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Chapter 12

Entanglement through Path
Identification

Karl Svozil
Institute for Theoretical Physics, Vienna University of Technology

Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria

svozil@tuwien.ac.at

Abstract. Entanglement in multipartite systems can be
achieved by the coherent superposition of product states, gen-
erated through a universal unitary transformation, followed by
spontaneous parametric down-conversions and path identifica-
tion. Pure entangled multipartite states are always a unitary
transformation away from non-entangled states with complete
value definiteness of the individual parts; and vice versa.

From a formal point of view, an arbitrary pure (we shall not consider mixed

states as we consider them epistemic) state of N particles with dichotomic

properties 0, 1 can be written as the coherent superposition

|Ψ〉 =

1∑
i1,...,iN=0

αi1,...,iN |i1, . . . , iN 〉 with

1∑
i1,...,iN=0

|αi1,...,iN |2 = 1

(12.1)

of all product states |i1, . . . , iN 〉 = |i1〉 · · · |iN 〉 of single-particle basis states

|ij〉, with ij ∈ {0, 1} and 1 ≤ j ≤ N . One possible direct physical imple-

mentation of this formula requires (i) a universal (with respect to the uni-

tary group) transformation rendering the coefficients αi1,...,iN ; followed by

(ii) spontaneous parametric down-conversions producing the product states

whose outputs are properly integrated and identified in a third phase (iii).
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In what follows we shall use Fock states (notwithstanding issues such as

localization [6, p. 931]) having definite occupation numbers of the quantized

field modes. For such states the unitary quantum evolution on elementary

quantum optical components can be represented by elementary transition

rules, reflecting unitary transformations [2,20]: a symmetrical beam splitter

is represented by |in〉 50:50 BS−−−−−→ 1√
2

(|transit〉+ i|reflect〉); and an asymmet-

rical beam splitter by |in〉 BS−−→ T |transit〉+ iR|reflect〉, with |T |2 + |R|2 = 1.

Phase shift(er)s are represented by |in〉 ϕ ps−−−→ eiϕ|in〉, and spontaneous para-

metric down-conversions by |in〉 NL−−→ η|out1〉|out2〉 = η|out1 out2〉 for sup-

posedly small η.
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Fig. 12.1 An interferometric experiment involving an incident beam, a beam splitter,

and two spontaneous parametric down-conversion crystals.

For the sake of a demonstration, consider an arrangement depicted

in Fig. 12.1. It consists of a single particle source producing a state |a〉
impinging on a symmetrical beam splitter BS whose output ports are

identified with the states |b〉 for transiting |a〉, and |c〉 for reflected |a〉,
respectively. Those states are then subjected to two spontaneous paramet-

ric down-conversion crystals NL1 and NL2, producing product pairs |de〉
and |fg〉, respectively. “Adjacent” beam pairs d–f as well as e–g are then

integrated and identified a states |h〉 and |i〉, respectively. The aforemen-

tioned substitution rules yield

|a〉 50:50 BS−−−−−→ 1√
2

(|b〉+ i|c〉) NL1, NL2−−−−−−→ η√
2

(|de〉+ i|fg〉) . (12.2)

Note that an additional phase shift of ϕ = π
2 applied to |c〉, with the iden-

tification d = g = 0 and e = f = 1, would have resulted in the traditional

singlet state |Ψ−〉 = 1√
2

(|01〉 − |10〉) of the Bell basis.
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The final phase of this experiment is depicted in Fig. 12.1 by the addition

of “integrators” I1 and I2 which combine or collimate ingoing ports into a

single port. All that is needed is a parametric down-conversion crystal

which outputs with certainty the respective states |01〉 on NL1 and |10〉 on

NL2.

In order to fully realize Eq. (12.1), universal unitary transformations

in finite-dimensional Hilbert space need to be operationalized. One con-

ceivable way of doing this is through generalized beam splitters [11], which

is based upon the parameterization of the unitary group [9]. Figure 12.2

depicts this configuration for two dichotomic (two possible states per quan-

tum) quanta. A generalization to an arbitrary number of quanta, as well as

an arbitrary number of states per quanta can be given along very similar

lines.
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Fig. 12.2 General two-particle state generation.

Let me finally address the question why, even if granted that this

might be a novel way of looking at and producing multipartite states (I

am quite confident that similar schemes might have been proposed in one

way or another before, but I am unaware and thus less than sure about

these), one should need yet another scheme. After all, higher-dimensional

two-particle entanglements can be realized in principle solely via multi-

port beam splitters [24]; without some additional final steps involving

spontaneous parametric down-conversion and integration. (This conforms

to the interpretation of the Clauser-Horne-Shimony-Holt expression as a

Fig. 12.2 General two-particle state generation.

Let me finally address the question why, even if granted that this

might be a novel way of looking at and producing multipartite states (I

am quite confident that similar schemes might have been proposed in one

way or another before, but I am unaware and thus less than sure about

these), one should need yet another scheme. After all, higher-dimensional

two-particle entanglements can be realized in principle solely via multi-

port beam splitters [24]; without some additional final steps involving

spontaneous parametric down-conversion and integration. (This conforms

to the interpretation of the Clauser-Horne-Shimony-Holt expression as a

single operator which can be subjected to min-max considerations [1].) It
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should also be mentioned that a recent proposal [4], based on an intriguing

experiment [18, 23] upon a suggestion of Ou [10], uses path identification

as a resource to produce multipartite states.

One good motivation for the aforementioned contemplations might be

that the “production” of entanglement in these configurations might yield

fresh ways to perceive or “understand” this quantum feature. As expressed

by Bennett [3] in quantum physics the possibility exists “that you have a

complete knowledge of the whole without knowing the state of any one part.

That a thing can be in a definite state, even though its parts were not. . . .

It’s not a complicated idea but it’s an idea that nobody would ever think of.”

Bennett, if I interpret him correctly, is referring to Schrödinger’s 1935 &

1936 series of papers; both in German [12,17] and English [13,14]. Therein

Schrödinger has pointed out that the quantum state of multiple particles

may evolve in such ways that, say, the initial definiteness of the states of

the individual independent constituents without any relational properties

among themselves gets re-encoded into purely relational properties among

the particles [7, 19, 21, 22], thereby “erasing” the definiteness of the indi-

vidual particle properties. One may also say that the multipartite state is

“breathing in and out of” individuality and entanglement [16].

The formal expression for this is a sort of zero-sum game with respect

to knowledge or information encoded by the quantum state: due to the

permutative character of the unitary (one-to-one isometry) state evolution,

no information is ever lost or gained; that is, any loss of individual defi-

niteness “on” the individual constituents has to be compensated by a gain

through “sampling” of their independence; to the effect that they are no

longer independent but possess definite relational properties. Conversely,

any “scrambling” of these relational properties needs to be (due to the

impossibility to “loose” information) compensated by a gain of individual

definitiveness.

For the sake of a concrete demonstration discussed by Mermin [8,

Section 1.5], consider a general state in 4-dimensional Hilbert space. It

can be written as a vector in C 4 which can be parameterized by (T

means transposition)
(
α1, α2, α3, α4

)T
, with α1, α3, α3, α4 ∈ C ,. Suppose

(wrongly) that all such states can be written in terms of a tensor product(
a1, a2

)T ⊗ (b1, b2)T ≡ (a1b1, a1b2, a2b1, a2b2
)T

of two individual particle

states corresponding to vectors in C 2, with a1, a2, b1, b2 ∈ C . A comparison

of the coordinates yields α1 = a1b1, α2 = a1b2, α3 = a2b1, and α4 = a2b2.

By taking the quotient of the two first and the two last equations, and
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by equating these quotients, one obtains α1

α2
= b1

b2
= α3

α4
, and thus α1α4 =

α2α3.

How can this be interpreted? As in many cases, states in the Bell basis,

and, in particular, the Bell state, serve as a sort of Rosetta Stone for an

understanding of this quantum feature. The Bell state |Ψ−〉 is a typical

example of an entangled state; or, more generally, states in the Bell basis

can be defined and, with |0〉 =
(
1, 0
)T

and |1〉 =
(
0, 1
)T

encoded by

|Ψ∓〉 =
1√
2

(|01〉 ∓ |10〉) =
(
0, 1,∓1, 0

)T
,

|Φ∓〉 =
1√
2

(|00〉 ∓ |11〉) =
(
1, 0, 0,∓1

)T
.

(12.3)

For instance, in the case of |Ψ−〉 a comparison of coefficient yields

α1 = a1b1 = 0, α2 = a1b2 =
1√
2
,

α3 = a2b1 −
1√
2
, α4 = a2b2 = 0;

(12.4)

and thus entanglement, since

α1α4 = 0 6= α2α3 =
1

2
. (12.5)

This shows that |Ψ−〉 cannot be considered as a two particle product state.

Indeed, the state can only be characterized by considering the relative prop-

erties of the two particles – in the case of |Ψ−〉 they are associated with

the statements [22]: “the quantum numbers (in this case “0” and “1”) of

the two particles are different in (at least) two (orthogonal) directions.”

The Bell basis symbolizing entanglement and non-individuality can, in

an ad hoc manner, be generated from a non-entangled, individual state:

suppose such a state is represented by elements of the Cartesian standard

basis in 4-dimensional real space R4, representable as column vectors whose

components are
(
|ei〉
)
j

= δij , with 1 ≤ i, j ≤ 4. Suppose further that the

coordinates of the Bell basis (12.3) are arranged as row or column vectors,

thereby forming the respective unitary transformation

U = |Ψ−〉〈e1|+ |Ψ+〉〈e2|+ |Φ−〉〈e3|+ |Φ+〉〈e4| =

=
(
|Ψ−〉, |Ψ+〉, |Φ−〉, |Φ+〉

)
=

1√
2


0 0 1 1

1 1 0 0

−1 1 0 0

0 0 −1 1

 .
(12.6)
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Then successive application of U and its inverse UT transforms an individ-

ual, non-entangled state from the Cartesian basis back and forth into an

entangled, non-individual state from the Bell basis. For the sake of another

demonstration, consider the following perfectly cyclic evolution which per-

mutes all (non-) entangled states corresponding to the Cartesian & Bell

bases:

|e1〉 U7→ |Ψ−〉 V7→ |e2〉 U7→ |Ψ+〉
V7→ |e3〉 U7→ |Φ−〉 V7→ |e4〉 U7→ |Φ+〉 V7→ |e1〉.

(12.7)

This evolution is facilitated by U of Eq. (12.6), as well as by the following

additional unitary transformation [15]:

V = |e2〉〈Ψ−|+ |e3〉〈Ψ+|+ |e4〉〈Φ−|+ |e1〉〈Φ+|

=


〈Φ+|
〈Ψ−|
〈Ψ+|
〈Φ−|

 =
1√
2


1 0 0 1

0 1 −1 0

0 1 1 0

1 0 0 −1

 .
(12.8)

One of the ways thinking of this kind of breathing in and out of individ-

uality & entanglement is in terms of sampling & scrambling of information,

as quoted from Chiao [2, p. 27] (reprinted in [5]): “Nothing has really been

erased here, only scrambled!” Indeed, as noted earlier, mere re-coding or

“scrambling,” and not erasure or creation of information, is tantamount to,

and an expression and direct consequence of, the unitary evolution of the

quantum state.

Let us now reconsider the configuration depicted in Fig. 12.1: it is quite

obvious where the relational properties in the resulting entangled (with a

proper identification) state (12.2) come from: they reside in the common

origin of either the states |d〉&|e〉, (exclusive) or |f〉&|g〉, respectively; and

in their coherent superposition rendered by the beam splitter BS. This

latter beam splitter BS element “scrambles” all individuality (with respect

to “which way” information about the output ports); whereas the pair

production at the two spontaneous parametric down-conversion crystals is

responsible for the relational — that is, joint — occurrence among the

constituents.
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