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The claims made in a manifesto resulting in the European quantum technologies flagship initiative
in quantum technology and similar enterprises are taken as starting point to critically review some
potential quantum resources, such as coherent superposition and entanglement, and their potential
usefulness for parallelism and communication. Claims of absolute, irreducible (non-epistemic)
randomness are argued to be metaphysical. Cryptanalytic man-in-the-middle attacks on quantum
cryptography are well known to be feasible, but hardly mentioned. If all of this is taken into
account, a more sober perspective on quantum capacities emerges, but one that may be ethically
more justified than the “hype and magic” that drives many current initiatives.
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I. INTRODUCTION

The European Quantum Manifesto [1] contributed
to the launch of a e1 billion quantum technologies
flagship initiative in quantum technology [2]. Thereby,
quanta which “can be in different states at the same
time (‘superposition’) and can be deeply connected
without direct physical interaction (‘entanglement’)” are
expected to create a “second quantum revolution”
by “taking quantum theory to its technological
consequences” [3].
This is in line with assurances by many proponents

that “quantum mechanics is magic”; and indeed so
irreducible incomprehensible by rational human thought
that anybody asking [4, p. 129] “But how can it be like
that?” will be dragged “ ‘down the drain’, into a blind
alley from which nobody has yet escaped.” From that
perspective, it appears prudent to harvest these alleged
capacities beyond classical algorithmics for technology
and the economy at large; in particular if the experts
proclaim such a program to be feasible.
I would like to state up-front that I am not criticising

this new initiative on grounds that money will be wasted.
On the contrary, it will be money wisely spent, and
many new and interesting research and technological
developments will spin off.
However, in what follows I would like to point out

that, at least in the way it is marketed, the quantum
technologies flagship initiative in quantum technology is
deceptive, if not dangerously misleading.
It is deceptive because, while many of the Quantum

Manifesto’s short- and medium-term goals are reachable
or have already been achieved, some of these goals
strongly depend on the assumptions made.
It is dangerous because it pretends to deliver – for

instance, with respect to quantum random number
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generators and quantum cryptography – what is provable
impossible.
Moreover it is highly unlikely that some of the

long-term goals are achievable even in principle.

II. QUANTUM COMPUTATION

Let us first review quantum computation; in particular
the Quantum Manifesto’s long-term goal to “Build a
universal quantum computer able to demonstrate the
resolution of a problem that, with current techniques on
a supercomputer, would take longer than the age of the
universe” [1, p. 18]. I do not know what the authors
had in mind by formulating this bold claim, but when it
comes to quantum computation as compared to classical
universal computation there are at least two issues which
have to be kept in mind: one is algorithmic in nature, and
one is hardware related.

A. Quantum algorithm

As anecdotal as this may sound, one of the greatest
former talents in quantum computation, and co-author
of an authoritative volume on the subject (which, after
publication in 2000, made it to the 10th anniversary
edition in 2010) gave up his tenured academic position
“in order to work as an advocate for open science” [5].

Such brain drain is surprising, given the hype. Alas it
might not be too negative to state that, besides a growing
zoo of quantum algorithms [6] (and notwithstanding
some progress in communication complexity [7–9], given
unlimited computational power) quantum algorithms
have not much advanced since the proposal of Grover’s
algorithm, for a period of twenty years now. So, to
call this field of research “progressive” might be overly
optimistic.
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Moreover, while quantum factoring is often mentioned
as “killer app” for quantum computation, classical prime
factorization is neither in the class of NP-complete
problems, nor can it be excluded that classical algorithms
solve this task in polynomial time; just like Shor’s
probabilistic quantum algorithm.
The key issue, in my opinion, is a lack of knowledge

of just what the quantum assets and capacities, capable
of potentially trespassing classical computational means,
really are.

1. Parallel processing by superpositions

Many researchers would be inclined to postulate
quantum superpositions – the capacity to simultaneously
co-represent classically distinct, even mutually
contradictory, states – and the resulting sort of
parallelism, as one of the main quantum-over-classical
advantages.
Unfortunately, all of our attempts to comprehend a

widely cited paper on quantum complexity theory [10]
failed. In particular, their hint in Sect. 3.3, that
superposition (and thus parallelism) requires a huge
(exponential) computational capacity (one that could
potentially be harvested) of the physical universe, is
immediately questioned by mentioning restrictions due
to the fact that the quantum evolution is essentially a
permutation of the quantum state.
A recent review [11] also attempts to locate quantum

capacities by emphasizing coherent superpositions (and
thus parallelism). It is mentioned that a cynical reader
might point out that, based on a result by Shi [12] any
quantum algorithm whatsoever can be expressed as the
use of just two components: (i) gates producing coherent
superpositions of a classical bit (such as the Hadamard
gate or quantum Fourier transforms), interspersed with
(ii) classical processing.
Alas, all the parallel “results” of a quantum

computation encoded in a coherent superposition are
not directly accessible: due to quantum complementarity
and the no-cloning theorem there is no way to access
and measure complementary aspects of an arbitrary pure
state comprehensively. In terms of the many-worlds
interpretation, every one of the parallel results resides
in one of those parallel worlds simultaneously; but any
particular observer has direct access to only one such
universe.
Indeed, relative to “reasonable” assumptions,

observables which are not identical to pure states
(and their negation), cannot consistently (co-)exist
with the latter [13, 14]. From this point of view,
“coherent superpositions” just correspond to improper,
misleading representations of non-existing aspects of
physical reality. They are delusive because they confuse
ontology with epistemology [15, 16] by suggesting the
physical co-existence of counterfactuals; in particular,
classically inconsistent cases, in an exploitable classical

manner. However, upon closer inspection, this alleged
capacity might just be a consequence of a misconception
yielding an operational ill-representation of the quantum
state [17].

“Forcing” a “measurement” of such states in a coherent
superposition of “observables” results in a context
translation [18]. This may introduce stochasticity due to
the many (for all practical purposes [19]) uncontrollable
degrees of freedom of the measurement device [20].

Nevertheless, with all these provisos, a potential
quantum advantage resides in the possibility to
encode certain suitable relational functional properties
representable by (equi-)partitions of the image of the
function [21, 22] into suitable orthogonal projections [23].
Unfortunately this is not ubiquitous, as for certain tasks
such as parity effective speedups are impossible [24].

2. Multipartite communication by entanglement

Quantum mechanics denies the separate existence
and apartness of certain entities (such as quanta
of light) “tightly bundled together” by entanglement.
Indeed, the entire state of multiple quanta can be
expressed completely, uniquely and solely in terms of
correlations (joint probability distributions) [25, 26],
or, by another term, relational properties [27], among
observables belonging to the subsystems; irrespective
of their relativistic spatio-temporal locations [28].
Consequently [29] one has “a complete knowledge of the
whole without knowing the state of any one part. That
a thing can be in a definite state, even though its parts
were not.”

In more technical terms, this can be interpreted
as just another consequence of quantum coherence –
only that the co-represented classical cases refer to
product states of multiple quanta, thereby effectively
allowing two or more different quanta to be coherently
connected over a large distance. Note also that if the
two parties share correlated pairs of quanta, then (by
quantum teleportation) the quantum communication and
selection between those parties can be done by classical
information.

While it may be too early for a definite answer, many
(exponential) quantum speedups [7–9] might again, just
as in the functional case, be due to the possibility to
encode communication tasks into suitable orthogonal
subspaces. Observe that every binary function g : x×x →

z can be converted into an equivalent unary function f :
x → z

x, such that g(x1, x2) = [f(x2)](x1) ∈ z. One may
think of x2 as some “index” running over unary functions
f . If this “index” can be efficiently communicated, f and
its equivalent representation g can be evaluated.
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B. Quantum hardware

In the last thirty years single-quantum experiments,
such as single quanta in a double slit, and all kinds
of other interference and state (re-)construction
experiments sharpened and enlightened our
understanding of the quanta. One of the main
features of the (unitary quantum) evolution is that
it is a permutation of the state; therefore, at least in
principle, information can neither be created (or copied),
nor lost. Thus designs of quantum computers have to
answer the question of how to get rid of auxiliary qubits
(they cannot).
Another formidable question is to maintain coherence

over sufficient amounts of computation space and time,
thereby keeping the system isolated; that is, by avoiding
entanglement with the environment. It may well be that
maintenance of coherence scales exponentially with both
computation space and time, thereby rendering quantum
computation non-scalable.
It should be kept in mind that while it may, in very

special cases, be possible to obtain quantum coherence
for more than a thousand qubits, those systems are
non-universal, and specifically tailored for very particular
tasks. And, of course, every system is a perfect
simulation of itself; so as every system is quantized, it
is also a perfect simulation of a multipartite quantum
state – indeed, this could involve zillions of quanta.

III. HYPERCOMPUTATIONAL CAPACITIES

THROUGH IRREDUCIBLE QUANTUM

RANDOMNESS

Since “true” sources of randomness are often required
in quantum information theory such as in quantum
cryptography, quantum random number generators will
be shortly discussed next. While Born [30] and
others have expressed their personal inclinations about
randomness in nature, and explicitly stated their very
subjective choices as such, this supposition has been
canonized and postulated as an axiom. It is corroborated
by our obvious inability to come up with theoretical
predictions of certain quantum outcomes.
In practice, quantum random number generators are

tested and certified by performing a battery of statistical
criteria, such as diehard tests, on finite sequences of
data. This is far from the claims of absolute, irreducible
certification promised to customers.
Unfortunately, by merely studying the raw data

without additional assumptions (such as the quantum
axiom mentioned), and even if the supposedly random
data sequences could be provided at arbitrary length,
due to the recursive undecidability of the rule inference
problem, and other theorems of recursion theory, claims
of absolute randomness are provable unprovable; and
therefore are metaphysical, that is, beyond the reach of
science. In other words, science can neither assert nor

disprove quantum randomness, and never will be able
to do so: this method is (provably) blocked by limits
due to consistency, and consequently the avoidance of
paradoxical self-reference [31].
Therefore, any claims that quantum random number

generators are certified by the very laws of nature to
behave indeterministically are incorrect. Certification
resides in, and is relative to, the validity of canonical
quantum theory, which in turn resides in our beliefs in
it.
Another way of thinking about quantum randomness

is in terms of the – supposedly (that is, relative to the
axioms) “indeterministic” generation process. Particular
single outcomes are thought of as occurring without
deterministic cause; quasi ex nihilo. In theological terms
such outcomes are by creatio continua. Thereby the
“measurement of the outcome” is postulated to come
about in a quantum formalism based on an evolution
that one-to-one permutes the state (which consequently
has a unique history); an ambivalence [32, p. 454] which
is protected through orthodoxy.
Very often, it is also not explicitly disclosed how

exactly such random sequences are generated and where
the randomness resides – would, for instance, a source
of photons impinging on two detectors qualify as beam
splitter? – not to mention the fact that lossless
beam splitters are represented by one-to-one unitary
transformations, that is, merely permuting the state; let
alone the method of normalization of the unbiased raw
signals.

IV. QUANTUM CRYPTOGRAPHY

With regards to cryptography, the Quantum Manifesto
mentions two goals; one medium-term: “Enable secure
communication between distant cities via quantum
networks, which enhance information security and make
eavesdropping impossible” [1, p. 17]; as well as one
long-term: “Create a secure and fast quantum internet
connecting the major cities in Europe using quantum
repeaters running quantum communication protocols.” [1,
p. 18]
Contrary to publicized claims, quantum cryptography

is insecure and can be successfully cryptanalyzed through
man-in-the-middle attacks, that is, by compromising
both quantum and (public) classical communication lines
(cf. Ref. [33] for a “demonstration” using Viennese
chocolate balls). This is a well known fact which is
already explicitly mentioned in the original paper by
Bennett and Brassard [34] as follows: “The need for
the public (non-quantum) channel in this scheme to be
immune to active eavesdropping can be relaxed if Alice
and Bob have agreed beforehand on a small secret key,
which they use to create Wegman-Carter authentication
tags [WC] for their messages over the public channel.”
Alas, the consequences of the cryptanalytic capacities

that can be deployed through non-immune classical
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channels are more devastating than they first may
appear. Because quantum cryptography is often seen
as a remedy for non-immune, and thus compromised,
public classical channels. However, in order to prove
“unconditional security” of quantum cryptography, it has
to be assumed that the public classical channel is immune
(thus the necessity of classical authentication). As a
consequence, one is relegated to “growing” an initial key
at best; but key growing might be perceived as merely
a gradual improvement over classical methods, since the
identities of the communicating parties still need to be
checked by classical authentication.
In short, if a classical channel is not compromised, no

quantum cryptography is required. And since quantum
cryptographic protocols such as the one mentioned earlier
presuppose an immune classical channel, they can be
compromised if the classical channel is compromised.
This simple fact is often “taken for granted” and

not mentioned in proofs of “unconditional security of
quantum cryptography;” even in authoritative reviews of
the subject. As a consequence, those proofs are correct
relative to the absence of tampering with the classical
channel.
One of the problems with claims of absolute security

(certified by the quantum nature) is that, as in other
domains, while ignorance favours the proponents of a
technology, the real costs as well as the disadvantages
have to be borne by others having their skin in
the game. Ernst Specker called such particular
instances of non-disclosure “Jesuit lies” because neglect
to mention allegedly obvious but important and
decisive unfavourable facts is different from stating false
propositions; Jesuits have faced a not dissimilar problem
(and solution) under torture or danger.
By the same rhetoric fission reactors are ‘unconditional

secure,’ provided earthquakes and tsunamis are absent;
as well as reckless misconduct and other problems that
would make them insecure.

V. WHATEVER IT TAKES

As I have emphasized at the beginning, I have no
intention to criticize the European flagship initiative in
quantum technology on grounds that liquidity is poured
into certain quantum laboratories and industries. What I
criticize is the hubris in marketing it. Of course one might
say that, at the end of the day, nobody will remember
the claims that initiated the funding, all of its proponents
and political supporters and enablers will be gone, and
many valuable findings and technologies will spin off from
it anyhow. After all, one has to exaggerate in order to
motivate and account for resource allocation in societies

like ours.

I believe that science will fare better if it goes for
the (sometimes “awful” or complicated) truth in the
long run, and not for marketable promises. It should
be made clear to the public at large what are the
stakes and realistic prospects, and what are the risks
of funding; rather than trumpeting out vague claims
which deceive and serve expectations rather than inform.
In the public interest, as well as for scientific progress,
funding agencies and scientific organizations need to
allocate more space, time and resources to “negative”
contributions [35] which are critical about feasibility
and status; in particular, when it comes to conference
contributions and publications.

Let me finally express one opinion about a research
area that I find positively necessary to finance: nuclear
fusion research. In view of the energy crisis that will
affect and deeply transform our societies in the not-so-far
future, we need to make sure that we have sufficient
electric energy deployable, which could eventually
substitute the depleting oil reserves. I believe it is
not overstated that, despite the tremendous challenges
and obstacles in physics and material science of this
prospective technology, thermonuclear fusion reactors
could provide us with the energy our societies need;
accompanied with sustainably bearable side effects. At
the moment the two formidable problems – creating an
environment for fusion, as well as being able to thermalize
the energy released during fusion in a sustainable manner
– might require a commitment that goes far beyond the
e1 billion input into the quantum technologies flagship
initiative in quantum technology discussed here. But, as
this might become a necessity rather than a convenience
in the medium-term future, we should spend “whatever
it takes” to accomplish this energy goal; regardless of
the price of energy today, thereby transforming the
petrochemical industry, as well as our societies at large,
into entities that could survive and prosper during and
after the upcoming energy crisis.
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