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An essential ingredient in many examples of the conflict between quantum theory and noncontextual hidden
variables (e.g., the proof of the Kochen-Specker theorem and Hardy’s proof of Bell’s theorem) is a set of atomic
propositions about the outcomes of ideal measurements such that, when outcome noncontextuality is assumed,
if proposition A is true, then, due to exclusiveness and completeness, a nonexclusive proposition B (C) must be
false (true). We call such a set a true-implies-false set (TIFS) [true-implies-true set (TITS)]. Here we identify all
the minimal TIFSs and TITSs in every dimension d � 3, i.e., the sets of each type having the smallest number
of propositions. These sets are important because each of them leads to a proof of impossibility of noncontextual
hidden variables and corresponds to a simple situation with quantum vs classical advantage. Moreover, the methods
developed to identify them may be helpful to solve some open problems regarding minimal Kochen-Specker sets.
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I. INTRODUCTION

The assumption of outcome noncontextuality is the assump-
tion that ideal measurements reveal preexisting noncontextual
outcomes. Kochen and Specker [1–3] and Bell [4] proved
that there is a conflict between outcome noncontextuality and
quantum theory (QT). They pointed out that, for dimension
d � 3, there are sets of atomic propositions (represented in
QT by rays in a d-dimensional Hilbert space) that do not
admit an assignment of noncontextual outcomes once we make
the following extra assumptions. (i) Exclusiveness: exclusive
propositions (represented in QT by orthogonal rays) cannot
both be assigned the value true. (ii) Completeness: complete
sets of exclusive propositions (represented in QT by d mutually
orthogonal rays) cannot all be assigned the value false. These
sets are called Kochen-Specker (KS) sets.

It was later pointed out that the conflict between outcome
noncontextuality and QT occurs even without assumptions
(i) and (ii). Instead, for some linear combinations of corre-
lations, the assumption of outcome noncontextuality, by itself,
establishes limits that are violated by QT [5,6]. These limits
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are called noncontextuality (NC) inequalities. NC inequalities
generalize Bell inequalities [7] to scenarios where measure-
ments cannot be distributed between separated parties. The
quantum violation of some NC inequalities reveal that the
conflict also occurs for single particles prepared in arbitrary
quantum states [6,8–10]. From the perspective of NC inequal-
ities, KS sets are a particular type of contextuality sets, defined
as sets of observables for which outcome noncontextuality
contradicts the quantum predictions. KS sets can be converted
into NC inequalities whose violation reveals quantum state-
independent contextuality [11,12], into Bell inequalities with
quantum violation saturating the nonsignaling bound [13,14],
and into proofs of nonlocality via local contextuality [15–17].

Every linear combination of correlations appearing in a NC
inequality can be expressed as a positive linear combination
of probabilities of events or propositions and represented by
a graph, called a graph of exclusivity, in which exclusive
propositions are represented by adjacent vertices. It was later
found [18–20] that QT violates a NC or Bell inequality written
this way if and only if its corresponding graph of exclusivity is
imperfect, i.e., contains, as induced subgraphs, odd cycles of
length five or more (i.e., pentagons, heptagons, etc.), or their
complements. Therefore, every proof of contextuality (i.e.,
impossibility of assigning preexisting noncontextual outcomes
to ideal measurements) can be associated to an imperfect graph.
This includes any proof, with or without inequalities, of the
KS [1–3] and Bell [4] theorems. Reciprocally, every imperfect
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graph can be used to prove that QT cannot be explained with
noncontextual hidden-variable theories [18,19].

Interestingly, the sets of propositions represented by some
specific imperfect graphs allow us to present the conflict
between QT and hidden variables in a very appealing way,
namely, by pointing out a contradiction between QT and a
prediction with certainty of the noncontextual hidden-variable
theory. Proofs of this type have been presented by Stairs [21],
Hardy [22], and others [23–28]. In addition, these imperfect
graphs play a fundamental role in the proofs of the KS theorem
of Bell [4] and Kochen and Specker [3] and in some other
proofs of quantum state-independent contextuality [9,29]. The
purpose of this paper is to identify the minimal (i.e., having
the smallest set of vertices) of these imperfect graphs for any
dimension and explain how they are related to previous proofs
of impossibility of noncontextual hidden variables.

Hereafter, by atomic propositions we will mean statements
the form “outcomes o1 and o2 will be respectively obtained
when observables O1 and O2 will be jointly measured on
the same physical system,” where O1 and O2 are assumed to
be observables represented in QT by rank-one projectors that
commute. Each atomic proposition is represented in QT by a
ray in a Hilbert space. Two propositions are exclusive when
both cannot be simultaneously true. Exclusive propositions
are represented in QT by mutually orthogonal rays. A set
of mutually exclusive propositions constitutes a context. A
context is complete when one of the propositions must be
true. Greechie orthogonality diagrams [30] provide a con-
venient way to represent the graphs of exclusivity, as they
represent contexts as single smooth lines (such as circles
or straight unbroken lines) connecting mutually (atomic) ex-
clusive propositions, which are represented as small circles;
contexts intertwining at a single proposition are represented as
nonsmoothly connected lines, broken at that proposition. For
better readability nonintertwining propositions belonging to
just one context are not depicted. The assumption of outcome
noncontextuality assigns the same truth value (true or false) to
any proposition with independence of the context.

II. TRUE-IMPLIES-FALSE AND TRUE-IMPLIES-TRUE
SETS

We define a true-implies-false set (TIFS) [true-implies-true
set (TITS)] as a set S (S ′) of propositions represented in QT
by rays in a Hilbert space such that, when outcome noncon-
textuality is assumed, due to exclusiveness and completeness,
if proposition A ∈ S is true, then a nonexclusive proposition
B ∈ S must be false (a nonexclusive proposition C ∈ S ′ must
be true). Explicit examples of a TIFS and a TITS are shown in
Figs. 1(a) and 1(b), respectively. A TIFS or TITS is said to be
critical if the set resulting from removing any element is not a
TIFS or TITS, respectively. A TIFS or TITS in dimension d is
said to be minimal if there are not TIFS or TITS, respectively,
with less propositions in dimension d.

Any TIFS or TITS, by itself, constitutes a proof of quantum
contextuality, since, for a system prepared in the quantum state
in which proposition A is true, there is a nonzero probability
of finding proposition B or C true and false, respectively. This
is, in fact, the method followed in the proofs of quantum
contextuality by Stairs [21], Clifton [23–25], and Cabello
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FIG. 1. Greechie orthogonality diagrams of the minimal (a) TIFS
and (b) TITS in d = 3. Small circles represent propositions, smooth
lines represent complete sets (i.e., sets in which one and only
one of the propositions must be true); in particular, they indicate
that any pair of propositions connected by a smooth line cannot
both be true (exclusiveness). (a) If A is true then B is false [2].
(b) If A is true then C is true [3]. These sets are realizable in
S2 by taking, for instance, vA = (1,1,1)/

√
3, v1 = (1, − 1,0)/

√
2,

v2 = (1,0, − 1)/
√

2, v3 = (0,0,1), v4 = (0,1,0), v5 = (1,1,0)/
√

2,
v6 = (1,0,1)/

√
2,vB = (−1,1,1)/

√
3,v7 = (0,1, − 1)/

√
2, andC =

(2,1,1)/
√

6. In QT, the proposition vi is represented by the projector
|vi〉〈vi |. To obtain a TIFS or a TITS in d = 4 it is enough to add
〈v| = (0,0,0,1), and similarly to obtain TIFS or TITSs in higher
dimensions [31].

et al. [27,28]. All these proofs can be then converted into
experimental tests of whether or not nature can be described
with noncontextual hidden-variable theories [26].

TITSs also serve to prove the KS theorem in any given
dimension d � 3, since, by suitably concatenating several
TITSs, one can obtain a set for which noncontextual outcomes
satisfying assumptions (i) and (ii) cannot be assigned. Such a
set is called a KS set. This is the method followed by Bell [7]
and Kochen and Specker [3] to prove the KS theorem in d = 3.
The same method can be extended to any d � 3 [31].

TIFS in which proposition A corresponds to an entangled
state and the rest corresponds to product states can be used
to prove Bell’s theorem (i.e., the impossibility of reproducing
QT with local hidden-variable theories). This is exactly what
is behind Hardy-like proofs of quantum nonlocality [22] (for
a detailed explanation, see Ref. [32]).

TITSs are known for any physical system described by a
Hilbert space of dimension d � 3 [2,4]. In d = 3, Bell found
one with n = 13 propositions [4] and KS found one with n =
10 [3], which is illustrated in Fig. 1(b). Both Bell’s and KS’s
sets belong to a broader family withn = 10 + 3mpropositions,
with m = 0,1, . . . [28]. For d > 3, TITS with n = 7 + d are
easy to construct from the set of Fig. 1 by adding the vector
with all components zero but the one corresponding to the
new dimension [28]. However, the problem of which are the
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minimal TIFSs and TITSs for any d � 3 is open. This is the
problem we address in this paper.

III. METHOD FOR OBTAINING MINIMAL TIFSs
AND TITSs

A TITS can be also represented by a graph of exclusivity in
which d-cliques (i.e., d mutually adjacent vertices) represent
complete contexts. A graph is said to be nonrealizable in
dimension d if it represents a set of rays that is not realizable
in Sd−1, i.e., in the unit (d − 1) sphere.

Lemma 1 [20]. The simplest nonrealizable graph of exclu-
sivity in d = 1 consists of two vertices. The simplest nonreal-
izable graph of exclusivity in d = 2 has three vertices with one
of them adjacent to the other two. From these to nonrealizable
graphs one can recursively construct nonrealizable graphs in
any dimension d by starting from the nonrealizable graph in
dimension d − 2 and adding to it two vertices adjacent to all
vertices of the nonrealizable graph in d − 2.

Lemma 2. Every n-vertex graph of exclusivity correspond-
ing to a critical TITS in dimension d contains a (n + 1 − d)-
vertex graph of exclusivity corresponding to a TIFS.

Proof. Let G be a graph of exclusivity corresponding to
a TITS in which A true implies C true. Then, every vertex
adjacent to C must be false. Then, the induced subgraph of
G obtained by removing C and any vertex adjacent both to A

and C is a TIFS in which A true implies B false, where B was
adjacent to C, but not to A. �

Lemma 3. The graph of exclusivity of a critical TIFS must be
biconnected (i.e., it is connected and such that, when removing
any vertex, the resulting graph remains connected).

Proof. Suppose that it is not biconnected. Then, there is, at
least, one vertex such that, after removing it, the resulting graph
has two unconnected components. If the true and false vertices
are in the same component, then this component is a TIFS and,
therefore, the original graph of exclusivity is not critical. If
the true and false vertices are in different components, then
either the removed vertex is false and the component with the
true plus the removed vertex form a TIFS, or the removed
vertex is not false and the component with the false plus the
removed vertex form a TIFS. In both cases, the original graph
of exclusivity is not critical. �

Corollary 1. Every vertex of a graph of exclusivity corre-
sponding to a TIFS must be adjacent to, at least, two other
vertices (i.e., the graph must have minimal valency two).

Lemma 4. Every graph of exclusivity corresponding to a
TIFS in dimension d contains, at least, two d-cliques (each of
them represented by a d-vertex complete graph, i.e., a graph
in which all vertices are adjacent).

Proof. Let G be a graph of exclusivity corresponding to a
TIFS and A and B the true and false vertices, respectively.
There must be other true vertices X1, . . . ,Xp. Let W =
V (G) − {A,B,X1, . . . ,Xp}, where V (G) is the set of vertices
of G. We consider two cases. (a) Every vertex in W belongs to
the set of vertices of G that are adjacent to A, denoted N (A),
and B and some Xi are adjacent. In this case, A ∪ N (A) and
b ∪ N (b) form two complete sets. (b) Not all vertices in W

belong to N (A). Then, all the vertices in W are false. However,
these false vertices are not adjacent to A, so their false value

FIG. 2. Greechie orthogonality diagrams of all nonisomorphic
seven-vertex (first row) and eight-vertex (the remaining rows) bicon-
nected graphs of minimal valence two, not containing cycles of length
four, and containing at least two triangles.

must be forced by some other true vertex Xj . This vertex is
not adjacent to A, so it has to belong to a d-clique. �

IV. DIMENSION 3: SPECKER’S “BUG”

To obtain the minimal TITS in d = 3, we combine the
previous results as follows.

Step 1. We generate all nonisomorphic n-vertex biconnected
graphs (Lemma 3) of minimal valence two (Corollary 1), not
containing cycles on length four (Lemma 1), and containing
at least two triangles (Lemma 4), with n � 8. This can be
efficiently done using the computer program NAUTY [33]. We
obtain that there are two such graphs for n = 7 and eight
graphs for n = 8. Their corresponding Greechie orthogonality
diagrams are shown in Fig. 2.

Step 2. For every graph obtained after step 1, consider
all possible pairs of vertices (vi,vj ). If, for one (vi,vj ), the
graph does not admit a noncontextual assignment when vi = 1
and vj = 1 (i.e., then both are true), then the graph is the
graph of exclusivity a TIFS in which A = vi and B = vj .
The test of whether or not a graph admits a noncontextual
assignment can be done using a simple computer program
(e.g., Ref. [34]).

After step 2, we find that only the last graph in Fig. 2
corresponds to a TIFS. This graph, also depicted in Fig. 1(a),
was first introduced by Kochen and Specker ([2], Fig. 1, p. 182),
and later used as a subgraph of the graph �1 of Kochen and
Specker [3], as depicted in Fig. 1(b). Specker referred to this
graph as the “bug.” This proves that, in d = 3, there is no TIFS
with a smaller number of propositions than the one introduced
by Kochen and Specker in 1965 and used in the proofs of Stairs
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FIG. 3. Greechie orthogonality diagram of the simplest quantum
state-independent contextuality set in d = 3 (and in any d) [29], the
Yu-Oh set [9]. It contains six TIFSs like the one in Fig. 1(a). One of
them is indicated using the same notation used in Fig. 1(a).

[21], Clifton [23–25], and in the simplest Hardy-like proof of
quantum contextuality [27]. This implies, by Lemma 2, that
there is no TITS with a smaller number of propositions than
the one whose Greechie orthogonality is shown in Fig. 1(b).

Orthogonal representations of the minimal TIFS and TITS
are presented in the caption of Fig. 1. An orthogonal repre-
sentation of a graph is a set of unit vectors in one-to-one
correspondence with the vertices of the graph and such that
adjacent vertices are associated orthogonal vectors. It can be
easily shown that the minimum angle between the vectors
corresponding to vertices A and B is arccos ( 1

3 ) [35,36]. It
is interesting to notice that the orthogonal representation of
one of the pentagons determines univocally the orthogonal
representation of the graph of exclusivity corresponding to a
TIFS. This can be seen as follows: suppose we have the vectors
corresponding to A, v1, v2, v3, and v4. Then, v5 is the vector
product of v1 and v3. Similarly, v6 is the vector product of v2

and v4 and B is the vector product of v5 and v6. Also v7 is the
vector product of A and B and C is the vector product of B

and v7. Notice also that three nonconsecutive vertices of the
pentagon univocally determine the orthogonal representation
of the graph of exclusivity.

The state-independent contextuality set with the smallest
number of atomic propositions in d = 3 (and in any dimension
d [29]), the Yu-Oh set [9], contains six TIFSs like the one in
Fig. 1(a). This is shown in Fig. 3.

V. DIMENSION 4: THE TIFS IN HARDY’S PROOF
AND OTHER RELATED TIFSs

As in the previous section, after an exhaustive computer
search, we have obtained that there are only three TIFS in
d = 4 with a minimum number of propositions, nine. Their
Greechie orthogonality diagrams are depicted in Fig. 4. All
three are realizable in S3 by taking, e.g., for Fig. 4(a), A =
(0, − 1,

√
2,0)/

√
3, v1 = (1,

√
2,1,0)/2, v2 = (1,0,0,0), v3 =

A

v2

v1 v4

v3

v6

v5

B
v7

A

v2

v1 v4

v3

v6

v5

Bv7

(a () b)

A

v2

v1 v4

v3

v6

v5

Bv7

(c)

FIG. 4. (a)–(c) Greechie orthogonality diagrams of the three
minimal TIFS in d = 4. The one in (a) appears in Hardy’s proof
of Bell’s theorem [22] (see details in Refs. [32,35,37]).

(1,0, − 1,0)/
√

2, v4 = (0,1,0,0), v5 = (−1,
√

2, − 1,0)/2,
v6 = (0,0,1,0), v7=(0,0,0,1), B=(

√
1 − ε2/

√
3)(

√
2,1,0,0)

+ ε(0,0,0,1); for Fig. 4(b), A = (
√

1 − ε2/
√

3)(0, − 1,
√

2,0)
+ ε(0,0,0,1), B = (

√
2,1,0,0)/

√
3, and vi as for Fig. 4(a);

for Fig. 4 (c), A = (0, − 1,
√

2,0)/
√

3, B = (
√

2,1,0,0)/
√

3,
and vi as for Fig. 4(a). For the three graphs of exclusivity, the
orthogonal representations in d = 4 are almost unique (except
for an ε value). It can be easily shown that the minimum angle
between the vectors corresponding to A and B is arccos ( 1−ε2

3 )
for the cases in Figs. 4(a) and 4(b) and arccos ( 1

3 ) for the case
in Fig. 4(c).

VI. MINIMAL TIFSs AND TITSs IN HIGHER DIMENSIONS

Theorem 2. Let G be the graph of exclusivity corresponding
to a minimal TIFS in dimension d; then |V (G)| = d + 5.

Proof. First, we prove |V (G)| � d + 5 by induction. For
dimensions 3 and 4, the theorem has been proven in previous
sections. For d > 4, we know, from Lemma 4, that every graph
of exclusivity corresponding to a TIFS in dimension d contains,
at least, two d-cliques. Suppose there is a graph of exclusivity
corresponding to a TIFS in dimension d with less than d + 5
vertices. It is easy to verify that it cannot contain three d

cliques, since this would imply the existence of graphs which
are forbidden in dimension d (see Lemma 1). Then, the two
unique d-cliques of the graph must have a common vertex. By
removing that common vertex, we obtain a graph of exclusivity
corresponding to a TIFS in dimension d − 1 with |V (G)| =
d + 4, which contradicts the hypothesis of induction.

In order to prove that |V (G)| � d + 5 it suffices to find
minimal TIFSs with |V (G)| = d + 5. Let G be a graph of
exclusivity corresponding to a minimal TIFS in dimension
d > 4. Applying induction, we can verify that G can be
obtained from some graph of exclusivity H corresponding to a
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FIG. 5. (a)–(d) Greechie orthogonality diagrams of the four mini-
mal TIFS ind = 5. All of them have 10 propositions and nine contexts.

minimal TIFS in dimension d − 1 to adding a vertex v adjacent
to the vertices of the two d-cliques of H . The vertex v may
or may not be adjacent to the vertices A (true) and B (false),
but A and B must be each of them adjacent to at least one of
the vertices common to the two d-cliques of H , because if this
condition were not given one of the common vertices to both d

cliques of G could take the value true and B could take it too.
See Fig. 5 and Fig. 7 with examples in dimensions 5 and 6.

For each dimension, the graphs obtained with this method
such that the new vertices are always adjacent to A and B are
realizable in dimension d by taking, e.g., A=
(0, − 1,

√
2,0, . . . ,0)/

√
3, v1=(1,

√
2,1,0, . . . ,0)/2, v2 =(1,

0,0,0, . . . ,0), v3= (1,0, − 1,0, . . . ,0)/
√

2, v4= (0,1,0,0, . . . ,

0), v5 = (−1,
√

2, − 1,0, . . . ,0)/2, v6 = (0,0,1,0, . . . ,0),
B = (

√
2,1,0,0, . . . ,0)/

√
3, v7 = (0,0,0,1, . . . ,0), ..., vd+3 =

(0,0,0,0, . . . ,1). �
Due to this construction, note the following. (i) Orthogonal

representations are almost (except for ε value) unique for all
the graphs of exclusivity corresponding to minimal TIFSs
in the same dimension. (ii) The minimum angle for all the
graphs of exclusivity corresponding to minimal TIFSs is larger
than or equal to arccos ( 1

3 ), being able to approach this bound
everything we want and being the value achievable when
the common vertices to the two d-cliques are all adjacent
simultaneously to A and B. We will give an explicit orthogonal
representation for all the graphs of exclusivity corresponding to
minimal TIFSs of dimensions 5 and 6 at the end of this section.
The general construction for any dimension is immediate from
these examples.

As all the graphs of exclusivity corresponding to mini-
mal TIFSs can be found by a constructive method, we can
count them. The number of minimal TIFSs in dimension
3,4,5,6,7,8, . . . is 1,3,4,8,13,19, . . .. The number of min-
imal TIFSs in dimension d = 3,4 is (d − 1)(d − 2)/2. In
higher dimensions (d � 5) the number of minimal TIFS is
(d−1)(d−2)

2 − 2. To count the number of graphs of exclusivity
corresponding to minimal TITSs, note that the vertices added in
the construction form a (d − 3) clique. It suffices then to count
the possible connections (except isomorphisms) between the

A

v2

v1

v4

v3

v6

v5

Bv7

. . . vd+3

C

vd+4

FIG. 6. Scheme for constructing a minimal TITS with d + 7
propositions in dimension d . The subgraph {A,B,v1, . . . ,vd+5,B}
corresponds to a minimal TIFS. If A is true then B is false
and also v7, . . . ,vd+3, and vd+4 are false. Therefore, since
{v7, . . . ,vd+3,vd+4,B,C} are mutually exclusive, then C must be true.

vertices of the (d − 3) clique and the vertices A (true) and
B (false). Each vertex of the (d − 3) clique can have three
different and incompatible states (adjacent to true, adjacent
to false, or adjacent to both); we have combinations with
repetition of three elements taken in groups of d − 3. This
provides CRd−3

3 = (d − 1
d − 3) = (d − 1

2 ) = (d − 1)(d − 2)/2, where
CR stands for combinations with repetition. If the dimension
is larger than 4, it is necessary to eliminate the graphs where
all vertices of the (d − 3) clique are adjacent only to A or only
to B obtaining (d−1)(d−2)

2 − 2.
Theorem 3. Minimal TITSs have d + 7 propositions in

dimension d � 3.
Proof. Suppose that the minimal TITS has less than d + 7

propositions and that A true implies C true. Therefore, the true
of C is forced by a d-clique. Then, at least one of the vertices
of this d-clique, say vertex u, is not adjacent to A. Otherwise, a
forbidden subgraph would appear. Therefore, we can remove
the vertex C and all the vertices of the d-clique, except u,
and construct a TIFS (A true implies u false) with less than
d + 5 vertices, and this is in contradiction with Theorem 2.
On the other hand, the addition of two vertices to the graph of
exclusivity corresponding to the minimal TIFS in dimension
d, as shown in Fig. 6, provides a minimal TITS with d + 7
propositions in dimension d � 3. �

Corollary 2. The graphs of exclusivity corresponding to the
minimal TITSs with d + 7 propositions contains exactly three
d-cliques.

A. Dimension 5

We have obtained that there are four TIFSs with a
minimum number of propositions in d = 5. Their Greechie
orthogonality diagrams are shown in Fig. 5. These TIFSs
are realizable in S4 by taking, e.g., for Fig. 5(a), A =
(
√

1 − ε2/
√

3)(0, − 1,
√

2,0,0) + ε(0,0,0,0,1), v1 = (1,
√

2,

1,0,0)/2, v2 = (1,0,0,0,0), v3 = (1,0, − 1,0,0)/
√

2, v4 =
(0,1,0,0,0), v5 = (−1,

√
2, − 1,0,0)/2, v6 = (0,0,1,0,0),

v7 = (0,0,0,1,0), v8 = (0,0,0,0,1), and B = (
√

1 − ε2/
√

3)
(
√

2,1,0,0,0) + ε(0,0,0,1,0); for Fig. 5(b), A = (0, − 1,
√

2,

0,0,)/
√

3, B = (
√

1 − ε2/
√

3)(
√

2,1,0,0,0) + ε(0,0,0,1,0),
and vi as for Fig. 5(a); for Fig. 5(c), A = (

√
1 − ε2/

√
3)

(0, − 1,
√

2,0,0) + ε(0,0,0,1,0), B = (
√

2,1,0,0,0)/
√

3, and
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FIG. 7. (a)–(h) Greechie orthogonality diagrams of the eight minimal TIFs in d = 6. All of them have 11 propositions and nine contexts.

vi as for Fig. 5(a); for Fig. 5(d), A = (0, − 1,
√

2,0,0)/
√

3,
B = (

√
2,1,0,0,0)/

√
3, and vi as for Fig. 5(a). Notice that

the orthogonal representations are almost unique (except
for an ε value). The minimum angle between the vectors
corresponding to A and B is arccos ( 1−ε2

3 ) for all the cases in
Fig. 5 except for case (d), that is arccos ( 1

3 ). These realizations
admit many implementations in QT, depending on the physical
meaning of the canonical basis.

B. Dimension 6

We have obtained that there are eight TIFS with a
minimum number of propositions in d = 6. Their Greechie

orthogonality diagrams are shown in Fig. 7. All of them are
realizable in S5 by taking, e.g., for Fig. 7(a), A =
(
√

1 − ε2/
√

3)(0, − 1,
√

2,0,0,0)+ ε(0,0,0,0,0.1), v1 = (1,√
2,1,0,0,0)/2, v2 = (1,0,0,0,0,0), v3 = (1,0, − 1,0,0,0)

/
√

2, v4 = (0,1,0,0,0,0), v5 = (−1,
√

2, − 1,0,0,0)/2, v6 =
(0,0,1,0,0,0), v7 = (0,0,0,1,0,0), v8 = (0,0,0,0,1,0), v9 =
(0,0,0,0,0,1), and B=(

√
1−ε2/

√
3)(

√
2,1,0,0,0,0)+(ε/

√
2)

(0,0,0,1,1,0); for Fig. 7(b), A = (
√

1 − ε2/
√

3)(0, − 1,√
2,0,0,0) + (ε/

√
2)(0,0,0,0,1,1), B = (

√
1 − ε2/

√
3)(

√
2,

1,0,0,0,0) + ε(0,0,0,1,0,0), and the remaining vi as for
Fig. 7(a); for Fig. 7(c), A = (0, − 1,

√
2,0,0,0)/

√
3, B =

(
√

1−ε2/
√

3)(
√

2,1,0,0,0,0)+(ε/
√

2)(0,0,0,1,1,0), and the
remaining vi as for Fig. 7(a); for Fig. 7(d), A = (

√
1 − ε2/
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√
3)(0, − 1,

√
2,0,0,0) + (ε/

√
2)(0,0,0,0,1,1), B = (

√
2,1,

0,0,0,0)/
√

3, and vi as for Fig. 7(a); for Fig. 7(e), A =
(
√

1−ε2/
√

3)(0,−1,
√

2,0,0,0)+ε(0,0,0,0,0,1), B=(
√

1−ε2

/
√

3)(
√

2,1,0,0,0,0) + ε(0,0,0,1,0,0), and vi as for Fig. 7(a);
for Fig. 7(f), A = (

√
1 − ε2/

√
3)(0, − 1,

√
2,0,0,0) +

ε(0,0,0,0,0,1), B = (
√

2,1,0,0,0,0)/
√

3, and vi as in
for Fig. 7(a); for Fig. 7(g), A = (0, − 1,

√
2,0,0,0)/

√
3,

B = (
√

1 − ε2/
√

3)(
√

2,1,0,0,0,0) + ε(0,0,0,1,0,0), and vi

as for Fig. 7(a); for Fig. 7(h), A = (0, − 1,
√

2,0,0,0)/
√

3,
B = (

√
2,1,0,0,0,0)/

√
3, and vi as for Fig. 7 (a). Notice

that the orthogonal representations are almost unique (except
for an ε value). The minimum angle between the vectors
corresponding to A and B is arccos ( 1−ε2

3 ) for all cases in
Fig. 7 except for (h), that is arccos ( 1

3 ).

VII. OPEN PROBLEMS

Here we have identified the simplest TIFSs and TITSs in
every finite dimension. TIFSs and TITSs are not only important
for themselves, but also because they are related to some open
problems. For example, in Ref. [38] Peres conjectured that
the KS set with the smallest number of atomic propositions
in any dimension is the one in Ref. [32], with 18 propositions
in d = 4. The intermediate results we have developed in this
paper can help to prove this conjecture. Another open problem
that can benefit from our results is identifying the KS set in
d = 3 with the smallest set of atomic propositions. Curiously,
after more than 50 years, this problem remains open.

Other interesting open problem is identifying the minimal
true-iff-true sets in every finite dimension d. A true-iff-true
set (also called nonseparating set) is one that contains two
propositions which must be both true or both false. This is not
the same as in a TITS, as, for a TITS, C true does not imply
A true. For d = 3, a true-iff-true set was identified in Ref. [3].
These sets are interesting because they demonstrate an even
larger conflict between QT and noncontextual hidden-variable
theories as, although there still exist classical valuations and
truth tables, they are more in contradiction with QT, up to
the point where propositional structures containing these sets
cannot be embedded into any kind of hidden parameter model
[3], such as partition logics [39], and their model realizations
as Wright’s generalized urn model [40], or automaton logic
[41] (still allowing logics with TIFS or TITS). We conjecture
that the 17-ray true-iff-true set in Ref. [3] is minimal in d = 3.
However, we do not have a proof.
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