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1. Algorithmic Induction 

There appears to be at least two approaches towards induction. The 
first route is by intuition and ingenuity. This route  has been successfully 
pursued by geniuses and gifted individuals. A typical representative 
of this approach to knowledge is Ramanujan who seemed to have 
attributed his revelations to a Hindu Goddess [1]. In western thought, 
this is often more secularly referred to as Platonism. Gödel appeared to 
have held the opinion that our minds have access to the truth, which 
can be discovered through personal insights – perhaps even beyond the 
bounds of universal computability – in particular, the idea that minds are 
no (Turing) machines [2, p. 216]. As successful as these narratives may 
have been, they remain anecdotal and cannot be generalized. 

When it comes to ad hoc revelations of individuals, there may also be 
psychological issues. These have been described by Freud [3], as pointing 
to the dangers caused by “temptations to project, what [the analyst] in 
dull self-perception recognizes as the peculiarities of his own personality, 
as generally valid theory into science.” A similar warning comes from 
Jaynes’ “Mind Projection Fallacy” [4, 5], pointing out that “we are all 
under an ego-driven temptation to project our private thoughts out onto the 
real world, by supposing that the creations of one’s own imagination are real 
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properties of Nature, or that one’s own ignorance signifies some kind of indecision 
on the part of Nature.” 

A second, computational, approach could be conceived in the spirit of 
Turing [6]. In this line of thought, it is possible to obtain knowledge about 
a system by mechanical, algorithmic procedures; such as a deterministic 
agent “provided with paper, pencil and rubber, and subject to strict discipline 
[carrying out a set of rules of procedure written down]” [7, p. 34]. Recently 
one of the more promising methods to algorithmic induction has been 
machine learning [8] which will be pursued in this chapter. There is even 
a form of collective intuition – the so-called swarm intelligence [9, 10, 11] – 
that can solve many logistic problems effectively. 

Two caveats should be stated upfront. First, that the general induction 
problem is – in recursion theoretic terms, the rule inference problem 
– unsolvable with respect and relative to universal computational 
capacities [12, 13, 14, 15]. So, in certain (even constructible) situations 
machine learning, like all other algorithmic induction strategies, 
provably fails. But that does not exclude heuristic methods of induction, 
such as machine learning applied to physical phenomena. Secondly, 
theoretical constructions cannot be expected to faithfully represent the 
“laws underlying” a phenomenology. As Lakatos [16] points out, the 
progressiveness and degeneracy of research programs are transient; and 
without a recognizable coherent conceptual convergence. Therefore, the 
“explanations” and theoretical models generated by machine learning 
present knowledge and explanations which cannot claim to have any 
ontologic (only epistemic) relevance – they are means relative to the 
respective methods employed. 

Whereas machine learning has already been applied to very specific 
problems in high energy [17] and solid-state physics [18], we would like 
to propose this as an extremely general method of theory formation and 
induction. 

We are applying the obtained machine representations to predict 
a simulacrum – we are, in particular, interested in universal Turing 
computation; at least until a finite amount of computational space and 
time [19]. 

2. Linear Models of Inertial Motion 

In what follows a linear regression model (Sect. 5.1.4) [8], will be used. 
Thereby we shall, if not stated otherwise, explicitly closely follow the 
notation of Mermin’s book on Quantum Computer Science [20]. 

Suppose, for the sake of demonstration, a one-dimensional physical 
system of a particle in inertial motion. Suppose further that it has been 
(approximately) measured already at n ≥ 2 positions x1 , . . . , xn at times 
t1 , . . . , tn , respectively. The goal is to find a general algorithm which 
predicts its location at an arbitrary time T . 
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In what follows the respective positions and times are (not necessarily 
successively) arranged as n-tuples; that is, as a finite ordered list of 
elements, and interpreted as (n × 1)-matrices 

  x ≡ ( ,xi  
1 

..., xin 
)T 

  t ≡ ( ,t
1

..., T
i  

 
tin  

)   (1)

where superscript T  indicates transposition, and i1  , . . . , in  are arbitrary 
permutations of 1, . . . , n. That is, it is not necessary to order the events 
temporally; actually, they can “run backward” or be randomly arranged 
[21]. 

A  linear regression Ansatz is used to find a linear model for the 
prediction of some unknown observable, given some of the anecdotal 
instances of its performance. More formally, let y be an arbitrary 
observable which depends on n parameters x1  , . . . , xn  by linear means; 
that is, by 

n 

 y =  ∑x ri i  = x r     (2) 
i = 1 

where x = ( )x T is the transpose of the vector x , the tuple 

 r  = ( r  T 
1 , . . . , rn)    (3) 

contains the unknown weights of the approximation – the “theory,” if 
you like – and a b  = ∑ a b

i i i  stands for the Euclidean scalar product of 
the tuples interpreted as (dual) vectors in n-dimensional (dual) vector 
space 



n . 
Given are m known instances of (2); that is, suppose m pairs  are 

( ,zj x j ) known. These data can be bundled into an m-tuple

  z ≡ ( ,zj1 
..., z jm  

)T  (4)

and an (m × n)-matrix 

⎛
x j i  … ⎞
 
⎜ 1 1  

xj i1 n ⎟ 
  X ≡
 ⎜ � � �
 ⎟  (5)
 

⎜ ⎟x ⎝ j i   x
 m 1 
� j im n ⎠


where j1 , . . . , jm  are arbitrary permutations of 1, . . . , m, and the matrix rows 
are just the vectors x j ≡ 

k
(x T

j i  , 
 k 1 

xjk i 
) 

n 
.

The task is to compute a “good” estimate of r ; that is, an estimate 
of r  which allows for an “optimal” computation of the prediction y. 
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Suppose that agood way to measure the performance of the prediction 
from some particular definite but unknown r  with respect to the m 

given data ( ,zj x j )  is by the mean squared error (MSE)

1 2 1 =
2

y − z  X r  − z 
m m 

1 =
m 

(X r  − z ) (T X r  − z )
1 = ( r XT − z ) (X r − z
m 

)
1 = ( r XT  X r  − z X r − r XT z  + z z
m )

1 = ⎡ r XT X r  − z ( r X T T) −  r XT z  + z z ⎤
m ⎣ ⎦

1 = { r X TX r − [( r XT )T T] z  − r XT z  + z z
m }

1 T T
    = ( r X  X r  − 2 r X  z  + z z ) .  (6)m 

In order to minimize the mean squared error (6) with respect to 
variations of  r  one obtains a condition for “the linear theory” y by  
setting its derivatives (its gradient) to zero; that is 

  ∂  MSE = r 0.    (7) 

A  lengthy but straightforward computation yields 

∂ 
(rj  X XTT  TT

j k + z zj j  )∂r jk klrl − 2r X jk z 
                           i 

 =  δ T
ijX XT

jk klrl  + r TT 
jX Xjk δil − 2δ XTT

kl  ij jk zk 

 =  X XTT 
ik klrl  + rj  X XTT T

jk ki − 2XT
ik zk

 =  X XTT r + X XTT 
j r

TT
ik kl l ik k j  − 2Xik zk 

 =  2X XTT
ik XTT

kj rj − 2 ik zk 

 =  2(X XΤΤ | r〉 − XΤΤ | )z〉 = 0  (8) 

and finally, upon multiplication with (XTX)–1 from the left, 

  r = (X XT ) −1 X T z .  (9)

A  short plausibility check for n = m = 1 yields the linear dependency 
z = X r .
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Coming back to the one-dimensional physical system of a particle 
in inertial motion, we could characterize inertial motion in machine 
learning and linear regression terms by the requirement that the Ansatz 
(2) is “good” in the sense that predictions can be made to a “sufficient 
degree” (a term which is arbitrary, subjective and thus conventional); that 
is, within a pre-defined error. 

If the particle does not pass through the origin, it might be necessary 
to augment Eq. (2) with an affine term d, which can be absorbed into  
x′ = ( ,x1′  ..., xn′  + 1)  = (x T

1,…, xn , 1)  and r ′ = ( ,r1′  ..., rn′ + 1) = (r1,…, rn , d)T 
such that 

n n+1 

 y =  ∑x r ′ ′
i i  = x r  + d = ∑ xi ir  (10)

i=1 i=1 

3.  Nonlinear Models of Noninertial Motion 

The linear Ansatz (2) fails for noninertial motion. One possible way 
to cope with nonlinearities would be to introduce extra dimensions 
corresponding to nonlinear terms, such as xl  for 2 ≤ l ≤ d < ∞; with the 
consequence that the dimensionality of the parameter space increases. 

To cope with nonlinear phenomena, deep forward networks have  
been used in machine learning [8, Chapt. 6]. This strategy of deep 
learning invokes intermediate hidden theoretical layers of description which 
communicate with each other. For the sake of an example, suppose there 
are two functions g and h, connected in a chain by functional substitution, 
such that f(x) = h(g(x)). The length of the chain is identified with the depth 
of the model – in this case two. g is the first layer of the model. The final 
layer – in this case h – is called the output layer. 

Unfortunately, the linear regression Ansatz (10) for g and h 
would effectively be linear again. Therefore, to model a nonlinear  
phenomenology, a nonlinear Ansatz for at least one layer has to be 
implemented. Such networks are capable of approximating any Borel 
measurable function (and its derivative, even if it is a generalized function) 
from one finite-dimensional space to another [22, 23, 24]. 

4.  Simulation of Universal Turing Machines by Deep 
Forward Networks 

It could be suspected that, even though for all practical purposes [25] 
the methods and techniques discussed so far are “good,” the task of 
finding “better and better” approximations or even total correspondence 
might, at least in some cases, turn out to be “difficult” if not outrightly 
impossible. Because suppose, for the sake of a reductio ad absurdum – 
more precisely, a reduction to the rule inference and halting problems 
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– that such learning of the exact behavior would be computable. Such a 
suspicion might be tempting, considering the approximate “solution” 
of the general rule inference problem [12, 13, 14, 15] suggested earlier in 
the limit of infinite precision. Alas, any such unbounded computation, 
as long as it needs to be finite, would run into the problem that no 
computable rate of convergence can be given – very much like the Busy 
Beaver function [26] or Chaitin’s halting probability Ω [27, 28]. Formally, 
any such claim can be reduced to the rule inference and the halting problem 
of universal computers. The situation is not dissimilar to series solutions 
of the n-body problem [29], which may converge “very slowly” (indeed, 
intractably slow in numerical work [30]); but if the system encodes a 
universal computer, they cannot converge in general due to the reduction 
to the halting problem [31]. 

However, one could (courageously) “invert” or transform these 
objections and deficiencies into virtues [32, 33] and argue that, for all 
practical purposes and in many relevant instantiations, machine learning, 
and, in particular, deep forward networks, may turn out to be effective 
in the simulation of universal computers such as a universal Turing 
machine. Thereby the criterion is not to obtain an exact correspondence; 
rather the result of the simulation should be “good enough” to justify 
its use. 

For the sake of an example, think of the typical physical estimate of 
a quantity in terms of orders of magnitude: very often, the applicability 
of a suggestion or technique does not depend on the exact observable 
value it generates but rather on the order of its impact. This is not 
dissimilar to certain quantum advantages: for instance, the Deutsch 
algorithm identifies the parity or (non)constancy of a binary function of a 
single bit without identifying the actual function [20]; thereby rendering 
a partitioning of the set of all such individual functions. 

How could one imagine training a deep forward network to simulate a 
universal computer? Fairly simple: let it access the input-output behavior 
of actual “exact” devices with von Neuman architecture. After “lots of ” 
training, the network should be able to emulate the performance of this 
architecture within “reasonable precision.” That is, it won’t be able to 
give the exact value of, say, an algebraic operation like n + m for “large” 
(for physical realizability) numbers n and m. But it might be able to output 
some estimates which are “close to” (for the applicability) the exact result. 

One could also say that, in this scheme, the deep forward network 
acts as an oracle with respect to the universal computer. And although 
the training of it may take some time because of the sheer training 
volume, as well as the conceivable computational complexity of the 
individual input-output functions involved, eventually, the trained 
network is not bound by these restrictions and can reach an (approximate) 
result quite fast; such that the computation time it takes for any simulation 
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is uniformly bounded from above. In particular, the halting problem can 
be said to be “for all practical purposes (FAPP) solvable” by such oracles; 
but, of course, no guarantee of validity or total precision can be given. 
Inadvertently one cannot exclude instances in which the deep forward 
network predicts halting whereas the universal computer it simulates 
does not halt, and vice versa. 

One may also ask: where exactly is the physical resource rendering 
the computational capacity of such “universal” deep forward networks 
located? There has to be some formal symbolic encoding in terms of 
physical components or entities making the simulation feasible and 
effective. One rather straightforward way to answer this is in terms 
of the connections or correlations among the nodes involved: if they are 
modeled as continuous formal entities such as real or complex numbers 
then the capacity of even a finite such configuration to store information 
is unbounded. 

In more pragmatic, practical terms the non-exact but effective 
simulation of general (universal) computations may also present a way 
to circumvent the stall in Moore’s law which can be observed already for 
a couple of years. Currently, because of physical restrictions on circuit 
and switch designs, most improvements in performance are due to 
parallelization rather than miniaturization. Eventually, the switching 
time of electronic devices is restricted by fundamental limits from below 
on resistance; in particular the von Klitzing constant Rk. 

5. Discussion 

One objection for applying machine learning algorithms to physical theory 
creation or simulation of universal computers might be that the resulting 
representations lack any sort of “meaning;” that is, these representations 
amount to pure syntax devoid of any conceptual semantics. But if 
conceptual semantics is omitted, there can be no true “understanding” 
of the “physics behind” the phenomena, or the computational processes 
yielding those estimates. 

One may counter this criticism by noticing that, first, underlying 
such objections is the premise that something can actually be discovered 
or revealed. This realistic ontology is by far from non-trivial and is 
heavily debated [34, 35, 36]. If, for example, the phenomena emerges 
from primordial chaos, such as in Greek mythology and cosmology, 
χαoς , then any “meaning” one might present and “discover” ultimately 
remains a (pragmatic) narrative or a mathematical abstraction such as 
Ramsey theory at best: for any data, there cannot be no correlations – 
regardless of the origin or type of empirical data, there always has to be 
some, maybe spurious [37, 38], regularity or coincidences or properties. 
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How can it be excluded that the laws of physics mean nothing but yet 
undiscovered consequences of Ramsey theory? 

Second, as has already been pointed out, historic evidence seems to 
suggest that successive physical conceptual models (say, of gravity) are 
not continuously evolving; but that they are disruptive and dissimilar 
[39, 16]: they lack conceptual convergence. One may even go so far as to 
suggest that, in any case, theories are (more or less [40]) successful belief 
systems; very much like Greek mythology [41]. 

Third, also the present perception of the quantum mechanical 
formalism includes, among other inclinations, the position that no 
interpretation is necessary [42]; that indeed, interpretation is even 
dangerous and detrimental for the researcher [43, p. 129]; or that, at the 
very least, there are no issues with respect to interpretation [44]. 

Nevertheless, it might be quite amusing to study toy universes 
capable of universal computation, such as Conway’s game of life, via 
intrinsic, embedded, machine learning algorithms. It cannot be excluded 
that these kinds of algorithmic agents “come up” with the “right rules;” 
that is those rules which define the toy mini-universe. It can be expected 
that if a machine learning algorithm performs excellently on particular 
problems then it necessarily has a degraded performance on the set of all 
remaining problems [45, 46]. 

In any case, the manner in which physical theories are created and 
invented by human individuals is not dissimilar from machine learning. 
And machine learning might become of great practical utility for the 
simulation of (universal) computations. 
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