariant components or covariant coordinates of the tensor a with
respect to the basis 8.

Note that, as each of the k arguments of a tensor of type (or rank) k
has to be evaluated at each of the n basis vectors e}, e»,...,e, in an n-
dimensional vector space, A;, ;,...;, has n* coordinates.

To prove that tensors are multilinear forms, insert

1 2
a(xl,xz,...,ij+ij,...,xk)
n n n L N o i
I: 1s i p i 11
=) Y ) xxt L [A )] +B(x) /1. xfale; e, 0. 05)

i1=lip=1 ir=1

n n n .
_ ij i 1, %j i
=A Z Z Z X' x)7 . (x )j Xl ale, e, €., €5)
i1=1lip=1 ir=1
n n n o 0. .
i 12 J 153
+B Y Y ) xixl(x )j - xfale e e 00)

1 2
= Aa(xl,xz,...,xj,...,xk) +Ba(xl,xz,...,xj,...,xk)

2.4.1 Transformation of covariant tensor components

Because of multilinearity and by insertion into (2.3),

n n n
a(fh’sz""’ffk) =a Z alljleiv Z alzjzeiz"“' Z alkjkeik
) ;

i1=1 ir= ip=1
1 1 1
=) Y ) a'ja?,--a%jale,e,.... ;) (2.39)
i1=lip=1 k=1
or
! = . gl2. ...q%. A: . -
Aj e = 22 ) atjat, e at i A,y (2.40)
i1=lip=1 ;=1

In effect, this yields a transformation factor “a’ j” for every “old index
i” and “new index j.”



2.5 Contravariant tensors

Recall the inverse scaling of contravariant vector coordinates with respect
to covariantly varying basis vectors. Recall further that the dual base vec-
tors are defined in terms of the base vectors by a kind of “inversion” of the
latter, as expressed by [e,',e}*.] =6 in Eq. 1.39. Thus, by analogy, it can be
expected that similar considerations apply to the scaling of dual base vec-
tors with respect to the scaling of covariant base vectors: in order to com-
pensate those scale changes, dual basis vectors should contra-vary, and,
again analogously, their respective dual coordinates, as well as the dual
vectors, should vary covariantly. Thus, both vectors in the dual space, as
well as their components or coordinates, will be called covariant vectors,
as well as covariant coordinates, respectively.

2.5.1 Definition of contravariant tensors

The entire tensor formalism developed so far can be transferred and ap-
plied to define contravariant tensors as multilinear forms with contravari-
ant components

ﬁ:y*k,_,R (2.41)
by
ﬁ(xl,xz,...,xk) — Z Z Z x}lxi...xikkﬁ(ellyeIZ,,..,elk). (2.42)
i1=lis=1 ix=1
By definition
Bl = pel e, . e') (2.43)

are the contravariant components of the contravariant tensor 8 with re-
spect to the basis ‘B*.

2.5.2 Transformation of contravariant tensor components

The argument concerning transformations of covariant tensors and com-
ponents can be carried through to the contravariant case. Hence, the con-
travariant components transform as

. . . n . . n . . n . .
ﬁ(f]l’sz’._"f]k) =ﬁ Z b]ll,lell’ Z bjzizelz,..., Z b]kl.kelk

i1:1 i2:1 lkil
n n n . . . . . .
=) Y o Y by bRy, bk el e, e') (2.44)
i1=lir=1 ix=1
or
.. . n n n . . . P .
Bl = NN N bl b2y, - bk BT (2.45)

i=lip=1  ip=1
Note that, by Eq. (2.29), b/; = (a’l)j ;- In effect, this yields a transfor-

mation factor “(a‘l)] ;” for every “old index i” and “new index j.”

2.6 General tensor

A (general) Tensor T can be defined as a multilinear form on the r-fold
product of a vector space 7, times the s-fold product of the dual vector

Multilinear Algebra and Tensors 87



88 Mathematical Methods of Theoretical Physics

space 7'*; that is,

T:N) x(V) =¥ X x Y xP* xo-xV* = F, (2.46)

-~

I copies s copies

where, most commonly, the scalar field F will be identified with the set R
of reals, or with the set C of complex numbers. Thereby, r is called the
covariant order, and s is called the contravariant order of T. A tensor of
covariant order r and contravariant order s is then pronounced a tensor
of type (or rank) (r,s). By convention, covariant indices are denoted by
subscripts, whereas the contravariant indices are denoted by superscripts.

With the standard, “inherited” addition and scalar multiplication, the
set 7,° of all tensors of type (r, s) forms a linear vector space.

Note that a tensor of t