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Introduction

T H I S I S A F O U RT H AT T E M P T to provide some written material of a “It is not enough to have no concept, one
must also be capable of expressing it.”
From the German original in Karl Kraus,
Die Fackel 697, 60 (1925): “Es genügt
nicht, keinen Gedanken zu haben: man
muss ihn auch ausdrücken können.”

course in mathemathical methods of theoretical physics. I have pre-

sented this course to an undergraduate audience at the Vienna Univer-

sity of Technology. Only God knows (see Ref. 1 part one, question 14,

1 Thomas Aquinas. Summa Theologica.
Translated by Fathers of the English
Dominican Province. Christian Classics
Ethereal Library, Grand Rapids, MI, 1981.
URL http://www.ccel.org/ccel/

aquinas/summa.html

article 13; and also Ref. 2, p. 243) if I have succeeded to teach them the

2 Ernst Specker. Die Logik nicht gle-
ichzeitig entscheidbarer Aussagen.
Dialectica, 14(2-3):239–246, 1960. D O I :
10.1111/j.1746-8361.1960.tb00422.x.
URL http://dx.doi.org/10.1111/j.

1746-8361.1960.tb00422.x

subject! I kindly ask the perplexed to please be patient, do not panic un-

der any circumstances, and do not allow themselves to be too upset with

mistakes, omissions & other problems of this text. At the end of the day,

everything will be fine, and in the long run we will be dead anyway.

I A M R E L E A S I N G T H I S text to the public domain because it is my convic-

tion and experience that content can no longer be held back, and access

to it be restricted, as its creators see fit. On the contrary, in the attention

economy – subject to the scarcity as well as the compound accumulation

of attention – we experience a push toward so much content that we can

hardly bear this information flood, so we have to be selective and restric-

tive rather than aquisitive. I hope that there are some readers out there

who actually enjoy and profit from the text, in whatever form and way

they find appropriate.

S U C H U N I V E R S I T Y T E X T S A S T H I S O N E – and even recorded video tran-

scripts of lectures – present a transitory, almost outdated form of teach-

ing. Future generations of students will most likely enjoy massive open

online courses (MOOCs) that might integrate interactive elements and

will allow a more individualized – and at the same time automated – form

of learning. What is most important from the viewpoint of university

administrations is that (i) MOOCs are cost-effective (that is, cheaper

than standard tuition) and (ii) the know-how of university teachers and

researchers gets transferred to the university administration and man-

agement; thereby the dependency of the university management on

teaching staff is considerably alleviated. In the latter way, MOOCs are

the implementation of assembly line methods (first introduced by Henry

Ford for the production of affordable cars) in the university setting. To-

gether with “scientometric” methods which have their origin in both

Bolshevism as well as in Taylorism 3, automated teaching is transforming 3 Frederick Winslow Taylor. The
Principles of Scientific Management.
Harper Bros., New York, NY, 1911. URL
https://archive.org/details/

principlesofscie00taylrich

http://www.ccel.org/ccel/aquinas/summa.html
http://www.ccel.org/ccel/aquinas/summa.html
http://dx.doi.org/10.1111/j.1746-8361.1960.tb00422.x
http://dx.doi.org/10.1111/j.1746-8361.1960.tb00422.x
https://archive.org/details/principlesofscie00taylrich
https://archive.org/details/principlesofscie00taylrich


x Mathematical Methods of Theoretical Physics

schools and universites, and in particular, the old Central European uni-

versities, as much as the Ford Motor Company (NYSE:F) has transformed

the car industry, and the Soviets have transformed Czarist Russia. To this

end, for better or worse, university teachers become accountants 4, and 4 Karl Svozil. Versklavung durch Verbuch-
halterung. Mitteilungen der Vereinigung
Österreichischer Bibliothekarinnen &
Bibliothekare, 60(1):101–111, 2013. URL
http://eprints.rclis.org/19560/

“science becomes bureaucratized; indeed, a higher police function. The

retrieval is taught to the professors. 5”

5 Ernst Jünger. Heliopolis. Rückblick
auf eine Stadt. Heliopolis-Verlag Ewald
Katzmann, Tübingen, 1949

German original “die Wissenschaft
wird bürokratisiert, ja Funktion der
höheren Polizei. Den Professoren wird das
Apportieren beigebracht.”

TO N E W C O M E R S in the area of theoretical physics (and beyond) I

strongly recommend to consider and acquire two related proficiencies:

If you excuse a maybe utterly dis-
placed comparison, this might be
tantamount only to studying the
Austrian family code (“Ehegesetz”)
from §49 onward, available through
http://www.ris.bka.gv.at/Bundesrecht/

before getting married.

• to learn to speak and publish in LATEX and BibTeX; in particular, in the

implementation of TeX Live. LATEX’s various dialects and formats, such

as REVTeX, provide a kind of template for structured scientific texts,

thereby assisting you writing and publishing consistently and with

methodologic rigour;

• to subsribe to and browse through preprints published at the website

arXiv.org, which provides open access to more than three quarters

of a million scientific texts; most of them written in and compiled

by LATEX. Over time, this database has emerged as a de facto standard

from the initiative of an individual researcher working at the Los

Alamos National Laboratory (the site at which also the first nuclear

bomb has been developed and assembled). Presently it happens to

be administered by Cornell University. I suspect (this is a personal

subjective opinion) that (the successors of) arXiv.org will eventually

bypass if not supersede most scientific journals of today.

So this very text is written in LATEX and accessible freely via arXiv.org

under eprint number arXiv:1203.4558. http://arxiv.org/abs/1203.4558

M Y OW N E N C O U N T E R with many researchers of different fields and dif-

ferent degrees of formalization has convinced me that there is no single,

unique “optimal” way of formally comprehending a subject 6. With re- 6 Philip W. Anderson. More is different.
Science, 177(4047):393–396, August 1972.
D O I : 10.1126/science.177.4047.393. URL
http://dx.doi.org/10.1126/science.

177.4047.393

gards to formal rigour, there appears to be a rather questionable chain of

contempt – all too often theoretical physicists look upon the experimen-

talists suspiciously, mathematical physicists look upon the theoreticians

skeptically, and mathematicians look upon the mathematical physicists

dubiously. I have even experienced the distrust formal logicians ex-

pressed about their collegues in mathematics! For an anectodal evidence,

take the claim of a prominent member of the mathematical physics com-

munity, who once dryly remarked in front of a fully packed audience,

“what other people call ‘proof’ I call ‘conjecture’!”

S O P L E A S E B E AWA R E that not all I present here will be acceptable to

everybody; for various reasons. Some people will claim that I am too

confusing and utterly formalistic, others will claim my arguments are in

desparate need of rigour. Many formally fascinated readers will demand

to go deeper into the meaning of the subjects; others may want some

easy-to-identify pragmatic, syntactic rules of deriving results. I apologise

to both groups from the outset. This is the best I can do; from certain

http://eprints.rclis.org/19560/
http://arxiv.org/abs/1203.4558
http://dx.doi.org/10.1126/science.177.4047.393
http://dx.doi.org/10.1126/science.177.4047.393
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different perspectives, others, maybe even some tutors or students,

might perform much better.

I A M C A L L I N G for more tolerance and a greater unity in physics; as well

as for a greater esteem on “both sides of the same effort;” I am also opt-

ing for more pragmatism; one that acknowledges the mutual benefits

and oneness of theoretical and empirical physical world perceptions.

Schrödinger 7 cites Democritus with arguing against a too great sep- 7 Erwin Schrödinger. Nature and the
Greeks. Cambridge University Press,
Cambridge, 1954

aration of the intellect (διανoια, dianoia) and the senses (αισθησεις,

aitheseis). In fragment D 125 from Galen 8, p. 408, footnote 125 , the in- 8 Hermann Diels. Die Fragmente der
Vorsokratiker, griechisch und deutsch.
Weidmannsche Buchhandlung, Berlin,
1906. URL http://www.archive.org/

details/diefragmentederv01dieluoft

tellect claims “ostensibly there is color, ostensibly sweetness, ostensibly

bitterness, actually only atoms and the void;” to which the senses retort:

“Poor intellect, do you hope to defeat us while from us you borrow your

evidence? Your victory is your defeat.” German: Nachdem D. [[Demokri-
tos]] sein Mißtrauen gegen die
Sinneswahrnehmungen in dem Satze
ausgesprochen: ‘Scheinbar (d. i. konven-
tionell) ist Farbe, scheinbar Süßigkeit,
scheinbar Bitterkeit: wirklich nur Atome
und Leeres” läßt er die Sinne gegen den
Verstand reden: ‘Du armer Verstand, von
uns nimmst du deine Beweisstücke und
willst uns damit besiegen? Dein Sieg ist
dein Fall!’

In his 1987 Abschiedsvorlesung professor Ernst Specker at the Eid-

genössische Hochschule Zürich remarked that the many books authored

by David Hilbert carry his name first, and the name(s) of his co-author(s)

second, although the subsequent author(s) had actually written these

books; the only exception of this rule being Courant and Hilbert’s 1924

book Methoden der mathematischen Physik, comprising around 1000

densly packed pages, which allegedly none of these authors had actually

written. It appears to be some sort of collective effort of scholars from the

University of Göttingen.

So, in sharp distinction from these activities, I most humbly present

my own version of what is important for standard courses of contempo-

rary physics. Thereby, I am quite aware that, not dissimilar with some

attempts of that sort undertaken so far, I might fail miserably. Because

even if I manage to induce some interest, affaction, passion and under-

standing in the audience – as Danny Greenberger put it, inevitably four

hundred years from now, all our present physical theories of today will

appear transient 9, if not laughable. And thus in the long run, my efforts 9 Imre Lakatos. Philosophical Papers.
1. The Methodology of Scientific Research
Programmes. Cambridge University Press,
Cambridge, 1978

will be forgotten (although, I do hope, not totally futile); and some other

brave, courageous guy will continue attempting to (re)present the most

important mathematical methods in theoretical physics.

A L L T H I N G S C O N S I D E R E D, it is mind-boggling why formalized thinking

and numbers utilize our comprehension of nature. Even today eminent

researchers muse about the “unreasonable effectiveness of mathematics in

the natural sciences” 10. 10 Eugene P. Wigner. The unreasonable
effectiveness of mathematics in the
natural sciences. Richard Courant Lecture
delivered at New York University, May
11, 1959. Communications on Pure and
Applied Mathematics, 13:1–14, 1960. D O I :
10.1002/cpa.3160130102. URL http://

dx.doi.org/10.1002/cpa.3160130102

Zeno of Elea and Parmenides, for instance, wondered how there can

be motion if our universe is either infinitely divisible or discrete. Because,

in the dense case (between any two points there is another point), the

slightest finite move would require an infinity of actions. Likewise in the

discrete case, how can there be motion if everything is not moving at all

times 11? 11 H. D. P. Lee. Zeno of Elea. Cambridge
University Press, Cambridge, 1936; Paul
Benacerraf. Tasks and supertasks, and the
modern Eleatics. Journal of Philosophy,
LIX(24):765–784, 1962. URL http:

//www.jstor.org/stable/2023500;
A. Grünbaum. Modern Science and Zeno’s
paradoxes. Allen and Unwin, London,
second edition, 1968; and Richard Mark
Sainsbury. Paradoxes. Cambridge
University Press, Cambridge, United
Kingdom, third edition, 2009. ISBN
0521720796

The Pythagoreans are often cited to have believed that the universe

is natural numbers or simple fractions thereof, and thus physics is just a

part of mathematics; or that there is no difference between these realms.

They took their conception of numbers and world-as-numbers so seri-

http://www.archive.org/details/diefragmentederv01dieluoft
http://www.archive.org/details/diefragmentederv01dieluoft
http://dx.doi.org/10.1002/cpa.3160130102
http://dx.doi.org/10.1002/cpa.3160130102
http://www.jstor.org/stable/2023500
http://www.jstor.org/stable/2023500
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ously that the existence of irrational numbers which cannot be written

as some ratio of integers shocked them; so much so that they allegedly

drowned the poor guy who had discovered this fact. That appears to be

a saddening case of a state of mind in which a subjective metaphysical

belief in and wishful thinking about one’s own constructions of the world

overwhelms critical thinking; and what should be wisely taken as an

epistemic finding is taken to be ontologic truth.

The relationship between physics and formalism has been debated by

Bridgman 12, Feynman 13, and Landauer 14, among many others. It has 12 Percy W. Bridgman. A physicist’s
second reaction to Mengenlehre. Scripta
Mathematica, 2:101–117, 224–234, 1934
13 Richard Phillips Feynman. The Feynman
lectures on computation. Addison-Wesley
Publishing Company, Reading, MA, 1996.
edited by A.J.G. Hey and R. W. Allen
14 Rolf Landauer. Information is physical.
Physics Today, 44(5):23–29, May 1991.
D O I : 10.1063/1.881299. URL http:

//dx.doi.org/10.1063/1.881299

many twists, anecdotes and opinions. Take, for instance, Heaviside’s not

uncontroversial stance 15 on it:

15 Oliver Heaviside. Electromagnetic
theory. “The Electrician” Printing and
Publishing Corporation, London, 1894-
1912. URL http://archive.org/

details/electromagnetict02heavrich

I suppose all workers in mathematical physics have noticed how the mathe-

matics seems made for the physics, the latter suggesting the former, and that

practical ways of working arise naturally. . . . But then the rigorous logic of

the matter is not plain! Well, what of that? Shall I refuse my dinner because

I do not fully understand the process of digestion? No, not if I am satisfied

with the result. Now a physicist may in like manner employ unrigorous

processes with satisfaction and usefulness if he, by the application of tests,

satisfies himself of the accuracy of his results. At the same time he may be

fully aware of his want of infallibility, and that his investigations are largely

of an experimental character, and may be repellent to unsympathetically

constituted mathematicians accustomed to a different kind of work. [§225]

Dietrich Küchemann, the ingenious German-British aerodynamicist

and one of the main contributors to the wing design of the Concord

supersonic civil aercraft, tells us 16 16 Dietrich Küchemann. The Aerodynamic
Design of Aircraft. Pergamon Press,
Oxford, 1978[Again,] the most drastic simplifying assumptions must be made before we

can even think about the flow of gases and arrive at equations which are

amenable to treatment. Our whole science lives on highly-idealised concepts

and ingenious abstractions and approximations. We should remember

this in all modesty at all times, especially when somebody claims to have

obtained “the right answer” or “the exact solution”. At the same time, we

must acknowledge and admire the intuitive art of those scientists to whom

we owe the many useful concepts and approximations with which we work

[page 23].

The question, for instance, is imminent whether we should take the

formalism very seriously and literally, using it as a guide to new territo-

ries, which might even appear absurd, inconsistent and mind-boggling;

just like Carroll’s Alice’s Adventures in Wonderland. Should we expect that

all the wild things formally imaginable have a physical realization?

It might be prudent to adopt a contemplative strategy of evenly-

suspended attention outlined by Freud 17, who admonishes analysts to be 17 Sigmund Freud. Ratschläge für den Arzt
bei der psychoanalytischen Behandlung.
In Anna Freud, E. Bibring, W. Hoffer,
E. Kris, and O. Isakower, editors, Gesam-
melte Werke. Chronologisch geordnet.
Achter Band. Werke aus den Jahren 1909–
1913, pages 376–387, Frankfurt am Main,
1999. Fischer

aware of the dangers caused by “temptations to project, what [the analyst]

in dull self-perception recognizes as the peculiarities of his own personal-

ity, as generally valid theory into science.” Nature is thereby treated as a

client-patient, and whatever findings come up are accepted as is without

any immediate emphasis or judgment. This also alleviates the dangers

of becoming embittered with the reactions of “the peers,” a problem

sometimes encountered when “surfing on the edge” of contemporary

knowledge; such as, for example, Everett’s case 18. 18 Hugh Everett III. The Everett interpre-
tation of quantum mechanics: Collected
works 1955-1980 with commentary.
Princeton University Press, Princeton,
NJ, 2012. ISBN 9780691145075. URL
http://press.princeton.edu/titles/

9770.html

Jaynes has warned of the “Mind Projection Fallacy” 19, pointing out

19 Edwin Thompson Jaynes. Clearing
up mysteries - the original goal. In John
Skilling, editor, Maximum-Entropy and
Bayesian Methods: : Proceedings of the 8th
Maximum Entropy Workshop, held on Au-
gust 1-5, 1988, in St. John’s College, Cam-
bridge, England, pages 1–28. Kluwer, Dor-
drecht, 1989. URL http://bayes.wustl.

edu/etj/articles/cmystery.pdf; and
Edwin Thompson Jaynes. Probability
in quantum theory. In Wojciech Hubert
Zurek, editor, Complexity, Entropy, and
the Physics of Information: Proceedings
of the 1988 Workshop on Complexity,
Entropy, and the Physics of Information,
held May - June, 1989, in Santa Fe, New
Mexico, pages 381–404. Addison-Wesley,
Reading, MA, 1990. ISBN 9780201515091.
URL http://bayes.wustl.edu/etj/

articles/prob.in.qm.pdf

http://dx.doi.org/10.1063/1.881299
http://dx.doi.org/10.1063/1.881299
http://archive.org/details/electromagnetict02heavrich
http://archive.org/details/electromagnetict02heavrich
http://press.princeton.edu/titles/9770.html
http://press.princeton.edu/titles/9770.html
http://bayes.wustl.edu/etj/articles/cmystery.pdf
http://bayes.wustl.edu/etj/articles/cmystery.pdf
http://bayes.wustl.edu/etj/articles/prob.in.qm.pdf
http://bayes.wustl.edu/etj/articles/prob.in.qm.pdf
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that “we are all under an ego-driven temptation to project our private

thoughts out onto the real world, by supposing that the creations of one’s

own imagination are real properties of Nature, or that one’s own ignorance

signifies some kind of indecision on the part of Nature.”

And yet, despite all aforementioned provisos, science finally suc-

ceeded to do what the alchemists sought for so long: we are capable of

producing gold from mercury 20. 20 R. Sherr, K. T. Bainbridge, and H. H. An-
derson. Transmutation of mercury by fast
neutrons. Physical Review, 60(7):473–479,
Oct 1941. D O I : 10.1103/PhysRev.60.473.
URL http://dx.doi.org/10.1103/

PhysRev.60.473

o
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Linear vector spaces





1
Finite-dimensional vector spaces

V E C TO R S PAC E S are prevalent in physics; they are essential for an un- “I would have written a shorter letter,
but I did not have the time.” (Literally: “I
made this [letter] very long, because I did
not have the leisure to make it shorter.”)
Blaise Pascal, Provincial Letters: Letter XVI
(English Translation)

“Perhaps if I had spent more time I
should have been able to make a shorter
report . . .” James Clerk Maxwell , Docu-
ment 15, p. 426

Elisabeth Garber, Stephen G. Brush, and
C. W. Francis Everitt. Maxwell on Heat
and Statistical Mechanics: On “Avoiding
All Personal Enquiries” of Molecules.
Associated University Press, Cranbury, NJ,
1995. ISBN 0934223343

derstanding of mechanics, relativity theory, quantum mechanics, and

statistical physics.

1.1 Conventions and basic definitions

This presentation is greatly inspired by Halmos’ compact yet comprehen-

sive treatment “Finite-Dimensional Vector Spaces” 1. I greatly encourage

1 Paul Richard Halmos. Finite-
dimensional Vector Spaces. Springer,
New York, Heidelberg, Berlin, 1974

the reader to have a look into that book. Of course, there exist zillions

of other very nice presentations, among them Greub’s “Linear algebra,”

and Strang’s “Introduction to Linear Algebra,” among many others, even

freely downloadable ones 2 competing for your attention.

2 Werner Greub. Linear Algebra, vol-
ume 23 of Graduate Texts in Mathematics.
Springer, New York, Heidelberg, fourth
edition, 1975; Gilbert Strang. Introduction
to linear algebra. Wellesley-Cambridge
Press, Wellesley, MA, USA, fourth edition,
2009. ISBN 0-9802327-1-6. URL http:

//math.mit.edu/linearalgebra/;
Howard Homes and Chris Rorres. Elemen-
tary Linear Algebra: Applications Version.
Wiley, New York, tenth edition, 2010;
Seymour Lipschutz and Marc Lipson.
Linear algebra. Schaum’s outline series.
McGraw-Hill, fourth edition, 2009; and
Jim Hefferon. Linear algebra. 320-375,
2011. URL http://joshua.smcvt.edu/

linalg.html/book.pdf

Unless stated differently, only finite-dimensional vector spaces will be

considered.

In what follows the overline sign stands for complex conjugation; that

is, if a =ℜa + iℑa is a complex number, then a =ℜa − iℑa.

A supercript “T ” means transposition.

The physically oriented notation in Mermin’s book on quantum in-

formation theory 3 is adopted. Vectors are either typed in bold face, or in

3 David N. Mermin. Lecture notes on
quantum computation. 2002-2008.
URL http://people.ccmr.cornell.

edu/~mermin/qcomp/CS483.html; and
David N. Mermin. Quantum Computer
Science. Cambridge University Press,
Cambridge, 2007. ISBN 9780521876582.
URL http://people.ccmr.cornell.

edu/~mermin/qcomp/CS483.html

Dirac’s “bra-ket” notation4. Both notations will be used simultaneously

4 Paul A. M. Dirac. The Principles of
Quantum Mechanics. Oxford University
Press, Oxford, 1930

and equivalently; not to confuse or obfuscate, but to make the reader

familiar with the bra-ket notation used in quantum physics.

Thereby, the vector x is identified with the “ket vector” |x〉. Ket vectors

will be represented by column vectors, that is, by vertically arranged

tuples of scalars, or, equivalently, as n ×1 matrices; that is,

x ≡ |x〉 ≡


x1

x2
...

xn

 . (1.1)

The vector x∗ from the dual space (see later, Section 1.8 on page 14)

is identified with the “bra vector” 〈x|. Bra vectors will be represented

by row vectors, that is, by horizontally arranged tuples of scalars, or,

http://math.mit.edu/linearalgebra/
http://math.mit.edu/linearalgebra/
http://joshua.smcvt.edu/linalg.html/book.pdf
http://joshua.smcvt.edu/linalg.html/book.pdf
http://people.ccmr.cornell.edu/~mermin/qcomp/CS483.html
http://people.ccmr.cornell.edu/~mermin/qcomp/CS483.html
http://people.ccmr.cornell.edu/~mermin/qcomp/CS483.html
http://people.ccmr.cornell.edu/~mermin/qcomp/CS483.html
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equivalently, as 1×n matrices; that is,

x∗ ≡ 〈x| ≡
(
x1, x2, . . . , xn

)
. (1.2)

Dot (scalar or inner) products between two vectors x and y in Eu-

clidean space are then denoted by “〈bra|(c)|ket〉” form; that is, by 〈x|y〉.
For an n ×m matrix A we shall us the index notation

A≡


a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...

an1 an2 · · · anm

≡ ai j . (1.3)

A matrix multiplication (written with or without dot) A ·B = AB of an

n ×m matrix A ≡ ai j with an m × l matrix B ≡ bpq can then be written

as an n × l matrix A ·B ≡ ai j b j k , 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ l . Here

the Einstein summation convention has been used, which requires that,

when an index variable appears twice in a single term, one has to sum

over all of the possible index values. Stated differently, if A is an n ×m

matrix and B is an m×l matrix, their matrix product AB is an n×l matrix,

in which the m entries across the rows of A are multiplied with the m

entries down the columns of B.

As already stated, a ket and bra vectors (from the original or the dual

vector space; exact definitions will be given later) will be coded – with

respect to a basis or coordinate system (see below) – as an n-tuple of

numbers; which are arranged either a n ×1 matrices (column vectors),

or a 1×n matrices (row vectors), respectively. We can then write certain

terms very compactly (alas often misleadingly). Suppose, for instance,

that |x〉 ≡ x ≡
(
x1, x2, . . . , xn

)T
and |y〉 ≡ y ≡

(
y1, y2, . . . , yn

)T
are two (col-

umn) vectors (with respect to a given basis). Then, xi y j ai j can (some-

what superficially) be represented as a matrix multiplication xT Ay of a

row vector with a matrix and a column vector yielding a scalar; which

in turn can be interpreted as a 1× 1 matrix. Note that, as “T ” indicates

transposition yT ≡
[(

y1, y2, . . . , yn

)T
]T

=
(

y1, y2, . . . , yn

)
represents a row Note that double transposition yields the

identity.
vector, whose components or coordinates with respect to a particular

(here undisclosed) basis are the scalars yi .

1.1.1 Fields of real and complex numbers

In physics, scalars occur either as real or complex numbers. Thus we

shall restrict our attention to these cases.

A field 〈F,+, ·,−,−1 ,0,1〉 is a set together with two operations, usually

called addition and multiplication, denoted by “+” and “·” (often “a ·b” is

identified with the expression “ab” without the center dot) respectively,

such that the following conditions (or, stated differently, axioms) hold:

(i) closure of Fwith respect to addition and multiplication: for all a,b ∈
F, both a +b and ab are in F;

(ii) associativity of addition and multiplication: for all a, b, and c in F,

the following equalities hold: a+(b+c) = (a+b)+c, and a(bc) = (ab)c;
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(iii) commutativity of addition and multiplication: for all a and b in F,

the following equalities hold: a +b = b +a and ab = ba;

(iv) additive and multiplicative identity: there exists an element of F,

called the additive identity element and denoted by 0, such that for all

a in F, a+0 = a. Likewise, there is an element, called the multiplicative

identity element and denoted by 1, such that for all a in F, 1 · a = a.

(To exclude the trivial ring, the additive identity and the multiplicative

identity are required to be distinct.)

(v) additive and multiplicative inverses: for every a in F, there exists an

element −a in F, such that a + (−a) = 0. Similarly, for any a in F other

than 0, there exists an element a−1 in F, such that a · a−1 = 1. (The

elements +(−a) and a−1 are also denoted −a and 1
a , respectively.)

Stated differently: subtraction and division operations exist.

(vi) Distributivity of multiplication over addition: For all a, b and c in F,

the following equality holds: a(b + c) = (ab)+ (ac).

1.1.2 Vectors and vector space
For proofs and additional information see
§2 in

Paul Richard Halmos. Finite-
dimensional Vector Spaces. Springer,
New York, Heidelberg, Berlin, 1974

Vector spaces are merely structures allowing the sum (addition) of ob-

jects called “vectors,” and multiplication of these objects by scalars;

thereby remaining in this structure. That is, for instance, the “coherent

superposition” a + b ≡ |a + b〉 of two vectors a ≡ |a〉 and b ≡ |b〉 can

be guaranteed to be a vector. At this stage, little can be said about the

length or relative direction or orientation of these “vectors.” Algebraically,

“vectors” are elements of vector spaces. Geometrically a vector may be

interpreted as “a quantity which is usefully represented by an arrow” 5. 5 Gabriel Weinreich. Geometrical Vectors
(Chicago Lectures in Physics). The
University of Chicago Press, Chicago, IL,
1998
In order to define length, we have to
engage an additional structure, namely
the norm ‖a‖ of a vector a. And in order to
define relative direction and orientation,
and, in particular, orthogonality and
collinearity we have to define the scalar
product 〈a|b〉 of two vectors a and b.

A linear vector space 〈V,+, ·,−,0,1〉 is a set V of elements called vec-

tors, here denoted by bold face symbols such as a,x,v,w, . . ., or, equiv-

alently, denoted by |a〉, |x〉, |v〉, |w〉, . . ., satisfying certain conditions (or,

stated differently, axioms); among them, with respect to addition of vec-

tors:

(i) commutativity,

(ii) associativity,

(iii) the uniqueness of the origin or null vector 0, as well as

(iv) the uniqueness of the negative vector;

with respect to multiplication of vectors with scalars associativity:

(v) the existence of a unit factor 1; and

(vi) distributivity with respect to scalar and vector additions; that is,

(α+β)x =αx+βx,

α(x+y) =αx+αy,
(1.4)

with x,y ∈V and scalars α,β ∈ F, respectively.

Examples of vector spaces are:
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(i) The set C of complex numbers: C can be interpreted as a complex

vector space by interpreting as vector addition and scalar multipli-

cation as the usual addition and multiplication of complex numbers,

and with 0 as the null vector;

(ii) The set Cn , n ∈N of n-tuples of complex numbers: Let x = (x1, . . . , xn)

and y = (y1, . . . , yn). Cn can be interpreted as a complex vector space

by interpreting the ordinary addition x+ y = (x1 + y1, . . . , xn + yn)

and the multiplication αx = (αx1, . . . ,αxn) by a complex number α as

vector addition and scalar multiplication, respectively; the null tuple

0 = (0, . . . ,0) is the neutral element of vector addition;

(iii) The set P of all polynomials with complex coefficients in a vari-

able t : P can be interpreted as a complex vector space by interpreting

the ordinary addition of polynomials and the multiplication of a

polynomial by a complex number as vector addition and scalar mul-

tiplication, respectively; the null polynomial is the neutral element of

vector addition.

1.2 Linear independence

A set S = {x1,x2, . . . ,xk } ⊂V of vectors xi in a linear vector space is lin-

early independent if xi 6= 0∀1 ≤ i ≤ k, and additionally, if either k = 1, or if

no vector in S can be written as a linear combination of other vectors in

this set S; that is, there are no scalars α j satisfying xi =∑
1≤ j≤k, j 6=i α j x j .

Equivalently, if
∑k

i=1αi xi = 0 implies αi = 0 for each i , then the set

S= {x1,x2, . . . ,xk } is linearly independent.

Note that a the vectors of a basis are linear independent and “maxi-

mal” insofar as any inclusion of an additional vector results in a linearly

dependent set; that ist, this additional vector can be expressed in terms

of a linear combination of the existing basis vectors; see also Section 1.4

on page 8.

1.3 Subspace
For proofs and additional information see
§10 in

Paul Richard Halmos. Finite-
dimensional Vector Spaces. Springer,
New York, Heidelberg, Berlin, 1974

A nonempty subset M of a vector space is a subspace or, used synony-

muously, a linear manifold, if, along with every pair of vectors x and y

contained in M, every linear combination αx+βy is also contained in M.

If U and V are two subspaces of a vector space, then U+V is the

subspace spanned by U and V; that is, it contains all vectors z = x+ y,

with x ∈U and y ∈V.

M is the linear span

M= span(U,V) = span(x,y) = {αx+βy |α,β ∈ F,x ∈U,y ∈V}. (1.5)

A generalization to more than two vectors and more than two sub-

spaces is straightforward.

For every vector space V, the vector space containing only the null

vector, and the vector space V itself are subspaces of V.
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1.3.1 Scalar or inner product
For proofs and additional information see
§61 in

Paul Richard Halmos. Finite-
dimensional Vector Spaces. Springer,
New York, Heidelberg, Berlin, 1974

A scalar or inner product presents some form of measure of “distance”

or “apartness” of two vectors in a linear vector space. It should not be

confused with the bilinear functionals (introduced on page 14) that con-

nect a vector space with its dual vector space, although for real Euclidean

vector spaces these may coincide, and although the scalar product is also

bilinear in its arguments. It should also not be confused with the tensor

product introduced on page 21.

An inner product space is a vector space V, together with an inner

product; that is, with a map 〈·|·〉 : V×V−→ F (usually F=C or F= R) that

satisfies the following three conditions (or, stated differently, axioms) for

all vectors and all scalars:

(i) Conjugate (Hermitian) symmetry: 〈x|y〉 = 〈y|x〉. For real, Euclidean vector spaces, this
function is symmetric; that is 〈x|y〉 = 〈y|x〉.

(ii) Linearity in the first argument:

〈αx+βy|z〉 =α〈x|z〉+β〈y|z〉.

(iii) Positive-definiteness: 〈x|x〉 ≥ 0; with equality if and only if x = 0.

Note that from the first two properties, it follows that the inner prod-

uct is antilinear, or synonymously, conjugate-linear, in its second argu-

ment (note that (uv) = (u)(v) for all u, v ∈C):

〈z|αx+βy〉 = 〈αx+βy|z〉 =α〈x|z〉+β〈y|z〉 =α〈z|x〉+β〈z|y〉. (1.6)

The norm of a vector x is defined by

‖x‖ =
√

〈x|x〉 (1.7)

Conversely, the polarization identity expresses the inner product of

two vectors by the norm of their differences; that is, for complex vector

space, a direct calculation yields

〈x|y〉 = 1

4

(〈x+y|x+y〉−〈x−y|x−y〉+ i 〈x+ i y|x+ i y〉− i 〈x− i y|x− i y〉)
= 1

4

(‖x+y‖2 −‖x−y‖2 + i‖x+ i y‖2 − i‖x− i y‖2) .

(1.8)

For complex vector space the imaginary terms in (1.8) are absent, and

〈x|y〉 = 1

4

(〈x+y|x+y〉−〈x−y|x−y〉)= 1

4

(‖x+y‖2 −‖x−y‖2) . (1.9)

One example of an inner product is is the dot product

〈x|y〉 =
n∑

i=1
xi yi (1.10)

of two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in Cn , which, for real

Euclidean space, reduces to the well-known dot product 〈x|y〉 = x1 y1 +
·· ·+xn yn = ‖x‖‖y‖cos∠(x,y).

It is mentioned without proof that the most general form of an in-

ner product in Cn is 〈x|y〉 = yAx†, where the symbol “†” stands for the
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conjugate transpose (also denoted as Hermitian conjugate or Hermitian

adjoint), and A is a positive definite Hermitian matrix (all of its eigenval-

ues are positive).

Two nonzero vectors x,y ∈ V, x,y 6= 0 are orthogonal, denoted by

“x ⊥ y” if their scalar product vanishes; that is, if

〈x|y〉 = 0. (1.11)

Let E be any set of vectors in an inner product space V. The symbol

E⊥ = {
x | 〈x|y〉 = 0,x ∈V,∀y ∈E}

(1.12)

denotes the set of all vectors in V that are orthogonal to every vector in

E.

Note that, regardless of whether or not E is a subspace, E⊥ is a sub- See page 6 for a definition of subspace.

space. Furthermore, E is contained in (E⊥)⊥ = E⊥⊥. In case E is a sub-

space, we call E⊥ the orthogonal complement of E.

The following projection theorem is mentioned without proof. If M is

any subspace of a finite-dimensional inner product space V, then V is

the direct sum of M and M⊥; that is, M⊥⊥ =M.

For the sake of an example, suppose V = R2, and take E to be the set

of all vectors spanned by the vector (1,0); then E⊥ is the set of all vectors

spanned by (0,1).

1.3.2 Hilbert space

A (quantum mechanical) Hilbert space is a linear vector space V over

the field C of complex numbers (sometimes only R is used) equipped

with vector addition, scalar multiplication, and some inner (scalar)

product. Furthermore, closure is an additional requirement, but no-

body has made operational sense of that so far: If xn ∈ V, n = 1,2, . . .,

and if limn,m→∞(xn − xm ,xn − xm) = 0, then there exists an x ∈ V with

limn→∞(xn −x,xn −x) = 0.

Infinite dimensional vector spaces and continuous spectra are non-

trivial extensions of the finite dimensional Hilbert space treatment. As a

heuristic rule – which is not always correct – it might be stated that the

sums become integrals, and the Kronecker delta function δi j defined by

δi j =
0 for i 6= j ,

1 for i = j .
(1.13)

becomes the Dirac delta function δ(x−y), which is a generalized function

in the continuous variables x, y . In the Dirac bra-ket notation, the reso-

lution of the unit operator, sometimes also referred to as completeness, is

given by I = ∫ +∞
−∞ |x〉〈x|d x. For a careful treatment, see, for instance, the

books by Reed and Simon 6, or wait for Chapter 7, page 125. 6 Michael Reed and Barry Simon. Methods
of Mathematical Physics I: Functional
Analysis. Academic Press, New York,
1972; and Michael Reed and Barry
Simon. Methods of Mathematical Physics
II: Fourier Analysis, Self-Adjointness.
Academic Press, New York, 1975

1.4 Basis

For proofs and additional information see
§7 in

Paul Richard Halmos. Finite-
dimensional Vector Spaces. Springer,
New York, Heidelberg, Berlin, 1974

We shall use bases of vector spaces to formally represent vectors (ele-

ments) therein.
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A (linear) basis [or a coordinate system, or a frame (of reference)] is

a set B of linearly independent vectors such that every vector in V is a

linear combination of the vectors in the basis; hence B spans V.

What particular basis should one choose? A priori no basis is privi-

leged over the other. Yet, in view of certain (mutual) properties of ele-

ments of some bases (such as orthogonality or orthonormality) we shall

prefer (s)ome over others.

Note that a vector is some directed entity with a particular length, ori-

ented in some (vector) “space.” It is “laid out there” in front of our eyes,

as it is: some directed entity. A priori, this space, in its most primitive

form, is not equipped with a basis, or synonymuously, frame of refer-

ence, or reference frame. Insofar it is not yet coordinatized. In order to

formalize the notion of a vector, we have to code this vector by “coor-

dinates” or “components” which are the coeffitients with respect to a

(de)composition into basis elements. Therefore, just as for numbers (e.g.,

by different numeral bases, or by prime decomposition), there exist many

“competing” ways to code a vector.

Some of these ways appear to be rather straightforward, such as, in

particular, the Cartesian basis, also synonymuosly called the standard

basis. It is, however, not in any way a priori “evident” or “necessary”

what should be specified to be “the Cartesian basis.” Actually, specifi-

cation of a “Cartesian basis” seems to be mainly motivated by physical

inertial motion – and thus identified with some inertial frame of ref-

erence – “without any friction and forces,” resulting in a “straight line

motion at constant speed.” (This sentence is cyclic, because heuristi-

cally any such absence of “friction and force” can only be operationalized

by testing if the motion is a “straight line motion at constant speed.”) If

we grant that in this way straight lines can be defined, then Cartesian

bases in Euclidean vector spaces can be characterized by orthogonal

(orthogonality is defined via vanishing scalar products between nonzero

vectors) straight lines spanning the entire space. In this way, we arrive,

say for a planar situation, at the coordinates characteried by some ba-

sis {(0,1), (1,0)}, where, for instance, the basis vector “(1,0)” literally and

physically means “a unit arrow pointing in some particular, specified

direction.”

Alas, if we would prefer, say, cyclic motion in the plane, we might

want to call a frame based on the polar coordinates r and θ “Cartesian,”

resulting in some “Cartesian basis” {(0,1), (1,0)}; but this “Cartesian basis”

would be very different from the Cartesian basis mentioned earlier, as

“(1,0)” would refer to some specific unit radius, and “(0,1)” would refer

to some specific unit angle (with respect to a specific zero angle). In

terms of the “straight” coordinates (with respect to “the usual Cartesian

basis”) x, y , the polar coordinates are r =
√

x2 + y2 and θ = tan−1(y/x).

We obtain the original “straight” coordinates (with respect to “the usual

Cartesian basis”) back if we take x = r cosθ and y = r sinθ.

Other bases than the “Cartesian” one may be less suggestive at first;

alas it may be “economical” or pragmatical to use them; mostly to cope

with, and adapt to, the symmetry of a physical configuration: if the phys-

ical situation at hand is, for instance, rotationally invariant, we might
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want to use rotationally invariant bases – such as, for instance, polar

coordinares in two dimensions, or spherical coordinates in three di-

mensions – to represent a vector, or, more generally, to code any given

representation of a physical entity (e.g., tensors, operators) by such bases.

1.5 Dimension
For proofs and additional information see
§8 in

Paul Richard Halmos. Finite-
dimensional Vector Spaces. Springer,
New York, Heidelberg, Berlin, 1974

The dimension of V is the number of elements in B.

All bases B of V contain the same number of elements.

A vector space is finite dimensional if its bases are finite; that is, its

bases contain a finite number of elements.

In quantum physics, the dimension of a quantized system is associ-

ated with the number of mutually exclusive measurement outcomes. For

a spin state measurement of an electron along a particular direction,

as well as for a measurement of the linear polarization of a photon in

a particular direction, the dimension is two, since both measurements

may yield two distinct outcomes which we can interpret as vectors in

two-dimensional Hilbert space, which, in Dirac’s bra-ket notation 7, can 7 Paul A. M. Dirac. The Principles of
Quantum Mechanics. Oxford University
Press, Oxford, 1930

be written as |↑〉 and |↓〉, or | +〉 and | −〉, or | H〉 and |V 〉, or | 0〉 and | 1〉, or

| 〉 and | 〉, respectively.

1.6 Vector coordinates or components
For proofs and additional information see
§46 in

Paul Richard Halmos. Finite-
dimensional Vector Spaces. Springer,
New York, Heidelberg, Berlin, 1974

The coordinates or components of a vector with respect to some basis

represent the coding of that vector in that particular basis. It is important

to realize that, as bases change, so do coordinates. Indeed, the changes

in coordinates have to “compensate” for the bases change, because

the same coordinates in a different basis would render an altogether

different vector. Thus it is often said that, in order to represent one and

the same vector, if the base vectors vary, the corresponding components

or coordinates have to contra-vary. Figure 1.1 presents some geometrical

demonstration of these thoughts, for your contemplation.

Elementary high school tutorials often condition students into believ-

ing that the components of the vector “is” the vector, rather then empha-

sizing that these components represent or encode the vector with respect

to some (mostly implicitly assumed) basis. A similar situation occurs in

many introductions to quantum theory, where the span (i.e., the oned-

imensional linear subspace spanned by that vector) {y | y = αx,α ∈ C},

or, equivalently, for orthogonal projections, the projection (i.e., the pro-

jection operator; see also page 25) Ex ≡ x⊗xT ≡ |x〉〈x| corresponding to

a unit (of length 1) vector x often is identified with that vector. In many

instances, this is a great help and, if administered properly, is consistent

and fine (at least for all practical purposes).

The standard (Cartesian) basis in n-dimensional complex space Cn

is the set of (usually “straight”) vectors xi , i = 1, . . . ,n, of “unit length”

– the unit is conventional and thus needs to be fixed as operationally

precisely as possible, such as in the International System of Units (SI) – For instance, in the International System
of Units (SI) the “second” as the unit
of time is defined to be the duration of
9 192 631 770 periods of the radiation
corresponding to the transition between
the two hyperfine levels of the ground
state of the cesium 133 atom. The “metre”
as the unit of length is defined to be the
length of the path travelled by light in
vacuum during a time interval of 1/299
792 458 of a second – or, equivalently,
as light travels 299 792 458 metres per
second, a duration in which 9 192 631
770 transitions between two orthogonal
quantum states of a caesium 133 atom
occur – during 9 192 631 770/299 792
458 ≈ 31 transitions of two orthogonal
quantum states of a caesium 133 atom.
Thereby, the speed of light in vacuum is
fixed at exactly 299 792 458 meters per
second .

Asher Peres. Defining length. Nature,
312:10, 1984. D O I : 10.1038/312010b0.
URL http://dx.doi.org/10.1038/

312010b0

represented by n-tuples, defined by the condition that the i ’th coordinate

of the j ’th basis vector e j is given by δi j , where δi j is the Kronecker delta

http://dx.doi.org/10.1038/312010b0
http://dx.doi.org/10.1038/312010b0
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Figure 1.1: Coordinazation of vectors:
(a) some primitive vector; (b) some
primitive vectors, laid out in some
space, denoted by dotted lines (c) vector
coordinates x1 and x2 of the vector
x = (x1, x2) = x1e1 + x2e2 in a standard
basis; (d) vector coordinates x′1 and x′2 of
the vector x = (x′1, x′2) = x′1e′1 + x′2e′2 in
some nonorthogonal basis.

function

δi j =
0 for i 6= j ,

1 for i = j .
(1.14)

Thus we can represent the basis vectors by

|e1〉 ≡ e1 ≡


1

0
...

0

 , |e2〉 ≡ e2 ≡


0

1
...

0

 , . . . |en〉 ≡ en ≡


0

0
...

1

 . (1.15)

In terms of these standard base vectors, every vector x can be writ-

ten as a linear combination – in quantum physics, this is called linear

superposition

|x〉 ≡ x =
n∑

i=1
xi ei ≡

n∑
i=1

xi |ei 〉 ≡


x1

x2
...

xn

 , (1.16)

or, in “Euclidean dot product notation,” that is, “column times row” and

“row times column;” the dot is usually omitted,

|x〉 ≡ x =
(
e1,e2, . . . ,en

)


x1

x2
...

xn

≡
(
|e1〉, |e2〉, . . . , |en〉

)


x1

x2
...

xn

 , (1.17)

of the product of the coordinates xi with respect to that standard ba-

sis. Here the equality sign “=” really means “coded with respect to that

standard basis.” Thus in what follows, we shall often identify the column

vector
(
x1, x2, . . . , xn

)T
containing the coordinates of the vector x ≡ |x〉

with the vector x ≡ |x〉, but we always need to keep in mind that the tu-

ples of coordinates are defined only with respect to a particular basis

{e1,e2, . . . ,en}; otherwise these numbers lack any meaning whatsoever.
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Indeed, with respect to some arbitrary basis B = {f1, . . . , fn} of some

n-dimensional vector space V with the base vectors fi , 1 ≤ i ≤ n, every

vector x in V can be written as a unique linear combination

|x〉 ≡ x =
n∑

i=1
xi fi ≡

n∑
i=1

xi |fi 〉 ≡


x1

x2
...

xn

 (1.18)

of the product of the coordinates xi with respect to the basis B.

The uniqueness of the coordinates is proven indirectly by reductio

ad absurdum: Suppose there is another decomposition x = ∑n
i=1 yi fi =

(y1, y2, . . . , yn); then by subtraction, 0 =∑n
i=1(xi − yi )fi = (0,0, . . . ,0). Since

the basis vectors fi are linearly independent, this can only be valid if all

coefficients in the summation vanish; thus xi − yi = 0 for all 1 ≤ i ≤ n;

hence finally xi = yi for all 1 ≤ i ≤ n. This is in contradiction with our

assumption that the coordinates xi and yi (or at least some of them) are

different. Hence the only consistent alternative is the assumption that,

with respect to a given basis, the coordinates are uniquely determined.

A set B = {a1, . . . ,an} of vectors of the inner product space V is or-

thonormal if, for all ai ∈B and a j ∈B, it follows that

〈ai | a j 〉 = δi j . (1.19)

Any such set is called complete if it is not a subset of any larger or-

thonormal set of vectors of V. Any complete set is a basis. If, instead

of Eq. (1.19), 〈ai | a j 〉 = αiδi j with nontero factors αi , the set is called

orthogonal.

1.7 Finding orthogonal bases from nonorthogonal ones

A Gram-Schmidt process is a systematic method for orthonormalising a

set of vectors in a space equipped with a scalar product, or by a synonym

preferred in mathematics, inner product. The Gram-Schmidt process The scalar or inner product 〈x|y〉 of
two vectors x and y is defined on page
7. In Euclidean space such as Rn , one
often identifies the “dot product” x ·y =
x1 y1 + ·· ·+ xn yn of two vectors x and y
with their scalar or inner product.

takes a finite, linearly independent set of base vectors and generates an

orthonormal basis that spans the same (sub)space as the original set.

The general method is to start out with the original basis, say,

{x1,x2,x3, . . . ,xn}, and generate a new orthogonal basis

{y1,y2,y3, . . . ,yn} by

y1 = x1,

y2 = x2 −Py1 (x2),

y3 = x3 −Py1 (x3)−Py2 (x3),

...

yn = xn −
n−1∑
i=1

Pyi (xn),

(1.20)

where

Py(x) = 〈x|y〉
〈y|y〉y, and P⊥

y (x) = x− 〈x|y〉
〈y|y〉y (1.21)
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are the orthogonal projections of x onto y and y⊥, respectively (the latter

is mentioned for the sake of completeness and is not required here).

Note that these orthogonal projections are idempotent and mutually

orthogonal; that is,

P 2
y (x) = Py(Py(x)) = 〈x|y〉

〈y|y〉
〈y|y〉
〈y|y〉y = Py(x),

(P⊥
y )2(x) = P⊥

y (P⊥
y (x)) = x− 〈x|y〉

〈y|y〉y−
( 〈x|y〉
〈y|y〉 −

〈x|y〉〈y|y〉
〈y|y〉2

)
y,= P⊥

y (x),

Py(P⊥
y (x)) = P⊥

y (Py(x)) = 〈x|y〉
〈y|y〉y− 〈x|y〉〈y|y〉

〈y|y〉2 y = 0.

(1.22)

For a more general discussion of projections, see also page 25.

Subsequently, in order to obtain an orthonormal basis, one can divide

every basis vector by its length.

The idea of the proof is as follows (see also Greub 8, section 7.9). In 8 Werner Greub. Linear Algebra, vol-
ume 23 of Graduate Texts in Mathematics.
Springer, New York, Heidelberg, fourth
edition, 1975

order to generate an orthogonal basis from a nonorthogonal one, the

first vector of the old basis is identified with the first vector of the new

basis; that is y1 = x1. Then, as depicted in Fig. 1.2, the second vector of

the new basis is obtained by taking the second vector of the old basis and

subtracting its projection on the first vector of the new basis.

-��
��

�
��*6

-
x1 = y1Py1 (x2)

y2 = x2 −Py1 (x2) x2

Figure 1.2: Gram-Schmidt construction
for two nonorthogonal vectors x1 and x2,
yielding two orthogonal vectors y1 and y2.

More precisely, take the Ansatz

y2 = x2 +λy1, (1.23)

thereby determining the arbitrary scalar λ such that y1 and y2 are orthog-

onal; that is, 〈y1|y2〉 = 0. This yields

〈y2|y1〉 = 〈x2|y1〉+λ〈y1|y1〉 = 0, (1.24)

and thus, since y1 6= 0,

λ=−〈x2|y1〉
〈y1|y1〉

. (1.25)

To obtain the third vector y3 of the new basis, take the Ansatz

y3 = x3 +µy1 +νy2, (1.26)

and require that it is orthogonal to the two previous orthogonal basis

vectors y1 and y2; that is 〈y1|y3〉 = 〈y2|y3〉 = 0. We already know that

〈y1|y2〉 = 0. Consider the scalar products of y1 and y2 with the Ansatz for

y3 in Eq. (1.26); that is,

〈y3|y1〉 = 〈y3|x1〉+µ〈y1|y1〉+ν〈y2|y1〉
0 = 〈y3|x1〉+µ〈y1|y1〉+ν ·0,

(1.27)

and

〈y3|y2〉 = 〈y3|x2〉+µ〈y1|y2〉+ν〈y2|y2〉
0 = 〈y3|x2〉+µ ·0+ν〈y2|y2〉.

(1.28)

As a result,

µ=−〈x3|y1〉
〈y1|y1〉

, ν=−〈x3|y2〉
〈y2|y2〉

. (1.29)

A generalization of this construction for all the other new base vectors

y3, . . . ,yn , and thus a proof by complete induction, proceeds by a general-

ized construction.
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Consider, as an example, the standard Euclidean scalar product de-

noted by “·” and the basis

{(
0

1

)
,

(
1

1

)}
. Then two orthogonal bases are

obtained obtained by taking

(i) either the basis vector

(
0

1

)
, together with

(
1

1

)
−

1

1

·
0

1


0

1

·
0

1


(

0

1

)
=

(
1

0

)
,

(ii) or the basis vector

(
1

1

)
, together with

(
0

1

)
−

0

1

·
1

1


1

1

·
1

1


(

1

1

)
= 1

2

(
−1

1

)
.

1.8 Dual space
For proofs and additional information see
§13–15 in

Paul Richard Halmos. Finite-
dimensional Vector Spaces. Springer,
New York, Heidelberg, Berlin, 1974

Every vector space V has a corresponding dual vector space (or just dual

space) consisting of all linear functionals on V.

A linear functional on a vector space V is a scalar-valued linear func-

tion y defined for every vector x ∈V, with the linear property that

y(α1x1 +α2x2) =α1y(x1)+α2y(x2). (1.30)

For example, let x = (x1, . . . , xn), and take y(x) = x1.

For another example, let again x = (x1, . . . , xn), and let α1, . . . ,αn ∈C be

scalars; and take y(x) =α1x1 +·· ·+αn xn .

We adopt a square bracket notation “[·, ·]” for the functional

y(x) = [x,y]. (1.31)

Note that the usual arithmetic operations of addition and multiplica-

tion, that is,

(ay+bz)(x) = ay(x)+bz(x), (1.32)

together with the “zero functional” (mapping every argument to zero)

induce a kind of linear vector space, the “vectors” being identified with

the linear functionals. This vector space will be called dual space V∗.

As a result, this “bracket” functional is bilinear in its two arguments;

that is,

[α1x1 +α2x2,y] =α1[x1,y]+α2[x2,y], (1.33)

and

[x,α1y1 +α2y2] =α1[x,y1]+α2[x,y2]. (1.34)

The square bracket can be identified with
the scalar dot product [x,y] = 〈x | y〉 only
for Euclidean vector spaces Rn , since for
complex spaces this would no longer be
positive definite. That is, for Euclidean
vector spaces Rn the inner or scalar
product is bilinear.

Because of linearity, we can completely characterize an arbitrary lin-

ear functional y ∈V∗ by its values of the vectors of some basis of V: If we

know the functional value on the basis vectors in B, we know the func-

tional on all elements of the vector space V. If V is an n-dimensional

vector space, and if B= {f1, . . . , fn} is a basis of V, and if {α1, . . . ,αn} is any

set of n scalars, then there is a unique linear functional y on V such that

[fi ,y] =αi for all 0 ≤ i ≤ n.
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A constructive proof of this theorem can be given as follows: Because

every x ∈V can be written as a linear combination x = x1f1 +·· ·+ xn fn of

the basis vectors of B = {f1, . . . , fn} in one and only one (unique) way, we

obtain for any arbitrary linear functional y ∈V∗ a unique decomposition

in terms of the basis vectors of B= {f1, . . . , fn}; that is,

[x,y] = x1[f1,y]+·· ·+xn[fn ,y]. (1.35)

By identifying [fi ,y] =αi we obtain

[x,y] = x1α1 +·· ·+xnαn . (1.36)

Conversely, if we define y by [x,y] = x1α1 + ·· · + xnαn , then y can be

interpreted as a linear functional in V∗ with [fi ,y] =αi .

If we introduce a dual basis by requiring that [fi , f∗j ] = δi j (cf. Eq. 1.37

below), then the coefficients [fi ,y] = αi , 1 ≤ i ≤ n, can be interpreted as

the coordinates of the linear functional y with respect to the dual basis

B∗, such that y = (α1,α2, . . . ,αn)T .

Likewise, as will be shown in (1.43), xi = [x, f∗i ]; that is, the vector

coordinates can be represented by the functionals of the elements of the

dual basis.

Let us explicitly construct an example of a linear functional ϕ(x) ≡
[x,ϕ] that is defined on all vectors x = αe1 +βe2 of a two-dimensional

vector space with the basis {e1,e2} by enumerating its “performannce on

the basis vectors” e1 = (1,0) and e2 = (0,1); more explicitly, say, for an

example’s sake, ϕ(e1) ≡ [e1,ϕ] = 2 and ϕ(e2) ≡ [e2,ϕ] = 3. Therefore, for

example, ϕ((5,7)) ≡ [(5,7),ϕ] = 5[e1,ϕ]+7[e2,ϕ] = 10+21 = 31.

1.8.1 Dual basis

We now can define a dual basis, or, used synonymuously, a reciprocal

basis. If V is an n-dimensional vector space, and if B = {f1, . . . , fn} is a

basis of V, then there is a unique dual basis B∗ = {f∗1 , . . . , f∗n} in the dual

vector space V∗ defined by

[fi , f∗j ] = δi j , (1.37)

where δi j is the Kronecker delta function. The dual space V∗ spanned by

the dual basis B∗ is n-dimensional.

More generally, if g is the metric tensor, the dual basis is defined by

g (fi , f∗j ) = δi j . (1.38)

or, in a different notation in which f∗j = f j ,

g (fi , f j ) = δ j
i . (1.39)

In terms of the inner product, the representation of the metric g as out-

lined and characterized on page 73 with respect to a particular basis.

B = {f1, . . . , fn} may be defined by gi j = g (fi , f j ) = 〈fi | f j 〉. Note however,

that the coordinates gi j of the metric g need not necessarily be positive



16 Mathematical Methods of Theoretical Physics

definite. For example, special relativity uses the “pseudo-Euclidean” met-

ric g = diag(+1,+1,+1,−1) (or just g = diag(+,+,+,−)), where “diag”

stands for the diagonal matrix with the arguments in the diagonal. The metric tensor gi j represents a

bilinear functional g (x,y) = xi y j gi j
that is symmetric; that is, g (x,y) = g (x,y)
and nondegenerate; that is, for any
nonzero vector x ∈ V, x 6= 0, there is
some vector y ∈ V, so that g (x,y) 6= 0.
g also satisfies the triangle inequality
||x−z|| ≤ ||x−y||+ ||y−z||.

In a real Euclidean vector space Rn with the dot product as the scalar

product, the dual basis of an orthogonal basis is also orthogonal, and

contains vectors with the same directions, although with reciprocal

length (thereby exlaining the wording “reciprocal basis”). Moreover,

for an orthonormal basis, the basis vectors are uniquely identifiable by

ei −→ e∗i = eT
i . This identification can only be made for orthonomal

bases; it is not true for nonorthonormal bases.

A “reverse construction” of the elements f∗j of the dual basis B∗ –

thereby using the definition “[fi ,y] =αi for all 1 ≤ i ≤ n” for any element y

in V∗ introduced earlier – can be given as follows: for every 1 ≤ j ≤ n, we

can define a vector f∗j in the dual basis B∗ by the requirement [fi , f∗j ] = δi j .

That is, in words: the dual basis element, when applied to the elements of

the original n-dimensional basis, yields one if and only if it corresponds

to the respective equally indexed basis element; for all the other n − 1

basis elements it yields zero.

What remains to be proven is the conjecture that B∗ = {f∗1 , . . . , f∗n} is

a basis of V∗; that is, that the vectors in B∗ are linear independent, and

that they span V∗.

First observe that B∗ is a set of linear independent vectors, for if

α1f∗1 +·· ·+αn f∗n = 0, then also

[x,α1f∗1 +·· ·+αn f∗n] =α1[x, f∗1 ]+·· ·+αn[x, f∗n] = 0 (1.40)

for arbitrary x ∈V. In particular, by identifying x with fi ∈B, for 1 ≤ i ≤ n,

α1[fi , f∗1 ]+·· ·+αn[fi , f∗n] =α j [fi , f∗j ] =α jδi j =αi = 0. (1.41)

Second, every y ∈ V∗ is a linear combination of elements in B∗ =
{f∗1 , . . . , f∗n}, because by starting from [fi ,y] = αi , with x = x1f1 + ·· ·+ xn fn

we obtain

[x,y] = x1[f1,y]+·· ·+xn[fn ,y] = x1α1 +·· ·+xnαn . (1.42)

Note that , for arbitrary x ∈V,

[x, f∗i ] = x1[f1, f∗i ]+·· ·+xn[fn , f∗i ] = x j [f j , f∗i ] = x jδ j i = xi , (1.43)

and by substituting [x, fi ] for xi in Eq. (1.42) we obtain

[x,y] = x1α1 +·· ·+xnαn

= [x, f1]α1 +·· ·+ [x, fn]αn

= [x,α1f1 +·· ·+αn fn],

(1.44)

and therefore y =α1f1 +·· ·+αn fn =αi fi .

How can one determine the dual basis from a given, not necessarily

orthogonal, basis? Suppose for the rest of this section that the metric

is identical to the Euclidean metric diag(+,+, · · · ,+) representable as

the usual “dot product.” The tuples of column vectors of the basis B =
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{f1, . . . , fn} can be arranged into a n ×n matrix

B≡
(
|f1〉, |f2〉, · · · , |fn〉

)
≡

(
f1, f2, · · · , fn

)
=


f1,1 · · · fn,1

f1,2 · · · fn,2
...

...
...

f1,n · · · fn,n

 . (1.45)

Then take the inverse matrix B−1, and interpret the row vectors f∗i of

B∗ =B−1 ≡


|f∗1 〉
|f∗2 〉

...

|f∗n〉

≡


f∗1
f∗2
...

f∗n

=


f∗1,1 · · · f∗1,n

f∗2,1 · · · f∗2,n
...

...
...

f∗n,1 · · · f∗n,n

 (1.46)

as the tuples of elements of the dual basis of B∗.

For orthogonal but not orthonormal bases, the term reciprocal basis

can be easily explained from the fact that the norm (or length) of each

vector in the reciprocal basis is just the inverse of the length of the original

vector.

For a direct proof, consider B ·B−1 = In .

(i) For example, if

B≡ {|e1〉, |e2〉, . . . , |en〉} ≡ {e1,e2, . . . ,en} ≡




1

0
...

0

 ,


0

1
...

0

 , . . . ,


0

0
...

1




(1.47)

is the standard basis in n-dimensional vector space containing unit

vectors of norm (or length) one, then

B∗ ≡ {〈e1|,〈e2|, . . . ,〈en |}
≡ {e∗1 ,e∗2 , . . . ,e∗n} ≡ {(1,0, . . . ,0), (0,1, . . . ,0), . . . , (0,0, . . . ,1)}

(1.48)

has elements with identical components, but those tuples are the

transposed ones.

(ii) If

X≡ {α1|e1〉,α2|e2〉, . . . ,αn |en〉} ≡ {α1e1,α2e2, . . . ,αn en}

≡




α1

0
...

0

 ,


0

α2
...

0

 , . . . ,


0

0
...

αn




,

(1.49)

with nonzero α1,α2, . . . ,αn ∈ R, is a “dilated” basis in n-dimensional

vector space containing vectors of norm (or length) αi , then

X∗ ≡
{

1

α1
〈e1|, 1

α2
〈e2|, . . . ,

1

αn
〈en |

}
≡

{
1

α1
e∗1 ,

1

α2
e∗2 , . . . ,

1

αn
e∗n

}
≡

{(
1
α1

,0, . . . ,0
)

,
(
0, 1

α2
, . . . ,0

)
, . . . ,

(
0,0, . . . , 1

αn

)} (1.50)

has elements with identical components of inverse length 1
αi

, and

again those tuples are the transposed tuples.
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(iii) Consider the nonorthogonal basis B =
{(

1

3

)
,

(
2

4

)}
. The associated

column matrix is

B=
(

1 2

3 4

)
. (1.51)

The inverse matrix is

B−1 =
(
−2 1

3
2 − 1

2

)
, (1.52)

and the associated dual basis is obtained from the rows of B−1 by

B∗ =
{(
−2,1

)
,
(

3
2 ,− 1

2

)}
= 1

2

{(
−4,2

)
,
(
3,−1

)}
. (1.53)

1.8.2 Dual coordinates

With respect to a given basis, the components of a vector are often writ-

ten as tuples of ordered (“xi is written before xi+1” – not “xi < xi+1”)

scalars as column vectors

|x〉 ≡ x ≡


x1

x2
...

xn

 , (1.54)

whereas the components of vectors in dual spaces are often written in

terms of tuples of ordered scalars as row vectors

〈x| ≡ x∗ ≡
(
x∗

1 , x∗
2 , . . . , x∗

n

)
. (1.55)

The coordinates of |x〉 ≡ x are called covariant, whereas the coordinates of

〈x| ≡ x∗ are called contravariant, . Alternatively, one can denote covariant

coordinates by subscripts, and contravariant coordinates by superscripts;

that is (see also Havlicek 9, Section 11.4), 9 Hans Havlicek. Lineare Algebra für
Technische Mathematiker. Heldermann
Verlag, Lemgo, second edition, 2008

xi =




x1

x2
...

xn




i

and xi = [
(x∗

1 , x∗
2 , . . . , x∗

n )
]i = [

(x1, x2, . . . , xn)
]i

. (1.56)

Note again that the covariant and contravariant components xi and xi

are not absolute, but always defined with respect to a particular (dual)

basis.

Note that, for orthormal bases it is possible to interchange contravari-

ant and covariant coordinates by taking the conjugate transpose; that is,

(〈x|)† = |x〉, and (|x〉)† = 〈x|. (1.57)

Note also that the Einstein summation convention requires that, when

an index variable appears twice in a single term, one has to sum over all

of the possible index values. This saves us from drawing the sum sign

“
∑

i ” for the index i ; for instance xi yi =∑
i xi yi .
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In the particular context of covariant and contravariant components –

made necessary by nonorthogonal bases whose associated dual bases are

not identical – the summation always is between some superscript and

some subscript; e.g., xi y i .

Note again that for orthonormal basis, xi = xi .

1.8.3 Representation of a functional by inner product
For proofs and additional information see
§67 in

Paul Richard Halmos. Finite-
dimensional Vector Spaces. Springer,
New York, Heidelberg, Berlin, 1974

The following representation theorem, often called Riesz representation

theorem (sometimes also called the Fréchet-Riesz theorem), is about

the connection between any functional in a vector space and its inner

product; it is stated without proof: To any linear functional z on a finite-

dimensional inner product space V there corresponds a unique vector

y ∈V, such that

z(x) = [x,z] = 〈x | y〉 (1.58)

for all x ∈V.

In the case of z = 0 we can just identify z = y = 0. For any nonzero z 6= 0

we can locate the subspace M of V consisting of all vectors x for which

z vanishes; that is, z(x) = [x,z] = 0. Let N be the orthogonal complement

of M with respect to V; that is, N consists of all vectors orthogonal to all

vectors in M. Surely N consists of one nonzero unit vector y0. Based on

y0 we can define the vector y = z(y0)y0. y surely satisfies Eq. (1.58) at least

(i) for x = y0, (ii) as well as for all x ∈M through the orthogonality of y0

with all vectors in M.

For an arbitrary vector x ∈ V, define x0 = x − z(x)
z(y0) y0, or z(x)y0 =

z(y0) [x−x0], such that z(x0) = 0; that is, x0 ∈M. Therefore, x = x0 + z(x)
z(y0) y0

is a linear combination of two vectors x0 ∈ M and y0 ∈ N, for each of

which Eq. (1.58) is valid. Because x is a linear combination of x, Eq. (1.58)

holds for x as well.

The proof of uniqueness is by supposing that there exist two (presum-

ably different) y1 and y2 such that (x,y1) = (x,y2). Due to linearity of the

scalar product, (x,y1 − y2) = 0 for all x ∈ V. In particular, if we identify

x = y1 −y2, then (y1 −y2,y1 −y2) = 0 and thus y1 = y2.

This proof is constructive in the sense that it yields y, given z.

Note that in real or complex vector space Rn or Cn , and with the dot

product, y† = z.

Note also that every inner product 〈x | y〉 = φy (x) defines a linear

functional φy (x) for all x ∈V.

In quantum mechanics, this representation of a functional by the

inner product suggests the (unique) existence of the bra vector 〈ψ| ∈V∗

associated with every ket vector |ψ〉 ∈V.

It also suggests a “natural” duality between propositions and states –

that is, between (i) dichotomic (yes/no, or 1/0) observables represented

by projections Ex = |x〉〈x| and their associated linear subspaces spanned

by unit vectors |x〉 on the one hand, and (ii) pure states, which are also

represented by projections ρψ = |ψ〉〈ψ| and their associated subspaces

spanned by unit vectors |ψ〉 on the other hand – via the scalar product

“〈·|·〉.” In particular 10, 10 Jan Hamhalter. Quantum Measure
Theory. Fundamental Theories of Physics,
Vol. 134. Kluwer Academic Publishers,
Dordrecht, Boston, London, 2003. ISBN
1-4020-1714-6

ψ(x) ≡ [x,ψ] = 〈x |ψ〉 (1.59)
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represents the probability amplitude. By the Born rule for pure states, the

absolute square |〈x |ψ〉|2 of this probability amplitude is identified with

the probability of the occurrence of the proposition Ex, given the state

|ψ〉.
More general, due to linearity and the spectral theorem (cf. Section

1.28.1 on page 52), the statistical expectation for a Hermitean (normal)

operator A=∑k
i=0λi Ei and a quantized system prepared in pure state (cf.

Sec. 1.12) ρψ = |ψ〉〈ψ| for some unit vector |ψ〉 is given by the Born rule

〈A〉ψ = Tr(ρψA) = Tr

[
ρψ

(
k∑

i=0
λi Ei

)]
= Tr

(
k∑

i=0
λiρψEi

)

= Tr

(
k∑

i=0
λi (|ψ〉〈ψ|)(|xi 〉〈xi |)

)
= Tr

(
k∑

i=0
λi |ψ〉〈ψ|xi 〉〈xi |

)

=
k∑

j=0
〈x j |

(
k∑

i=0
λi |ψ〉〈ψ|xi 〉〈xi |

)
|x j 〉

=
k∑

j=0

k∑
i=0

λi 〈x j |ψ〉〈ψ|xi 〉〈xi |x j 〉︸ ︷︷ ︸
δi j

=
k∑

i=0
λi 〈xi |ψ〉〈ψ|xi 〉 =

k∑
i=0

λi |〈xi |ψ〉|2,

(1.60)

where Tr stands for the trace (cf. Section 1.18 on page 37), and we have

used the spectral decomposition A=∑k
i=0λi Ei (cf. Section 1.28.1 on page

52).

1.8.4 Double dual space

In the following, we strictly limit the discussion to finite dimensional

vector spaces.

Because to every vector space V there exists a dual vector space V∗

“spanned” by all linear functionals on V, there exists also a dual vector

space (V∗)∗ =V∗∗ to the dual vector space V∗ “spanned” by all linear

functionals on V∗. We state without proof that V∗∗ is closely related to,

and can be canonically identified with V via the canonical bijection

V→V∗∗ : x 7→ 〈·|x〉, with

〈·|x〉 :V∗ →R or C : a∗ 7→ 〈a∗|x〉;
(1.61)

indeed, more generally,

V≡V∗∗,

V∗ ≡V∗∗∗,

V∗∗ ≡V∗∗∗∗ ≡V,

V∗∗∗ ≡V∗∗∗∗∗ ≡V∗,

...

(1.62)

1.9 Direct sum
For proofs and additional information see
§18 in

Paul Richard Halmos. Finite-
dimensional Vector Spaces. Springer,
New York, Heidelberg, Berlin, 1974

Let U and V be vector spaces (over the same field, say C). Their direct

sum is a vector space W=U⊕V consisting of all ordered pairs (x,y), with



Finite-dimensional vector spaces 21

x ∈U in y ∈V, and with the linear operations defined by

(αx1 +βx2,αy1 +βy2) =α(x1,y1)+β(x2,y2). (1.63)

We state without proof that the dimension of the direct sum is the For proofs and additional information see
§19 in

Paul Richard Halmos. Finite-
dimensional Vector Spaces. Springer,
New York, Heidelberg, Berlin, 1974

sum of the dimensions of its summands.

We also state without proof that, if U and V are subspaces of a vector

For proofs and additional information see
§18 in

Paul Richard Halmos. Finite-
dimensional Vector Spaces. Springer,
New York, Heidelberg, Berlin, 1974

space W, then the following three conditions are equivalent:

(i) W=U⊕V;

(ii) U
⋂
V = 0 and U+V =W, that is, W is spanned by U and V (i.e., U

and V are complements of each other);

(iii) every vector z ∈W can be written as z = x+y, with x ∈U and y ∈V, in

one and only one way.

Very often the direct sum will be used to “compose” a vector space

by the direct sum of its subspaces. Note that there is no “natural” way of

composition. A different way of putting two vector spaces together is by

the tensor product.

1.10 Tensor product
For proofs and additional information see
§24 in

Paul Richard Halmos. Finite-
dimensional Vector Spaces. Springer,
New York, Heidelberg, Berlin, 1974

1.10.1 Sloppy definition

For the moment, suffice it to say that the tensor product V⊗U of two

linear vector spaces V and U should be such that, to every x ∈ V and

every y ∈ U there corresponds a tensor product z = x⊗y ∈V⊗U which is

bilinear in both factors.

A generalization to more than one factors is straightforward.

1.10.2 Definition

A more rigorous definition is as follows: The tensor product V⊗U of two

vector spaces V and U (over the same field, say C) is the dual vector space

of all bilinear forms on V⊕U.

For each pair of vectors x ∈V and y ∈ U the tensor product z = x⊗y is

the element of V⊗U such that z(w) = w(x,y) for every bilinear form w on

V⊕U.

Alternatively we could define the tensor product as the linear super-

positions of products ei ⊗ f j of all basis vectors ei ∈ V, with 1 ≤ i ≤ n,

and f j ∈ U, with 1 ≤ i ≤ m as follows. First we note without proof that if

A = {e1, . . . ,en} and B = {f1, . . . , fm} are bases of n- and m- dimensional

vector spaces V and U, respectively, then the set of vectors ei ⊗ f j with

i = 1, . . .n and j = 1, . . .m is a basis of the tensor product V⊗U. Then

an arbitrary tensor product can be written as the linear superposition of

all its basis vectors ei ⊗ f j with ei ∈ V, with 1 ≤ i ≤ n, and f j ∈ U, with

1 ≤ i ≤ m; that is,

z =∑
i , j

ci j ei ⊗ f j . (1.64)

We state without proof that the dimension of V ⊗ U of an n-

dimensional vector space V and an an m-dimensional vector space U
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is multiplicative, that is, the dimension of V⊗U is nm. Informally, this is

evident from the number of basis pairs ei ⊗ f j .

1.10.3 Representation

A tensor (dyadic) product z = x⊗y of two vectors x and y has three equiv-

alent notations or representations:

(i) as the scalar coordinates xi y j with respect to the basis in which the

vectors x and y have been defined and coded;

(ii) as a quasi-matrix zi j = xi y j , whose components zi j are defined with

respect to the basis in which the vectors x and y have been defined

and coded;

(iii) as a quasi-vector or “flattened matrix” defined by the Kronecker

product z = (x1y, x2y, . . . , xn y)T = (x1 y1, x1 y2, . . . , xn yn)T . Again, the

scalar coordinates xi y j are defined with respect to the basis in which

the vectors x and y have been defined and coded.

In all three cases, the pairs xi y j are properly represented by distinct

mathematical entities.

Take, for example, x = (2,3)T and y = (5,7,11)T . Then z = x⊗ y can

be representated by (i) the four scalars x1 y1 = 10, x1 y2 = 14, x1 y3 = 22,

x2 y1 = 15, x2 y2 = 21, x2 y3 = 33, or by (ii) a 2×3 matrix

(
10 14 22

15 21 33

)
, or

by (iii) a 4-touple
(
10,14,22,15,21,33

)T
.

Note, however, that this kind of quasi-matrix or quasi-vector repre-

sentation of vector products can be misleading insofar as it (wrongly)

suggests that all vectors in the tensor product space are accessible (rep-

resentable) as quasi-vectors – they are, however, accessible by linear

superpositions (1.64) of such quasi-vectors. For instance, take the ar- In quantum mechanics this amounts
to the fact that not all pure two-particle
states can be written in terms of (tensor)
products of single-particle states; see also
Section 1.5 of

David N. Mermin. Quantum Computer
Science. Cambridge University Press,
Cambridge, 2007. ISBN 9780521876582.
URL http://people.ccmr.cornell.

edu/~mermin/qcomp/CS483.html

bitrary form of a (quasi-)vector in C4, which can be parameterized by

(
α1,α2,α3,α4

)T
, with α1,α3,α3,α4 ∈C, (1.65)

and compare (1.65) with the general form of a tensor product of two

quasi-vectors in C2

(
a1, a2

)T ⊗
(
b1,b2

)T ≡
(
a1b1, a1b2, a2b1, a2b2

)T
, with a1, a2,b1,b2 ∈C.

(1.66)

A comparison of the coordinates in (1.65) and (1.66) yields

α1 = a1b1, α2 = a1b2, α3 = a2b1, α4 = a2b2. (1.67)

By taking the quotient of the two first and the two last equations, and by

equating these quotients, one obtains

α1

α2
= b1

b2
= α3

α4
, and thus α1α4 =α2α3, (1.68)

which amounts to a condition for the four coordinates α1,α2,α3,α4 in

order for this four-dimensional vector to be decomposable into a tensor

product of two two-dimensional quasi-vectors. In quantum mechanics,

http://people.ccmr.cornell.edu/~mermin/qcomp/CS483.html
http://people.ccmr.cornell.edu/~mermin/qcomp/CS483.html
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pure states which are not decomposable into a single tensor product are

called entangled.

A typical example of an entangled state is the Bell state, |Ψ−〉 or, more

generally, states in the Bell basis

|Ψ−〉 = 1p
2

(|0〉|1〉− |1〉|0〉) , |Ψ+〉 = 1p
2

(|0〉|1〉+ |1〉|0〉) ,

|Φ−〉 = 1p
2

(|0〉|0〉− |1〉|1〉) , |Φ+〉 = 1p
2

(|0〉|0〉+ |1〉|1〉) ,
(1.69)

or just

|Ψ−〉 = 1p
2

(|01〉− |10〉) , |Ψ+〉 = 1p
2

(|01〉+ |10〉) ,

|Φ−〉 = 1p
2

(|00〉− |11〉) , |Φ+〉 = 1p
2

(|00〉+ |11〉) .
(1.70)

For instance, in the case of |Ψ−〉 a comparison of coefficient yields

α1 = a1b1 = 0, α2 = a1b2 = 1p
2

,

α3 = a2b1 − 1p
2

, α4 = a2b2 = 0;
(1.71)

and thus the entanglement, since

α1α4 = 0 6=α2α3 = 1

2
. (1.72)

This shows that |Ψ−〉 cannot be considered as a two particle product

state. Indeed, the state can only be characterized by considering the

relative properties of the two particles – in the case of |Ψ−〉 they are as-

sociated with the statements 11: “the quantum numbers (in this case “0” 11 Anton Zeilinger. A foundational
principle for quantum mechanics.
Foundations of Physics, 29(4):631–643,
1999. D O I : 10.1023/A:1018820410908.
URL http://dx.doi.org/10.1023/A:

1018820410908

and “1”) of the two particles are always different.”

1.11 Linear transformation
For proofs and additional information see
§32-34 in

Paul Richard Halmos. Finite-
dimensional Vector Spaces. Springer,
New York, Heidelberg, Berlin, 1974

1.11.1 Definition

A linear transformation, or, used synonymuosly, a linear operator, A on

a vector space V is a correspondence that assigns every vector x ∈V a

vector Ax ∈V, in a linear way; such that

A(αx+βy) =αA(x)+βA(y) =αAx+βAy, (1.73)

identically for all vectors x,y ∈V and all scalars α,β.

1.11.2 Operations

The sum S = A+B of two linear transformations A and B is defined by

Sx =Ax+Bx for every x ∈V.

The product P = AB of two linear transformations A and B is defined

by Px =A(Bx) for every x ∈V.

The notation AnAm = An+m and (An)m = Anm , with A1 = A and A0 = 1
turns out to be useful.

With the exception of commutativity, all formal algebraic properties

of numerical addition and multiplication, are valid for transformations;

http://dx.doi.org/10.1023/A:1018820410908
http://dx.doi.org/10.1023/A:1018820410908
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that is A0 = 0A = 0, A1 = 1A = A, A(B+C) = AB+AC, (A+B)C = AC+BC,

and A(BC) = (AB)C. In matrix notation, 1 = 1, and the entries of 0 are 0

everywhere.

The inverse operator A−1 of A is defined by AA−1 =A−1A= I.
The commutator of two matrices A and B is defined by

[A,B] =AB−BA. (1.74)

The commutator should not be confused
with the bilinear funtional introduced for
dual spaces.

The polynomial can be directly adopted from ordinary arithmetic; that

is, any finite polynomial p of degree n of an operator (transformation) A
can be written as

p(A) =α01+α1A1 +α2A2 +·· ·+αnAn =
n∑

i=0
αi Ai . (1.75)

The Baker-Hausdorff formula

e iABe−iA = B + i [A,B]+ i 2

2!
[A, [A,B]]+·· · (1.76)

for two arbitrary noncommutative linear operators A and B is mentioned

without proof (cf. Messiah, Quantum Mechanics, Vol. 1 12). 12 A. Messiah. Quantum Mechanics,
volume I. North-Holland, Amsterdam,
1962

If [A,B] commutes with A and B, then

eAeB = eA+B+ 1
2 [A,B]. (1.77)

If A commutes with B, then

eAeB = eA+B. (1.78)

1.11.3 Linear transformations as matrices

Let V be an n-dimensional vector space; let B = {f1, f2, . . . , fn} be any

basis of V, and let A be a linear transformation on V.

Because every vector is a linear combination of the basis vectors fi ,

every linear transformation can be defined by “its performance on the

basis vectors;” that is, by the particular mapping of all n basis vectors

into the transformed vectors, which in turn can be represented as linear

combination of the n basis vectors.

Therefore it is possible to define some n×n matrix with n2 coefficients

or coordinates αi j such that

Af j =
∑

i
αi j fi (1.79)

for all j = 1, . . . ,n. Again, note that this definition of a transformation

matrix is “tied to” a basis.

For orthonormal bases there is an even closer connection – repre-

sentable as scalar product – between a matrix defined by an n-by-n

square array and the representation in terms of the elements of the bases;

that is,

A≡
n∑

i , j=1
|i 〉〈i |A| j 〉〈 j | =

n∑
i , j=1

αi j |i 〉〈 j |, (1.80)
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whereby

〈i |A| j 〉 = 〈fi |A|f j 〉 = 〈fi |Af j 〉
= 〈fi |

∑
l
αl j fl 〉 =

∑
l
αl j 〈fi |fl 〉 =

∑
l
αl jδi l =αi j

≡


α11 α12 · · · α1n

α21 α22 · · · α2n
...

... · · · ...

αn1 αn2 · · · αnn

 .

(1.81)

In terms of this matrix notation, it is quite easy to present an example

for which the commutator [A,B] does not vanish; that is A and B do not

commute.

Take, for the sake of an example, the Pauli spin matrices which are

proportional to the angular momentum operators along the x, y , z-axis
13: 13 Leonard I. Schiff. Quantum Mechanics.

McGraw-Hill, New York, 1955

σ1 =σx =
(

0 1

1 0

)
,

σ2 =σy =
(

0 −i

i 0

)
,

σ3 =σz =
(

1 0

0 −1

)
.

(1.82)

Together with the identity, that is, with I2 = diag(1,1), they form a com-

plete basis of all (4×4) matrices. Now take, for instance, the commutator

[σ1,σ3] =σ1σ3 −σ3σ1

=
(

0 1

1 0

)(
1 0

0 −1

)
−

(
1 0

0 −1

)(
0 1

1 0

)

= 2

(
0 −1

1 0

)
6=

(
0 0

0 0

)
.

(1.83)

1.12 Projection or projection operator
For proofs and additional information see
§41 in

Paul Richard Halmos. Finite-
dimensional Vector Spaces. Springer,
New York, Heidelberg, Berlin, 1974

The more I learned about quantum mechanics the more I realized the

importance of projection operators for its conceptualization 14:

14 John von Neumann. Mathematis-
che Grundlagen der Quantenmechanik.
Springer, Berlin, 1932. English translation
in Ref. ; John von Neumann. Mathemat-
ical Foundations of Quantum Mechanics.
Princeton University Press, Princeton, NJ,
1955; and Garrett Birkhoff and John von
Neumann. The logic of quantum mechan-
ics. Annals of Mathematics, 37(4):823–843,
1936. D O I : 10.2307/1968621. URL
http://dx.doi.org/10.2307/1968621

John von Neumann. Mathematical
Foundations of Quantum Mechanics.
Princeton University Press, Princeton, NJ,
1955

(i) Pure quantum states are represented by a very particular kind of

projections; namely, those that are of the trace class one, meaning

their trace (cf. Section 1.18 below) is one, as well as being positive

(cf. Section 1.21 below). Positivity implies that the projection is self-

adjoint (cf. Section 1.20 below), which is equivalent to the projection

being orthogonal (cf. Section 1.23 below).

Mixed quantum states are compositions – actually, nontrivial convex

combinations – of (pure) quantum states; again they are of the trace

For a proof, see pages 52–53 of

L. E. Ballentine. Quantum Mechanics.
Prentice Hall, Englewood Cliffs, NJ, 1989

class one, self-adjoint, and positive; yet unlike pure states they are

no projectors (that is, they are not idempotent); and the trace of their

square is not one (indeed, it is less than one).

http://dx.doi.org/10.2307/1968621
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(ii) Mixed states, should they ontologically exist, can be composed from

projections by summing over projectors.

(iii) Projectors serve as the most elementary obsevables – they corre-

spond to yes-no propositions.

(iv) In Section 1.28.1 we will learn that every observable can be decom-

posed into weighted (spectral) sums of projections.

(v) Furthermore, from dimension three onwards, Gleason’s theorem (cf.

Section 1.33.1) allows quantum probability theory to be based upon

maximal (in terms of co-measurability) “quasi-classical” blocks of

projectors.

(vi) Such maximal blocks of projectors can be bundled together to show

(cf. Section 1.33.2) that the corresponding algebraic structure has no

two-valued measure (interpretable as truth assignment), and therefore

cannot be “embedded” into a “larger” classical (Boolean) algebra.

1.12.1 Definition

If V is the direct sum of some subspaces M and N so that every z ∈V can

be uniquely written in the form z = x+y, with x ∈M and with y ∈N, then

the projection, or, used synonymuosly, projection on M along N is the

transformation E defined by Ez = x. Conversely, Fz = y is the projection

on N along M.

A (nonzero) linear transformation E is a projection if and only if it is

idempotent; that is, EE=E 6= 0.

For a proof note that, if E is the projection on M along N, and if z =
x+y, with x ∈M and with y ∈N, the decomposition of x yields x+0, so

that E2z = EEz = Ex = x = Ez. The converse – idempotence “EE = E”

implies that E is a projection – is more difficult to prove. For this proof we

refer to the literature; e.g., Halmos 15. 15 Paul Richard Halmos. Finite-
dimensional Vector Spaces. Springer,
New York, Heidelberg, Berlin, 1974

We also mention without proof that a linear transformation E is a

projection if and only if 1−E is a projection. Note that (1−E)2 = 1−E−
E+E2 = 1−E; furthermore, E(1−E) = (1−E)E=E−E2 = 0.

Furthermore, if E is the projection on M along N, then 1−E is the

projection on N along M.

1.12.2 Construction of projections from unit vectors

How can we construct projections from unit vectors, or systems of or-

thogonal projections from some vector in some orthonormal basis with

the standard dot product?

Let x be the coordinates of a unit vector; that is ‖x‖ = 1. Transposition

is indicated by the superscript “T ” in real vector space. In complex vector

space the transposition has to be substituted for the conjugate transpose

(also denoted as Hermitian conjugate or Hermitian adjoint), “†,” stand-

ing for transposition and complex conjugation of the coordinates. More
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explicitly,

(
x1, . . . , xn

)† =


x1
...

xn

 , and


x1
...

xn


†

= (x1, . . . , xn). (1.84)

Note that, just as for real vector spaces,
(
xT

)T = x, or, in the bra-ket

notation,
(|x〉T

)T = |x〉, so is
(
x†

)† = x, or
(|x〉†

)† = |x〉 for complex vector

spaces.

As already mentioned on page 18, Eq. (1.57), for orthonormal bases

of complex Hilbert space we can express the dual vector in terms of the

original vector by taking the conjugate transpose, and vice versa; that is,

〈x| = (|x〉)† , and |x〉 = (〈x|)† . (1.85)

In real vector space, the dyadic product, or tensor product, or outer

product

Ex = x⊗xT = |x〉〈x| ≡


x1

x2
...

xn


(
x1, x2, . . . , xn

)

=


x1

(
x1, x2, . . . , xn

)
x2

(
x1, x2, . . . , xn

)
...

xn

(
x1, x2, . . . , xn

)

=


x1x1 x1x2 · · · x1xn

x2x1 x2x2 · · · x2xn
...

...
...

...

xn x1 xn x2 · · · xn xn



(1.86)

is the projection associated with x.

If the vector x is not normalized, then the associated projection is

Ex ≡ x⊗xT

〈x | x〉 ≡ |x〉〈x|
〈x | x〉 (1.87)

This construction is related to Px on page 13 by Px(y) =Exy.

For a proof, consider only normalized vectors x, and let Ex = x⊗ xT ,

then

ExEx = (|x〉〈x|)(|x〉〈x|) = |x〉〈x|x〉︸ ︷︷ ︸
=1

〈x| =Ex.

More explicitly, by writing out the coordinate tuples, the equivalent proof

is

ExEx ≡ (x⊗xT ) · (x⊗xT )

≡




x1

x2
...

xn

 (x1, x2, . . . , xn)






x1

x2
...

xn

 (x1, x2, . . . , xn)



=


x1

x2
...

xn



(x1, x2, . . . , xn)


x1

x2
...

xn




︸ ︷︷ ︸

=1

(x1, x2, . . . , xn) ≡Ex.

(1.88)
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In complex vector space, transposition has to be substituted by the

conjugate transposition; that is

Ex = x⊗x† ≡ |x〉〈x| (1.89)

For two examples, let x = (1,0)T and y = (1,−1)T ; then

Ex =
(

1

0

)
(1,0) =

(
1(1,0)

0(1,0)

)
=

(
1 0

0 0

)
,

and

Ey = 1

2

(
1

−1

)
(1,−1) = 1

2

(
1(1,−1)

−1(1,−1)

)
= 1

2

(
1 −1

−1 1

)
.

Note also that

Ex|y〉 ≡Exy = 〈x|y〉x,≡ 〈x|y〉|x〉, (1.90)

which can be directly proven by insertion.

1.13 Change of basis
For proofs and additional information see
§46 in

Paul Richard Halmos. Finite-
dimensional Vector Spaces. Springer,
New York, Heidelberg, Berlin, 1974

Let V be an n-dimensional vector space and let X = {e1, . . . ,en} and

Y= {f1, . . . , fn} be two bases of V.

Take an arbitrary vector z ∈V. In terms of the two bases X and Y, z

can be written as

z =
n∑

i=1
xi ei =

n∑
i=1

y i fi , (1.91)

where xi and y i stand for the coordinates of the vector z with respect to

the bases X and Y, respectively.

The following questions arise:

(i) What is the relation between the “corresponding” basis vectors ei and

f j ?

(ii) What is the relation between the coordinates xi (with respect to

the basis X) and y j (with respect to the basis Y) of the vector z in

Eq. (1.91)?

(iii) Suppose one fixes the coordinates, say, {v1, . . . , vn}, what is the rela-

tion beween the vectors v =∑n
i=1 v i ei and w =∑n

i=1 v i fi ?

As an Ansatz for answering question (i), recall that, just like any other

vector in V, the new basis vectors fi contained in the new basis Y can be

(uniquely) written as a linear combination (in quantum physics called

linear superposition) of the basis vectors ei contained in the old basis

X. This can be defined via a linear transformation A between the corre-

sponding vectors of the bases X and Y by

fi = (Ae)i , (1.92)

for all i = 1, . . . ,n. More specifically, let ai
j be the matrix of the linear

transformation A in the basis X= {e1, . . . ,en}, and let us rewrite (1.92) as a

matrix equation

fi =
n∑

j=1
ai

j e j . (1.93)
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If A stands for the matrix whose components (with respect to X) are ai
j ,

and AT stands for the transpose of A whose components (with respect to

X) are a j
i , then 

f1

f2
...

fn

=A


e1

e2
...

en

 . (1.94)

That is, very explicitly,

f1 = (Ae)1 = a1
1e1 +a1

2e2 +·· ·+an
1en =

n∑
i=1

ai
1ei ,

f2 = (Ae)2 = a2
1e1 +a2

2e2 +·· ·+an
2en =

n∑
i=1

ai
2ei ,

...

fn = (Ae)n = a1
n e1 +a2

n e2 +·· ·+an
n en =

n∑
i=1

ai
n ei .

(1.95)

This implies

n∑
i=1

v i fi =
n∑

i=1
v i (Ae)i =A

(
n∑

i=1
v i ei

)
. (1.96)

• Note that the n equalities (1.95) really represent n2 linear equations

for the n2 unknowns ai
j , 1 ≤ i , j ≤ n, since every pair of basis vectors

{fi ,ei }, 1 ≤ i ≤ n has n components or coefficients.

• If one knows how the basis vectors {e1, . . . ,en} of X transform, then one

knows (by linearity) how all other vectors v =∑n
i=1 v i ei (represented in

this basis) transform; namely A(v) =∑n
i=1 v i (Ae)i .

• Finally note that, if X is an orthonormal basis, then the basis transfor-

mation has a diagonal form

A=
n∑

i=1
fi e†

i ≡
n∑

i=1
|fi 〉〈ei | (1.97)

because all the off-diagonal components ai j , i 6= j of A explicitely

written down in Eqs.(1.95) vanish. This can be easily checked by ap-

plying A to the elements ei of the basis X. See also Section 1.24.3 on

page 43 for a representation of unitary transformations in terms of

basis changes. In quantum mechanics, the temporal evolution is rep-

resented by nothing but a change of orthonormal bases in Hilbert

space.

Having settled question (i) by the Ansatz (1.92), we turn to question (ii)

next. Since

z =
n∑

j=1
y j f j =

n∑
j=1

y j (Ae) j =
n∑

j=1
y j

n∑
i=1

a j
i ei =

n∑
i=1

(
n∑

j=1
a j

i y j

)
ei ; (1.98)

we obtain by comparison of the coefficients in Eq. (1.91),

xi =
n∑

j=1
a j

i y j . (1.99)



30 Mathematical Methods of Theoretical Physics

That is, in terms of the “old” coordinates xi , the “new” coordinates are

n∑
i=1

(a−1)i
l
xi =

n∑
i=1

(a−1)i
l

n∑
j=1

a j
i y j

=
n∑

i=1

n∑
j=1

(a−1)i
l
a j

i y j =
n∑

i=1

n∑
j=1

a j
i (a−1)i

l
y j

=
n∑

j=1
δl

j y j = y l .

(1.100)

If we prefer to represent the vector coordinates of x and y as n-tuples,

then Eqs. (1.99) and (1.100) have an interpretation as matrix multiplica-

tion; that is,

x =AT y, and y = (A−1)T x. (1.101)

Finally, let us answer question (iii) by substituting the Ansatz fi = Aei

defined in Eq. (1.92), while considering

w =
n∑

i=1
v i fi =

n∑
i=1

v i Aei =A
n∑

i=1
v i ei =A

(
n∑

i=1
v i ei

)
=Av. (1.102)

For the sake of an example,

-
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e1 = (1,0)T

e2 = (0,1)T

f2 = 1p
2

(−1,1)T f1 = 1p
2

(1,1)T

.

...................

.................

................

..............

............

......................................................
...............

.
............

....	
I ϕ= π

4

ϕ= π
4

Figure 1.3: Basis change by rotation of
ϕ= π

4 around the origin.

1. consider a change of basis in the plane R2 by rotation of an angle

ϕ = π
4 around the origin, depicted in Fig. 1.3. According to Eq. (1.92),

we have

f1 = a1
1e1 +a2

1e2,

f2 = a1
2e1 +a2

2e2,
(1.103)

which amounts to four linear equations in the four unknowns a1
1,

a1
2, a2

1, and a2
2. By inserting the basis vectors e1, e2, f1, and f2 one

obtains for the rotation matrix with respect to the basis X

1p
2

(
1

1

)
= a1

1

(
1

0

)
+a2

1

(
1

0

)
,

1p
2

(
−1

1

)
= a1

2

(
1

0

)
+a2

2

(
1

0

)
,

(1.104)

the first pair of equations yielding a1
1 = a2

1 = 1p
2

, the second pair of

equations yielding a1
2 =− 1p

2
and a2

2 = 1p
2

. Thus,

A=
(

a1
1 a1

2

a2
1 a2

2

)
= 1p

2

(
1 −1

1 1

)
. (1.105)

As both coordinate systems X= {e1,e2} and Y= {f1, f2} are orthogonal,

we might have just computed the diagonal form (1.97)

A= 1p
2

[(
1

1

)(
1,0

)
+

(
−1

1

)(
0,1

)]

= 1p
2

[(
1(1,0)

1(1,0)

)
+

(
−1(0,1)

1(0,1)

)]

= 1p
2

[(
1 0

1 0

)
+

(
0 −1

0 1

)]
= 1p

2

(
1 −1

1 1

)
.

(1.106)
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Likewise, the rotation matrix with respect to the basis Y is

A′ = 1p
2

[(
1

0

)(
1,1

)
+

(
0

1

)(
−1,1

)]
= 1p

2

(
1 1

−1 1

)
. (1.107)

2. By a similar calculation, taking into account the definition for the sine

and cosine functions, one obtains the transformation matrix A(ϕ)

associated with an arbitrary angle ϕ,

A=
(

cosϕ −sinϕ

sinϕ cosϕ

)
. (1.108)

The coordinates transform as

A−1 =
(

cosϕ sinϕ

−sinϕ cosϕ

)
. (1.109)

3. Consider the more general rotation depicted in Fig. 1.4. Again, by

inserting the basis vectors e1,e2, f1, and f2, one obtains

1

2

(p
3

1

)
= a1

1

(
1

0

)
+a2

1

(
0

1

)
,

1

2

(
1p
3

)
= a1

2

(
1

0

)
+a2

2

(
0

1

)
,

(1.110)

yielding a1
1 = a2

2 =
p

3
2 , the second pair of equations yielding a1

2 =
a2

1 = 1
2 .

-

6

e1 = (1,0)T

e2 = (0,1)T

f2 = 1
2 (1,

p
3)T

f1 = 1
2 (
p

3,1)Tϕ= π
6

ϕ= π
6

*

�

K
.
..................

...............

............
.........

j
. .................. ....................

...................
..

Figure 1.4: More general basis change by
rotation.

Thus,

A=
(

a b

b a

)
= 1

2

(p
3 1

1
p

3

)
. (1.111)

The coordinates transform according to the inverse transformation,

which in this case can be represented by

A−1 = 1

a2 −b2

(
a −b

−b a

)
=

(p
3 −1

−1
p

3

)
. (1.112)

1.14 Mutually unbiased bases

Two orthonormal bases B= {e1, . . . ,en} and B′ = {f1, . . . , fn} are said to be

mutually unbiased if their scalar or inner products are

|〈ei |f j 〉|2 = 1

n
(1.113)

for all 1 ≤ i , j ≤ n. Note without proof – that is, you do not have to be

concerned that you need to understand this from what has been said

so far – that “the elements of two or more mutually unbiased bases are

mutually maximally apart.”

In physics, one seeks maximal sets of orthogonal bases who are max-

imally apart 16 . Such maximal sets of bases are used in quantum infor- 16 W. K. Wootters and B. D. Fields. Optimal
state-determination by mutually unbi-
ased measurements. Annals of Physics,
191:363–381, 1989. D O I : 10.1016/0003-
4916(89)90322-9. URL http://dx.doi.

org/10.1016/0003-4916(89)90322-9;
and Thomas Durt, Berthold-Georg En-
glert, Ingemar Bengtsson, and Karol
Zyczkowski. On mutually unbiased
bases. International Journal of Quan-
tum Information, 8:535–640, 2010.
D O I : 10.1142/S0219749910006502.
URL http://dx.doi.org/10.1142/

S0219749910006502

mation theory to assure maximal performance of certain protocols used

in quantum cryptography, or for the production of quantum random

http://dx.doi.org/10.1016/0003-4916(89)90322-9
http://dx.doi.org/10.1016/0003-4916(89)90322-9
http://dx.doi.org/10.1142/S0219749910006502
http://dx.doi.org/10.1142/S0219749910006502
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sequences by beam splitters. They are essential for the practical exploita-

tions of quantum complementary properties and resources.

Schwinger presented an algorithm (see 17 for a proof) to construct a

17 Julian Schwinger. Unitary operators
bases. Proceedings of the National
Academy of Sciences (PNAS), 46:570–579,
1960. D O I : 10.1073/pnas.46.4.570. URL
http://dx.doi.org/10.1073/pnas.46.

4.570

new mutually unbiased basis B from an existing orthogonal one. The

proof idea is to create a new basis “inbetween” the old basis vectors. by

the following construction steps:

(i) take the existing orthogonal basis and permute all of its elements by

“shift-permuting” its elements; that is, by changing the basis vectors

according to their enumeration i → i +1 for i = 1, . . . ,n −1, and n → 1;

or any other nontrivial (i.e., do not consider identity for any basis

element) permutation;

(ii) consider the (unitary) transformation (cf. Sections 1.13 and 1.24.3)

corresponding to the basis change from the old basis to the new,

“permutated” basis;

(iii) finally, consider the (orthonormal) eigenvectors of this (unitary;

cf. page 43) transformation associated with the basis change. These

eigenvectors are the elements of a new bases B′. Together with B

these two bases – that is, B and B′ – are mutually unbiased.

Consider, for example, the real plane R2, and the basis For a Mathematica(R) program, see
http://tph.tuwien.ac.at/

∼svozil/publ/2012-schwinger.m
B= {e1,e2} ≡ {|e1〉, |e2〉} ≡

{(
1

0

)
,

(
0

1

)}
.

The shift-permutation [step (i)] brings B to a new, “shift-permuted” basis

S; that is,

{e1,e2} 7→S= {f1 = e2, f1 = e1} ≡
{(

0

1

)
,

(
1

0

)}
.

The (unitary) basis transformation [step (ii)] between B and S can be

constructed by a diagonal sum

U= f1e†
1 + f2e†

2 = e2e†
1 +e1e†

2

≡ |f1〉〈e1|+ |f2〉〈e2| = |e2〉〈e1|+ |e1〉〈e2|

≡
(

0

1

)
(1,0)+

(
1

0

)
(0,1)

≡
(

0(1,0)

1(1,0)

)
+

(
1(0,1)

0(0,1)

)

≡
(

0 0

1 0

)
+

(
0 1

0 0

)
=

(
0 1

1 0

)
.

(1.114)

The set of eigenvectors [step (iii)] of this (unitary) basis transformation U
forms a new basis

B′ = {
1p
2

(f1 −e1),
1p
2

(f2 +e2)}

= {
1p
2

(|f1〉− |e1〉),
1p
2

(|f2〉+ |e2〉)}

= {
1p
2

(|e2〉− |e1〉),
1p
2

(|e1〉+ |e2〉)}

≡
{

1p
2

{(
−1

1

)
,

1p
2

(
1

1

)}}
.

(1.115)

http://dx.doi.org/10.1073/pnas.46.4.570
http://dx.doi.org/10.1073/pnas.46.4.570
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For a proof of mutually unbiasedness, just form the four inner products

of one vector in B times one vector in B′, respectively.

In three-dimensional complex vector space C3, a similar con-

struction from the Cartesian standard basis B = {e1,e2,e3} ≡
{
(
1,0,0

)T
,
(
0,1,0

)T
,
(
0,0,1

)T
} yields

B′ ≡ 1p
3


1

1

1

 ,


1
2

[p
3i −1

]
1
2

[−p3i −1
]

1

 ,


1
2

[−p3i −1
]

1
2

[p
3i −1

]
1


 . (1.116)

So far, nobody has discovered a systematic way to derive and con-

struct a complete or maximal set of mutually unbiased bases in arbitrary

dimensions; in particular, how many bases are there in such sets.

1.15 Completeness or resolution of the unit operator in terms

of base vectors

The identity In in an n-dimensional vector space V can be repre-

sented in terms of the sum over all outer (by another naming tensor

or dyadic) products of all vectors of an arbitrary orthonormal basis

B= {e1, . . . ,en} ≡ {|e1〉, . . . , |en〉}; that is,

In =
n∑

i=1
|ei 〉〈ei | ≡

n∑
i=1

ei e†
i . (1.117)

This is sometimes also referred to as completeness.

For a proof, consider an arbitrary vector |x〉 ∈V. Then,

In |x〉 =
(

n∑
i=1

|ei 〉〈ei |
)
|x〉 =

n∑
i=1

|ei 〉〈ei |x〉 =
n∑

i=1
|ei 〉xi = |x〉. (1.118)

Consider, for example, the basis B= {|e1〉, |e2〉} ≡ {(1,0)T , (0,1)T }. Then

the two-dimensional resolution of the unit operator I2 can be written as

I2 = |e1〉〈e1|+ |e2〉〈e2|

= (1,0)T (1,0)+ (0,1)T (0,1) =
(

1(1,0)

0(1,0)

)
+

(
0(0,1)

1(0,1)

)

=
(

1 0

0 0

)
+

(
0 0

0 1

)
=

(
1 0

0 1

)
.

(1.119)

Consider, for another example, the basis B′ ≡ { 1p
2

(−1,1)T , 1p
2

(1,1)T }.

Then the two-dimensional resolution of the unit operator I2 can be writ-

ten as

I2 = 1p
2

(−1,1)T 1p
2

(−1,1)+ 1p
2

(1,1)T 1p
2

(1,1)

= 1

2

(
−1(−1,1)

1(−1,1)

)
+ 1

2

(
1(1,1)

1(1,1)

)
= 1

2

(
1 −1

−1 1

)
+ 1

2

(
1 1

1 1

)
=

(
1 0

0 1

)
.

(1.120)
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1.16 Rank

The (column or row) rank, ρ(A), or rk(A), of a linear transformation A
in an n-dimensional vector space V is the maximum number of linearly

independent (column or, equivalently, row) vectors of the associated

n-by-n square matrix A, represented by its entries ai j .

This definition can be generalized to arbitrary m-by-n matrices A,

represented by its entries ai j . Then, the row and column ranks of A are

identical; that is,

row rk(A) = column rk(A) = rk(A). (1.121)

For a proof, consider Mackiw’s argument 18. First we show that 18 George Mackiw. A note on the equality
of the column and row rank of a matrix.
Mathematics Magazine, 68(4):pp. 285–
286, 1995. ISSN 0025570X. URL http:

//www.jstor.org/stable/2690576

row rk(A) ≤ column rk(A) for any real (a generalization to complex vec-

tor space requires some adjustments) m-by-n matrix A. Let the vectors

{e1,e2, . . . ,er } with ei ∈ Rn , 1 ≤ i ≤ r , be a basis spanning the row space of

A; that is, all vectors that can be obtained by a linear combination of the

m row vectors 
(a11, a12, . . . , a1n)

(a21, a22, . . . , a2n)
...

(am1, an2, . . . , amn)


of A can also be obtained as a linear combination of e1,e2, . . . ,er . Note

that r ≤ m.

Now form the column vectors AeT
i for 1 ≤ i ≤ r , that is,

AeT
1 , AeT

2 , . . . , AeT
r via the usual rules of matrix multiplication. Let us

prove that these resulting column vectors AeT
i are linearly independent.

Suppose they were not (proof by contradiction). Then, for some

scalars c1,c2, . . . ,cr ∈R,

c1 AeT
1 + c2 AeT

2 + . . .+ cr AeT
r = A

(
c1eT

1 + c2eT
2 + . . .+ cr eT

r

)= 0

without all ci ’s vanishing.

That is, v = c1eT
1 + c2eT

2 + . . .+ cr eT
r , must be in the null space of A

defined by all vectors x with Ax = 0, and A(v) = 0 . (In this case the inner

(Euclidean) product of x with all the rows of A must vanish.) But since the

ei ’s form also a basis of the row vectors, vT is also some vector in the row

space of A. The linear independence of the basis elements e1,e2, . . . ,er of

the row space of A guarantees that all the coefficients ci have to vanish;

that is, c1 = c2 = ·· · = cr = 0.

At the same time, as for every vector x ∈Rn , Ax is a linear combination

of the column vectors


a11

a21
...

am1

 ,


a12

a22
...

am2

 , · · · ,


a1n

a2n
...

amn



 ,

the r linear independent vectors AeT
1 , AeT

2 , . . . , AeT
r are all linear com-

binations of the column vectors of A. Thus, they are in the column

http://www.jstor.org/stable/2690576
http://www.jstor.org/stable/2690576
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space of A. Hence, r ≤ column rk(A). And, as r = row rk(A), we obtain

row rk(A) ≤ column rk(A).

By considering the transposed matrix AT , and by an analo-

gous argument we obtain that row rk(AT ) ≤ column rk(AT ). But

row rk(AT ) = column rk(A) and column rk(AT ) = row rk(A), and thus

row rk(AT ) = column rk(A) ≤ column rk(AT ) = row rk(A). Finally,

by considering both estimates row rk(A) ≤ column rk(A) as well as

column rk(A) ≤ row rk(A), we obtain that row rk(A) = column rk(A).

1.17 Determinant

1.17.1 Definition

In what follows, the determinant of a matrix A will be denoted by detA or,

equivalently, by |A|.
Suppose A = ai j is the n-by-n square matrix representation of a linear

transformation A in an n-dimensional vector space V. We shall define its

determinant in two equivalent ways.

The Leibniz formula defines the determinant of the n-by-n square

matrix A = ai j by

detA = ∑
σ∈Sn

sgn(σ)
n∏

i=1
aσ(i ), j , (1.122)

where “sgn” represents the sign function of permutations σ in the permu-

tation group Sn on n elements {1,2, . . . ,n}, which returns −1 and +1 for

odd and even permutations, respectively. σ(i ) stands for the element in

position i of {1,2, . . . ,n} after permutation σ.

An equivalent (no proof is given here) definition

detA = εi1i2···in a1i1 a2i2 · · ·anin , (1.123)

makes use of the totally antisymmetric Levi-Civita symbol (2.89) on page

85, and makes use of the Einstein summation convention.

The second, Laplace formula definition of the determinant is recur-

sive and expands the determinant in cofactors. It is also called Laplace

expansion, or cofactor expansion . First, a minor Mi j of an n-by-n square

matrix A is defined to be the determinant of the (n−1)×(n−1) submatrix

that remains after the entire i th row and j th column have been deleted

from A.

A cofactor Ai j of an n-by-n square matrix A is defined in terms of its

associated minor by

Ai j = (−1)i+ j Mi j . (1.124)

The determinant of a square matrix A, denoted by detA or |A|, is a

scalar rekursively defined by

detA =
n∑

j=1
ai j Ai j =

n∑
i=1

ai j Ai j (1.125)

for any i (row expansion) or j (column expansion), with i , j = 1, . . . ,n. For

1×1 matrices (i.e., scalars), detA = a11.
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1.17.2 Properties

The following properties of determinants are mentioned (almost) with-

out proof:

(i) If A and B are square matrices of the same order, then detAB =
(detA)(detB).

(ii) If either two rows or two columns are exchanged, then the determi-

nant is multiplied by a factor “−1.”

(iii) The determinant of the transposed matrix is equal to the determi-

nant of the original matrix; that is, det(AT ) = detA .

(iv) The determinant detA of a matrix A is nonzero if and only if A is

invertible. In particular, if A is not invertible, detA = 0. If A has an

inverse matrix A−1, then det(A−1) = (detA)−1.

This is a very important property which we shall use in Eq. (1.179) on

page 48 for the determination of nontrivial eigenvalues λ (including

the associated eigenvectors) of a matrix A by solving the secular

equation det(A−λI) = 0.

(v) Multiplication of any row or column with a factor α results in a de-

terminant which is α times the original determinant. Consequently,

multiplication of an n ×n matrix with a scalar α results in a determi-

nant which is αn times the original determinant.

(vi) The determinant of a unit matrix is one; that is, det In = 1. Likewise,

the determinat of a diagonal matrix is just the product of the diagonal

entries; that is, det[diag(λ1, . . . ,λn)] =λ1 · · ·λn .

(vii) The determinant is not changed if a multiple of an existing row is

added to another row.

This can be easily demonstrated by considering the Leibniz formula:

suppose a multiple α of the j ’th column is added to the k’th column

since

εi1i2···i j ···ik ···in a1i1 a2i2 · · ·a j i j · · · (akik
+αa j ik ) · · ·anin

= εi1i2···i j ···ik ···in a1i1 a2i2 · · ·a j i j · · ·akik
· · ·anin+

αεi1i2···i j ···ik ···in a1i1 a2i2 · · ·a j i j · · ·a j ik · · ·anin .

(1.126)

The second summation term vanishes, since a j i j a j ik = a j ik a j i j is

totally symmetric in the indices i j and ik , and the Levi-Civita symbol

εi1i2···i j ···ik ···in .

(viii) The absolute value of the determinant of a square matrix

A = (e1, . . .en) formed by (not necessarily orthogonal) row (or col-

umn) vectors of a basis B = {e1, . . .en} is equal to the volume of the

parallelepiped
{

x | x =∑n
i=1 ti ei , 0 ≤ ti ≤ 1, 0 ≤ i ≤ n

}
formed by those

vectors.

This can be demonstrated by supposing that the square matrix see, for instance, Section 4.3 of Strang’s
account

Gilbert Strang. Introduction to linear
algebra. Wellesley-Cambridge Press,
Wellesley, MA, USA, fourth edition,
2009. ISBN 0-9802327-1-6. URL http:

//math.mit.edu/linearalgebra/

A consists of all the n row (column) vectors of an orthogonal ba-

sis of dimension n. Then A AT = AT A is a diagonal matrix which

http://math.mit.edu/linearalgebra/
http://math.mit.edu/linearalgebra/
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just contains the square of the length of all the basis vectors form-

ing a perpendicular parallelepiped which is just an n dimen-

sional box. Therefore the volume is just the positive square root of

det(A AT ) = (detA)(detAT ) = (detA)(detAT ) = (detA)2.

For any nonorthogonal basis all we need to employ is a Gram-

Schmidt process to obtain a (perpendicular) box of equal volume to

the original parallelepiped formed by the nonorthogonal basis vectors

– any volume that is cut is compensated by adding the same amount

to the new volume. Note that the Gram-Schmidt process operates by

adding (subtracting) the projections of already existing orthogonalized

vectors from the old basis vectors (to render these sums orthogonal to

the existing vectors of the new orthogonal basis); a process which does

not change the determinant.

This result can be used for changing the differential volume element

in integrals via the Jacobian matrix J (2.19), as

d x ′
1 d x ′

2 · · ·d x ′
n = |det J |d x1 d x2 · · ·d xn

=
√√√√[

det

(
d x ′

i

d x j

)]2

d x1 d x2 · · ·d xn .
(1.127)

(ix) The sign of a determinant of a matrix formed by the row (column)

vectors of a basis indicates the orientation of that basis.

1.18 Trace

1.18.1 Definition
The German word for trace is Spur.

The trace of an n-by-n square matrix A = ai j , denoted by TrA, is a scalar

defined to be the sum of the elements on the main diagonal (the diagonal

from the upper left to the lower right) of A; that is (also in Dirac’s bra and

ket notation),

Tr A = a11 +a22 +·· ·+ann =
n∑

i=1
ai i =

n∑
i=1

〈i |A|i 〉. (1.128)

Traces can be realized via some arbitrary orthonormal basis B =
{e1, . . . ,en} by “sandwiching” an operator A between all basis elements

– thereby effectively taking the diagonal components of A with respect

to the basis B – and summing over all these scalar compontents; that is,

with definition (1.79),

Tr A=
n∑

i=1
〈ei |A|ei 〉 =

n∑
i=1

〈ei |Aei 〉

=
n∑

i=1

n∑
l=1

〈ei |αl i el 〉 =
n∑

i=1

n∑
l=1

αl i 〈ei |el 〉

=
n∑

i=1

n∑
l=1

αl iδi l =
n∑

i=1
αi i .

(1.129)

This representation is particularly useful in quantum mechanics.
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1.18.2 Properties

The following properties of traces are mentioned without proof:

(i) Tr(A+B) = TrA+TrB ;

(ii) Tr(αA) =αTrA, with α ∈C;

(iii) Tr(AB) = Tr(B A), hence the trace of the commutator vanishes; that

is, Tr([A,B ]) = 0;

(iv) TrA = TrAT ;

(v) Tr(A⊗B) = (TrA)(TrB);

(vi) the trace is the sum of the eigenvalues of a normal operator (cf. page

52);

(vii) det(e A) = eTrA ;

(viii) the trace is the derivative of the determinant at the identity;

(ix) the complex conjugate of the trace of an operator is equal to the

trace of its adjoint (cf. page 39); that is (TrA) = Tr(A†);

(x) the trace is invariant under rotations of the basis as well as under

cyclic permutations.

(xi) the trace of an n ×n matrix A for which A A = αA for some α ∈ R
is TrA = αrank(A), where rank is the rank of A defined on page 34.

Consequently, the trace of an idempotent (with α= 1) operator – that

is, a projection – is equal to its rank; and, in particular, the trace of a

one-dimensional projection is one.

A trace class operator is a compact operator for which a trace is finite

and independent of the choice of basis.

1.18.3 Partial trace

The quantum mechanics of multi-particle (multipartite) systems allows

for configurations – actually rather processes – that can be informally

described as “beam dump experiments;” in which we start out with

entangled states (such as the Bell states on page 23) which carry infor-

mation about joint properties of the constituent quanta and choose to

disregard one quantum state entirely; that is, we pretend not to care of

the (possible) outcomes of a measurement on this particle. In this case,

we have to trace out that particle; and as a result we obtain a reduced state

without this particle we do not care about.

For an example’s sake, consider the Bell state |Ψ−〉 defined in

Eq. (1.69). Suppose we do not care about the state of the first particle, The same is true for all elements of the
Bell basis.then we may ask what kind of reduced state results from this pretension.
Be careful here to make the experiment
in such a way that in no way you could
know the state of the first particle. You
may actually think about this as a mea-
surement of the state of the first particle
by a degenerate observable with only a
single, nondiscriminating measurement
outcome.

Then the partial trace is just the trace over the first particle; that is, with
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subscripts referring to the particle number,

Tr1 |Ψ−〉〈Ψ−|

=
1∑

i1=0
〈i1|Ψ−〉〈Ψ−|i1〉

= 〈01|Ψ−〉〈Ψ−|01〉+〈11|Ψ−〉〈Ψ−|11〉

= 〈01| 1p
2

(|0112〉− |1102〉) 1p
2

(〈0112|−〈1102|) |01〉

+〈11| 1p
2

(|0112〉− |1102〉) 1p
2

(〈0112|−〈1102|) |11〉

= 1

2
(|12〉〈12|+ |02〉〈02|) .

(1.130)

The resulting state is a mixed state defined by the property that its

trace is equal to one, but the trace of its square is smaller than one; in this

case the trace is 1
2 , because

Tr2
1

2
(|12〉〈12|+ |02〉〈02|)

= 1

2
〈02| (|12〉〈12|+ |02〉〈02|) |02〉+ 1

2
〈12| (|12〉〈12|+ |02〉〈02|) |12〉

= 1

2
+ 1

2
= 1;

(1.131)

but

Tr2

[
1

2
(|12〉〈12|+ |02〉〈02|) 1

2
(|12〉〈12|+ |02〉〈02|)

]
= Tr2

1

4
(|12〉〈12|+ |02〉〈02|) = 1

2
.

(1.132)

This mixed state is a 50:50 mixture of the pure particle states |02〉 and |12〉,
respectively. Note that this is different from a coherent superposition

|02〉 + |12〉 of the pure particle states |02〉 and |12〉, respectively – also

formalizing a 50:50 mixture with respect to measurements of property 0

versus 1, respectively.

In quantum mechanics, the “inverse” of the partial trace is called pu-

rification: it is the creation of a pure state from a mixed one, associated

with an “enlargement” of Hilbert space (more dimensions). This cannot

be done in a unique way (see Section 1.31 below ). Some people – mem- For additional information see page 110,
Sect. 2.5 in

Michael A. Nielsen and I. L. Chuang.
Quantum Computation and Quantum
Information. Cambridge University
Press, Cambridge, 2010. 10th Anniversary
Edition

bers of the “church of the larger Hilbert space” – believe that mixed states

are epistemic (that is, associated with our own personal ignorance rather

than with any ontic, microphysical property), and are always part of an,

albeit unknown, pure state in a larger Hilbert space.

1.19 Adjoint

1.19.1 Definition

Let V be a vector space and let y be any element of its dual space V∗.

For any linear transformation A, consider the bilinear functional y′(x) = Here [·, ·] is the bilinear functional, not the
commutator.[x,y′] = [Ax,y] Let the adjoint transformation A† be defined by

[x,A∗y] = [Ax,y] or, equivalently, [x,Ay] = [A∗x,y]. (1.133)
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In real inner product spaces, define AT by

[x,AT y] = [Ax,y]. (1.134)

In complex inner product spaces, define A† by

[x,A†y] = [Ax,y]. (1.135)

1.19.2 Properties

We mention without proof that the adjoint operator is a linear operator.

Furthermore, 0† = 0, 1† = 1, (A+B)† =A† +B†, (αA)† =αA†, (AB)† =B†A†,

and (A−1)† = (A†)−1; as well as (in finite dimensional spaces)

A†† =A. (1.136)

1.19.3 Adjoint matrix notation

In matrix notation and in complex vector space with the dot product,

note that there is a correspondence with the inner product (cf. page 19)

so that, for all z ∈V and for all x ∈V, there exist a unique y ∈V with

[Ax,z] = 〈Ax | y〉 = 〈y |Ax〉
= (

yi
)

Ai j x j = yi Ai j x j = yi A
T
j i x j = x A

T
y ,

(1.137)

and another unique vector y′ obtained from y by some linear operator A†

such that y′ =A†y with

[x,A†z] = 〈x | y′〉 = 〈x |A†y〉
= xi A†

i j y j = x A† y ;
(1.138)

and therefore

A† = (A)T = AT , or A†
i j = A j i . (1.139)

In words: in matrix notation, the adjoint transformation is just the trans-

pose of the complex conjugate of the original matrix.

1.20 Self-adjoint transformation

The following definition yields some analogy to real numbers as com-

pared to complex numbers (“a complex number z is real if z = z”), ex-

pressed in terms of operators on a complex vector space.

An operator A on a linear vector space V is called self-adjoint, if

A∗ =A (1.140)

and if the domains of A and A∗ – that is, the set of vectors on which they

are well defined – coincide.

In finite dimensional real inner product spaces, self-adoint operators

are called symmetric, since they are symmetric with respect to transposi-

tions; that is,

A∗ =AT =A. (1.141)

In finite dimensional complex inner product spaces, self-adoint opera- For infinite dimensions, a distinction
must be made between self-adjoint
operators and Hermitian ones; see, for
instance,

Dietrich Grau. Übungsaufgaben zur
Quantentheorie. Karl Thiemig, Karl
Hanser, München, 1975, 1993, 2005.
URL http://www.dietrich-grau.at;
François Gieres. Mathematical sur-
prises and Dirac’s formalism in quan-
tum mechanics. Reports on Progress
in Physics, 63(12):1893–1931, 2000.
D O I : http://dx.doi.org/10.1088/0034-
4885/63/12/201. URL 10.1088/

0034-4885/63/12/201; and Guy
Bonneau, Jacques Faraut, and Gal-
liano Valent. Self-adjoint exten-
sions of operators and the teaching of
quantum mechanics. American Jour-
nal of Physics, 69(3):322–331, 2001.
D O I : 10.1119/1.1328351. URL http:

//dx.doi.org/10.1119/1.1328351

http://www.dietrich-grau.at
10.1088/0034-4885/63/12/201
10.1088/0034-4885/63/12/201
http://dx.doi.org/10.1119/1.1328351
http://dx.doi.org/10.1119/1.1328351
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tors are called Hermitian, since they are identical with respect to Hermi-

tian conjugation (transposition of the matrix and complex conjugation of

its entries); that is,

A∗ =A† =A. (1.142)

In what follows, we shall consider only the latter case and identify self-

adjoint operators with Hermitian ones. In terms of matrices, a matrix A

corresponding to an operator A in some fixed basis is self-adjoint if

A† ≡ (Ai j )T = A j i = Ai j ≡ A. (1.143)

That is, suppose Ai j is the matrix representation corresponding to a

linear transformation A in some basis B, then the Hermitian matrix

A∗ =A† to the dual basis B∗ is (Ai j )T .

For the sake of an example, consider again the Pauli spin matrices

σ1 =σx =
(

0 1

1 0

)
,

σ2 =σy =
(

0 −i

i 0

)
,

σ1 =σz =
(

1 0

0 −1

)
.

(1.144)

which, together with the identity, that is, I2 = diag(1,1), are all self-

adjoint.

The following operators are not self-adjoint:(
0 1

0 0

)
,

(
1 1

0 0

)
,

(
1 0

i 0

)
,

(
0 i

i 0

)
. (1.145)

Note that the coherent real-valued superposition of a self-adjoint

transformations (such as the sum or difference of correlations in the

Clauser-Horne-Shimony-Holt expression 19) is a self-adjoint transforma- 19 Stefan Filipp and Karl Svozil. Gen-
eralizing Tsirelson’s bound on Bell
inequalities using a min-max principle.
Physical Review Letters, 93:130407, 2004.
D O I : 10.1103/PhysRevLett.93.130407.
URL http://dx.doi.org/10.1103/

PhysRevLett.93.130407

tion.

For a direct proof, suppose that αi ∈ R for all 1 ≤ i ≤ n are n real-

valued coefficients and A1, . . .An are n self-adjoint operators. Then B =∑n
i=1αi Ai is self-adjoint, since

B∗ =
n∑

i=1
αi A∗

i =
n∑

i=1
αi Ai =B. (1.146)

1.21 Positive transformation

A linear transformation A on an inner product space V is positive, that is,

in symbols A ≥ 0, if 〈Ax | x〉 ≥ 0 for all x ∈V. If 〈Ax | x〉 = 0 implies x = 0, A
is called strictly positive.

Positive transformations – indeed, real transformations defined by

〈Ax|x〉 = 〈x|Ax〉 = 〈x|Ax〉 for all vectors x of a complex inner product space

V – are self-adjoint.

http://dx.doi.org/10.1103/PhysRevLett.93.130407
http://dx.doi.org/10.1103/PhysRevLett.93.130407
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For a direct proof, recall the polarization identity (1.8) and write

〈x|A∗y〉 = 〈Ax|y〉 = 1

4

[〈A(x+y)|x+y〉−〈A(x−y)|x−y〉
+i 〈A(x+ i y)|x+ i y〉− i 〈A(x− i y)|x− i y〉]

= 1

4

[〈x+y|A(x+y)〉−〈x−y|A(x−y)〉
+i 〈x+ i y|A(x+ i y)〉− i 〈x− i y|A(x− i y)〉]= 〈x|Ay〉.

(1.147)

1.22 Permutation

Permutation (matrices) are the “classical analogues” 20 of unitary trans- 20 David N. Mermin. Lecture notes on
quantum computation. 2002-2008.
URL http://people.ccmr.cornell.

edu/~mermin/qcomp/CS483.html; and
David N. Mermin. Quantum Computer
Science. Cambridge University Press,
Cambridge, 2007. ISBN 9780521876582.
URL http://people.ccmr.cornell.

edu/~mermin/qcomp/CS483.html

formations (matrices) which will be introduced later on page 43. The

permutation matrices are defined by the requirement that they only

contain a single nonvanishing entry “1” per row and column; all the

other row and column entries vanish “0.” For example, the matrices

In = diag(1, . . . ,1︸ ︷︷ ︸
n times

), or

σ1 =
(

0 1

1 0

)
, or

0 1 0

1 0 0

0 0 1


are permutation matrices.

Note that from the definition and from matrix multiplication follows

that, if P is a permutation matrix, then PP T = P T P = In . That is, P T

represents the inverse element of P . As P is real-valued, it is a normal

operator (cf. page 52).

Note further that any permuation matrix can be interpreted in terms

of row and column vectors. The set of all these row and column vectors

constitute the Cartesian standard basis of n-dimensional vector space,

with permuted elements.

Note also that, if P and Q are permutation matrices, so is PQ and

QP . The set of all n! permutation (n ×n)−matrices correponding to

permutations of n elements of {1,2, . . . ,n} form the symmetric group Sn ,

with In being the identity element.

1.23 Orthonormal (orthogonal) transformations

An orthonormal or orthogonal transformation R is a linear transforma-

tion whose corresponding square matrix R has real-valued entries and

mutually ortogonal, normalized row (or, equivalently, column) vectors.

As a consequence,

RRT = RT R = I, or R−1 = RT . (1.148)

If detR = 1, R corresponds to a rotation. If detR =−1, R corresponds to a

rotation and a reflection. A reflection is an isometry (a distance preserv-

ing map) with a hyperplane as set of fixed points.

Orthonomal transformations R are “real valued cases” of the more

general unitary transformations discussed next. They preserve a sym-

metric inner product; that is, 〈Rx |Ry〉 = 〈x | y〉 for all x,y ∈V

http://people.ccmr.cornell.edu/~mermin/qcomp/CS483.html
http://people.ccmr.cornell.edu/~mermin/qcomp/CS483.html
http://people.ccmr.cornell.edu/~mermin/qcomp/CS483.html
http://people.ccmr.cornell.edu/~mermin/qcomp/CS483.html
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As a two-dimensional example of rotations in the plane R2, take the

rotation matrix in Eq. (1.108) representing a rotation of the basis by an

angle ϕ.

Permutation matrices represent orthonormal transformations.

1.24 Unitary transformations and isometries

For proofs and additional information see
§73 in

Paul Richard Halmos. Finite-
dimensional Vector Spaces. Springer,
New York, Heidelberg, Berlin, 1974

1.24.1 Definition

Note that a complex number z has absolute value one if z = 1/z, or

zz = 1. In analogy to this “modulus one” behavior, consider unitary

transformations, or, used synonymuously, (one-to-one) isometries U for

which

U∗ =U† =U−1, or UU† =U†U= I. (1.149)

Alternatively, we mention without proof that the following conditions are

equivalent:

(i) 〈Ux |Uy〉 = 〈x | y〉 for all x,y ∈V;

(ii) ‖Ux‖ = ‖x‖ for all x ∈V;

Unitary transformations can also be defined via permutations pre-

serving the scalar product. That is, functions such as f : x 7→ x ′ = αx

with α 6= e iϕ, ϕ ∈ R, do not correspond to a unitary transformation

in a one-dimensional Hilbert space, as the scalar product f : 〈x|y〉 7→
〈x ′|y ′〉 = |α|2〈x|y〉 is not preserved; whereas if α is a modulus of one; that

is, with α= e iϕ, ϕ ∈ R, |α|2 = 1, and the scalar product is preseved. Thus,

u : x 7→ x ′ = e iϕx, ϕ ∈R, represents a unitary transformation.

1.24.2 Characterization of change of orthonormal basis

Let B= {f1, f2, . . . , fn} be an orthonormal basis of an n-dimensional inner

product space V. If U is an isometry, then UB = {Uf1,Uf2, . . . ,Ufn} is also

an orthonormal basis of V. (The converse is also true.)

1.24.3 Characterization in terms of orthonormal basis

A complex matrix U is unitary if and only if its row (or column) vectors

form an orthonormal basis.

This can be readily verified 21 by writing U in terms of two orthonor- 21 Julian Schwinger. Unitary operators
bases. Proceedings of the National
Academy of Sciences (PNAS), 46:570–579,
1960. D O I : 10.1073/pnas.46.4.570. URL
http://dx.doi.org/10.1073/pnas.46.

4.570

mal bases B = {e1,e2, . . . ,en} ≡ {|e1〉, |e2〉, . . . , |en〉} B′ = {f1, f2, . . . , fn} ≡
{|f1〉, |f2〉, . . . , |fn〉} as

Ue f =
n∑

i=1
ei f†

i ≡
n∑

i=1
|ei 〉〈fi |. (1.150)

http://dx.doi.org/10.1073/pnas.46.4.570
http://dx.doi.org/10.1073/pnas.46.4.570
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Together with U f e =
∑n

i=1 fi e†
i ≡

∑n
i=1 |fi 〉〈ei | we form

e†
k Ue f

= e†
k

n∑
i=1

ei f†
i

=
n∑

i=1
(e†

k ei )f†
i

=
n∑

i=1
δki f†

i

= f†
k .

(1.151)

In a similar way we find that

Ue f fk = ek ,

f†
k U f e = e†

k ,

U f e ek = fk .

(1.152)

Moreover,

Ue f U f e

=
n∑

i=1

n∑
j=1

(|ei 〉〈fi |)(|f j 〉〈e j |)

=
n∑

i=1

n∑
j=1

|ei 〉δi j 〈e j |

=
n∑

i=1
|ei 〉〈ei |

= I.

(1.153)

In a similar way we obtain U f eUe f = I. Since

U†
e f =

n∑
i=1

(f†
i )†e†

i =
n∑

i=1
fi e†

i =U f e , (1.154)

we obtain that U†
e f = (Ue f )−1 and U†

f e = (U f e )−1.

Note also that the composition holds; that is, Ue f U f g =Ueg .

If we identify one of the bases B and B′ by the Cartesian standard

basis, it becomes clear that, for instance, every unitary operator U can be

written in terms of an orthonormal basis B = {f1, f2, . . . , fn} by “stacking”

the conjugate transpose vectors of that orthonormal basis “on top of each

other;” that is For a quantum mechanical application,
see

Michael Reck, Anton Zeilinger, Her-
bert J. Bernstein, and Philip Bertani.
Experimental realization of any discrete
unitary operator. Physical Review Letters,
73:58–61, 1994. D O I : 10.1103/Phys-
RevLett.73.58. URL http://dx.doi.org/

10.1103/PhysRevLett.73.58

For proofs and additional information see
§5.11.3, Theorem 5.1.5 and subsequent
Corollary in

Satish D. Joglekar. Mathematical
Physics: The Basics. CRC Press, Boca
Raton, Florida, 2007

U≡


1

0
...

0

 f†
1 +


0

1
...

0

 f†
2 +·· ·+


0

0
...

n

 f†
n ≡


f†

1

f†
2
...

f†
n

≡


〈f1|
〈f2|

...

〈fn |

 . (1.155)

Thereby the conjugate transpose vectors of the orthonormal basis B

serve as the rows of U.

In a similar manner, every unitary operator U can be written in terms

of an orthonormal basis B= {f1, f2, . . . , fn} by “pasting” the vectors of that

orthonormal basis “one after another;” that is

U≡ f1

(
1,0, . . . ,0

)
+ f2

(
0,1, . . . ,0

)
+·· ·+ fn

(
0,0, . . . ,1

)
≡

(
f1, f2, · · · , fn

)
≡

(
|f1〉, |f2〉, · · · , |fn〉

)
.

(1.156)

http://dx.doi.org/10.1103/PhysRevLett.73.58
http://dx.doi.org/10.1103/PhysRevLett.73.58
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Thereby the vectors of the orthonormal basis B serve as the columns of

U.

Note also that any permutation of vectors in B would also yield uni-

tary matrices.

1.25 Orthogonal (perpendicular) projections
For proofs and additional information see
§42, §75 & §76 in

Paul Richard Halmos. Finite-
dimensional Vector Spaces. Springer,
New York, Heidelberg, Berlin, 1974

Orthogonal, or, used synonymously, perpendicular projections are as-

sociated with a direct sum decomposition of the vector space V; that is,

M⊕M⊥ =V, (1.157)

whereby M = PM(V) is the image of some projector E = PM along M⊥,

and M⊥ is the kernel of PM. That is, M⊥ = {x ∈V | PM(x) = 0} is the

subspace of V whose elements are mapped to the zero vector 0 by PM.

Let us, for the sake of concreteness, suppose that, in n-dimensional http://faculty.uml.edu/dklain/projections.pdf

complex Hilbert space Cn , we are given a k-dimensional subspace

M= span(x1, . . . ,xk ) ≡ span(|x1〉, . . . , |xk〉) (1.158)

spanned by k ≤ n linear independent base vectors x1, . . . ,xk . In addition,

we are given another (arbitrary) vector y ∈Cn .

Now consider the following question: how can we project y onto M

orthogonally (perpendicularly)? That is, can we find a vector y′ ∈M so

that y⊥ = y−y′ is orthogonal (perpendicular) to all of M?

The orthogonality of y⊥ on the entire M can be rephrased in terms of

all the vectors x1, . . . ,xk spanning M; that is, for all xi ∈M, 1 ≤ i ≤ k we

must have 〈xi |y⊥〉 = 0. This can be transformed into matrix algebra by

considering the n ×k matrix [note that xi are column vectors, and recall

the construction in Eq. (1.156)]

A=
(
x1, . . . ,xk

)
≡

(
|x1〉, . . . , |xk〉

)
, (1.159)

and by requiring

A†|y⊥〉 ≡A†y⊥ =A† (
y−y′

)=A†y−A†y′ = 0, (1.160)

yielding

A†|y〉 ≡A†y =A†y′ ≡A†|y′〉. (1.161)

On the other hand, y′ must be a linear combination of x1, . . . ,xk with

the k-tuple of coefficients c defined by Recall that (AB)† =B†A†, and (A†)† =A.

y′ = c1x1 +·· ·+ck xk =
(
x1, . . . ,xk

)
c1
...

ck

=Ac. (1.162)

Insertion into (1.161) yields

A†y =A†Ac. (1.163)

Taking the inverse of A†A (this is a k × k diagonal matrix which is in-

vertible, since the k vectors defining A are linear independent), and

multiplying (1.163) from the left yields

c =
(
A†A

)−1
A†y. (1.164)
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With (1.162) and (1.164) we find y′ to be

y′ =Ac =A
(
A†A

)−1
A†y. (1.165)

We can define

EM =A
(
A†A

)−1
A† (1.166)

to be the projection matrix for the subspace M. Note that

E†
M

=
[
A

(
A†A

)−1
A†

]†

=A
[(

A†A
)−1

]†

A† =A
[
A−1

(
A†

)−1
]†

A†

=AA−1 (
A−1)†

A† =AA−1
(
A†

)−1
A† =A

(
A†A

)−1
A† =EM,

(1.167)

that is, EM is self-adjoint and thus normal, as well as idempotent:

E2
M =

(
A

(
A†A

)−1
A†

)(
A

(
A†A

)−1
A†

)
=A†

(
A†A

)−1 (
A†A

)(
A†A

)−1
A=A†

(
A†A

)−1
A=EM.

(1.168)

Conversely, every normal projection operator has a “trivial” spectral

decomposition (cf. later Sec. 1.28.1 on page 52) EM = 1 ·EM+0 ·EM⊥ =
1 ·EM+0 · (1−EM) associated with the two eigenvalues 0 and 1, and thus

must be orthogonal.

If the basis B= {x1, . . . ,xk } of M is orthonormal, then

A†A≡


〈x1|

...

〈xk |

(
|x1〉, . . . , |xk〉

)
=


〈x1|x1〉 . . . 〈x1|xk〉

...
...

...

〈xk |x1〉 . . . 〈xk |xk〉

≡ Ik (1.169)

represents a k-dimensional resolution of the unit operator. Thus,(
A†A

)−1 ≡ (Ik )−1 is also a k-dimensional resolution of the unit opera-

tor, and the orthogonal projector EM in Eq. (1.166) reduces to

EM =AA† ≡
k∑

i=1
|xi 〉〈xi |. (1.170)

The simplest example of an orthogonal projection onto a one-

dimensional subspace of a Hilbert space spanned by some unit vector

|x〉 is the dyadic or outer product Ex = |x〉〈x|.
If two unit vectors |x〉 and |y〉 are orthogonal; that is, if 〈x|y〉 = 0, then

Ex,y = |x〉〈x| + |y〉〈y| is an orthogonal projector onto a two-dimensional

subspace spanned by |x〉 and |y〉.
In general, the orthonormal projection corresponding to some arbi-

trary subspace of some Hilbert space can be (non-uniquely) constructed

by (i) finding an orthonormal basis spanning that subsystem (this is

nonunique), if necessary by a Gram-Schmidt process; (ii) forming the

projection operators corresponding to the dyadic or outer product of all

these vectors; and (iii) summing up all these orthogonal operators.

The following propositions are stated mostly without proof. A linear

transformation E is an orthogonal (perpendicular) projection if and only

if is self-adjoint; that is, E=E2 =E∗.

Perpendicular projections are positive linear transformations, with

‖Ex‖ ≤ ‖x‖ for all x ∈V. Conversely, if a linear transformation E is idem-

potent; that is, E2 = E, and ‖Ex‖ ≤ ‖x‖ for all x ∈V, then is self-adjoint;

that is, E=E∗.
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Recall that for real inner product spaces, the self-adjoint operator can

be identified with a symmetric operator E = ET , whereas for complex

inner product spaces, the self-adjoint operator can be identified with a

Hermitean operator E=E†.

If E1,E2, . . . ,En are (perpendicular) projections, then a necessary and

sufficient condition that E = E1 +E2 + ·· · +En be a (perpendicular)

projection is that Ei E j = δi j Ei = δi j E j ; and, in particular, Ei E j = 0

whenever i 6= j ; that is, that all Ei are pairwise orthogonal.

For a start, consider just two projections E1 and E2. Then we can

assert that E1 +E2 is a projection if and only if E1E2 =E2E1 = 0.

Because, for E1 +E2 to be a projection, it must be idempotent; that is,

(E1 +E2)2 = (E1 +E2)(E1 +E2) =E2
1 +E1E2 +E2E1 +E2

2 =E1 +E2. (1.171)

As a consequence, the cross-product terms in (1.171) must vanish; that is,

E1E2 +E2E1 = 0. (1.172)

Multiplication of (1.172) with E1 from the left and from the right yields

E1E1E2 +E1E2E1 = 0,

E1E2 +E1E2E1 = 0; and

E1E2E1 +E2E1E1 = 0,

E1E2E1 +E2E1 = 0.

(1.173)

Subtraction of the resulting pair of equations yields

E1E2 −E2E1 = [E1,E2] = 0, (1.174)

or

E1E2 =E2E1. (1.175)

Hence, in order for the cross-product terms in Eqs. (1.171 ) and (1.172) to

vanish, we must have

E1E2 =E2E1 = 0. (1.176)

Proving the reverse statement is straightforward, since (1.176) implies

(1.171).

A generalisation by induction to more than two projections is straight-

forward, since, for instance, (E1 +E2)E3 = 0 implies E1E3 +E2E3 = 0.

Multiplication with E1 from the left yields E1E1E3 +E1E2E3 =E1E3 = 0.

Examples for projections that are not orthogonal are

(
1 α

0 0

)
, or

1 0 α

0 1 β

0 0 0

 ,

with α 6= 0. Such projectors are sometimes called oblique projections.

Indeed, for two-dimensional Hilbert space, the solution of idempo-

tence (
a b

c d

)(
a b

c d

)
=

(
a b

c d

)
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yields the three orthogonal projections(
1 0

0 0

)
,

(
0 0

0 1

)
, and

(
1 0

0 1

)
,

as well as a continuum of oblique projections(
0 0

c 1

)
,

(
1 0

c 0

)
, and

(
a b

a(1−a)
b 1−a

)
,

with a,b,c 6= 0.

1.26 Proper value or eigenvalue
For proofs and additional information see
§54 in

Paul Richard Halmos. Finite-
dimensional Vector Spaces. Springer,
New York, Heidelberg, Berlin, 1974

1.26.1 Definition

A scalar λ is a proper value or eigenvalue, and a nonzero vector x is a

proper vector or eigenvector of a linear transformation A if

Ax =λx =λIx. (1.177)

In an n-dimensional vector space V The set of the set of eigenvalues and

the set of the associated eigenvectors {{λ1, . . . ,λk }, {x1, . . . ,xn}} of a linear

transformation A form an eigensystem of A.

1.26.2 Determination

Since the eigenvalues and eigenvectors are those scalars λ vectors x for

which Ax = λx, this equation can be rewritten with a zero vector on the

right side of the equation; that is (I = diag(1, . . . ,1) stands for the identity

matrix),

(A−λI)x = 0. (1.178)

Suppose that A−λI is invertible. Then we could formally write x = (A−
λI)−10; hence x must be the zero vector.

We are not interested in this trivial solution of Eq. (1.178). Therefore,

suppose that, contrary to the previous assumption, A−λI is not invertible.

We have mentioned earlier (without proof) that this implies that its

determinant vanishes; that is,

det(A−λI) = |A−λI| = 0. (1.179)

This determinant is often called the secular determinant; and the cor-

responding equation after expansion of the determinant is called the

secular equation or characteristic equation. Once the eigenvalues, that

is, the roots (i.e., the solutions) of this equation are determined, the

eigenvectors can be obtained one-by-one by inserting these eigenvalues

one-by-one into Eq. (1.178).

For the sake of an example, consider the matrix

A =

1 0 1

0 1 0

1 0 1

 . (1.180)
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The secular equation is∣∣∣∣∣∣∣
1−λ 0 1

0 1−λ 0

1 0 1−λ

∣∣∣∣∣∣∣= 0,

yielding the characteristic equation (1−λ)3−(1−λ) = (1−λ)[(1−λ)2−1] =
(1−λ)[λ2 −2λ] = −λ(1−λ)(2−λ) = 0, and therefore three eigenvalues

λ1 = 0, λ2 = 1, and λ3 = 2 which are the roots of λ(1−λ)(2−λ) = 0.

Next let us determine the eigenvectors of A, based on the eigenvalues.

Insertion λ1 = 0 into Eq. (1.178) yields
1 0 1

0 1 0

1 0 1

−

0 0 0

0 0 0

0 0 0




x1

x2

x3

=

1 0 1

0 1 0

1 0 1


x1

x2

x3

=

0

0

0

 ; (1.181)

therefore x1 + x3 = 0 and x2 = 0. We are free to choose any (nonzero)

x1 = −x3, but if we are interested in normalized eigenvectors, we obtain

x1 = (1/
p

2)(1,0,−1)T .

Insertion λ2 = 1 into Eq. (1.178) yields
1 0 1

0 1 0

1 0 1

−

1 0 0

0 1 0

0 0 1




x1

x2

x3

=

0 0 1

0 0 0

1 0 0


x1

x2

x3

=

0

0

0

 ; (1.182)

therefore x1 = x3 = 0 and x2 is arbitrary. We are again free to choose any

(nonzero) x2, but if we are interested in normalized eigenvectors, we

obtain x2 = (0,1,0)T .

Insertion λ3 = 2 into Eq. (1.178) yields
1 0 1

0 1 0

1 0 1

−

2 0 0

0 2 0

0 0 2




x1

x2

x3

=

−1 0 1

0 −1 0

1 0 −1


x1

x2

x3

=

0

0

0

 ; (1.183)

therefore −x1 + x3 = 0 and x2 = 0. We are free to choose any (nonzero)

x1 = x3, but if we are once more interested in normalized eigenvectors,

we obtain x3 = (1/
p

2)(1,0,1)T .

Note that the eigenvectors are mutually orthogonal. We can construct

the corresponding orthogonal projections by the outer (dyadic or tensor)

product of the eigenvectors; that is,

E1 = x1 ⊗xT
1 = 1

2
(1,0,−1)T (1,0,−1) = 1

2

 1(1,0,−1)

0(1,0,−1)

−1(1,0,−1)

= 1

2

 1 0 −1

0 0 0

−1 0 1



E2 = x2 ⊗xT
2 = (0,1,0)T (0,1,0) =

0(0,1,0)

1(0,1,0)

0(0,1,0)

=

0 0 0

0 1 0

0 0 0



E3 = x3 ⊗xT
3 = 1

2
(1,0,1)T (1,0,1) = 1

2

1(1,0,1)

0(1,0,1)

1(1,0,1)

= 1

2

1 0 1

0 0 0

1 0 1


(1.184)

Note also that A can be written as the sum of the products of the eigen-

values with the associated projections; that is (here, E stands for the
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corresponding matrix), A = 0E1 + 1E2 + 2E3. Also, the projections are

mutually orthogonal – that is, E1E2 =E1E3 =E2E3 = 0 – and add up to the

identity; that is, E1 +E2 +E3 = I.
If the eigenvalues obtained are not distinct und thus some eigenvalues

are degenerate, the associated eigenvectors traditionally – that is, by

convention and not necessity – are chosen to be mutually orthogonal. A

more formal motivation will come from the spectral theorem below.

For the sake of an example, consider the matrix

B =

1 0 1

0 2 0

1 0 1

 . (1.185)

The secular equation yields∣∣∣∣∣∣∣
1−λ 0 1

0 2−λ 0

1 0 1−λ

∣∣∣∣∣∣∣= 0,

which yields the characteristic equation (2−λ)(1−λ)2 + [−(2−λ)] =
(2−λ)[(1−λ)2 −1] = −λ(2−λ)2 = 0, and therefore just two eigenvalues

λ1 = 0, and λ2 = 2 which are the roots of λ(2−λ)2 = 0.

Let us now determine the eigenvectors of B , based on the eigenvalues.

Insertion λ1 = 0 into Eq. (1.178) yields
1 0 1

0 2 0

1 0 1

−

0 0 0

0 0 0

0 0 0




x1

x2

x3

=

1 0 1

0 2 0

1 0 1


x1

x2

x3

=

0

0

0

 ; (1.186)

therefore x1+x3 = 0 and x2 = 0. Again we are free to choose any (nonzero)

x1 = −x3, but if we are interested in normalized eigenvectors, we obtain

x1 = (1/
p

2)(1,0,−1)T .

Insertion λ2 = 2 into Eq. (1.178) yields
1 0 1

0 2 0

1 0 1

−

2 0 0

0 2 0

0 0 2




x1

x2

x3

=

−1 0 1

0 0 0

1 0 −1


x1

x2

x3

=

0

0

0

 ; (1.187)

therefore x1 = x3; x2 is arbitrary. We are again free to choose any values of

x1, x3 and x2 as long x1 = x3 as well as x2 are satisfied. Take, for the sake

of choice, the orthogonal normalized eigenvectors x2,1 = (0,1,0)T and

x2,2 = (1/
p

2)(1,0,1)T , which are also orthogonal to x1 = (1/
p

2)(1,0,−1)T .

Note again that we can find the corresponding orthogonal projections

by the outer (dyadic or tensor) product of the eigenvectors; that is, by

E1 = x1 ⊗xT
1 = 1

2
(1,0,−1)T (1,0,−1) = 1

2

 1(1,0,−1)

0(1,0,−1)

−1(1,0,−1)

= 1

2

 1 0 −1

0 0 0

−1 0 1



E2,1 = x2,1 ⊗xT
2,1 = (0,1,0)T (0,1,0) =

0(0,1,0)

1(0,1,0)

0(0,1,0)

=

0 0 0

0 1 0

0 0 0



E2,2 = x2,2 ⊗xT
2,2 =

1

2
(1,0,1)T (1,0,1) = 1

2

1(1,0,1)

0(1,0,1)

1(1,0,1)

= 1

2

1 0 1

0 0 0

1 0 1


(1.188)
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Note also that B can be written as the sum of the products of the eigen-

values with the associated projections; that is (here, E stands for the

corresponding matrix), B = 0E1 +2(E2,1 +E2,2). Again, the projections are

mutually orthogonal – that is, E1E2,1 = E1E2,2 = E2,1E2,2 = 0 – and add up

to the identity; that is, E1 +E2,1 +E2,2 = I. This leads us to the much more

general spectral theorem.

Another, extreme, example would be the unit matrix in n dimensions;

that is, In = diag(1, . . . ,1︸ ︷︷ ︸
n times

), which has an n-fold degenerate eigenvalue 1

corresponding to a solution to (1−λ)n = 0. The corresponding projection

operator is In . [Note that (In)2 = In and thus In is a projection.] If one

(somehow arbitrarily but conveniently) chooses a resolution of the unit

operator In into projections corresponding to the standard basis (any

other orthonormal basis would do as well), then

In = diag(1,0,0, . . . ,0)+diag(0,1,0, . . . ,0)+·· ·+diag(0,0,0, . . . ,1)

1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

0 0 0 · · · 1

=



1 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0
...

0 0 0 · · · 0

+

+



0 0 0 · · · 0

0 1 0 · · · 0

0 0 0 · · · 0
...

0 0 0 · · · 0

+·· ·+



0 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0
...

0 0 0 · · · 1

 ,

(1.189)

where all the matrices in the sum carrying one nonvanishing entry “1” in

their diagonal are projections. Note that

ei = |ei 〉

≡
(

0, . . . ,0︸ ︷︷ ︸
i−1 times

,1, 0, . . . ,0︸ ︷︷ ︸
n−i times

)T

≡ diag( 0, . . . ,0︸ ︷︷ ︸
i−1 times

,1, 0, . . . ,0︸ ︷︷ ︸
n−i times

)

≡Ei .

(1.190)

The following theorems are enumerated without proofs.

If A is a self-adjoint transformation on an inner product space, then

every proper value (eigenvalue) of A is real. If A is positive, or stricly

positive, then every proper value of A is positive, or stricly positive, re-

spectively

Due to their idempotence EE=E, projections have eigenvalues 0 or 1.

Every eigenvalue of an isometry has absolute value one.

If A is either a self-adjoint transformation or an isometry, then proper

vectors of A belonging to distinct proper values are orthogonal.
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1.27 Normal transformation

A transformation A is called normal if it commutes with its adjoint; that

is,

[A,A∗] =AA∗−A∗A= 0. (1.191)

It follows from their definition that Hermitian and unitary transforma-

tions are normal. That is, A∗ = A†, and for Hermitian operators, A = A†,

and thus [A,A†] = AA−AA = (A)2 − (A)2 = 0. For unitary operators,

A† =A−1, and thus [A,A†] =AA−1 −A−1A= I− I= 0.

We mention without proof that a normal transformation on a finite-

dimensional unitary space is (i) Hermitian, (ii) positive, (iii) strictly posi-

tive, (iv) unitary, (v) invertible, (vi) idempotent if and only if all its proper

values are (i) real, (ii) positive, (iii) strictly positive, (iv) of absolute value

one, (v) different from zero, (vi) equal to zero or one.

1.28 Spectrum
For proofs and additional information see
§78 in

Paul Richard Halmos. Finite-
dimensional Vector Spaces. Springer,
New York, Heidelberg, Berlin, 1974

1.28.1 Spectral theorem

Let V be an n-dimensional linear vector space. The spectral theorem

states that to every self-adjoint (more general, normal) transformation

A on an n-dimensional inner product space there correspond real num-

bers, the spectrum λ1,λ2, . . . ,λk of all the eigenvalues of A, and their

associated orthogonal projections E1,E2, . . . ,Ek where 0 < k ≤ n is a

strictly positive integer so that

(i) the λi are pairwise distinct;

(ii) the Ei are pairwise orthogonal and different from 0;

(iii) the set of projectors is complete in the sense that their sum∑k
i=1 Ei = In is a resolution of the unit operator; and

(iv) A=∑k
i=1λi Ei is the spectral form of A.

Rather than proving the spectral theorem in its full generality, we

suppose that the spectrum of a Hermitian (self-adjoint) operator A is

nondegenerate; that is, all n eigenvalues of A are pairwise distinct. That is,

we are assuming a strong form of (i).

This distinctness of the eigenvalues then translates into mutual or-

thogonality of all the eigenvectors of A. Thereby, the set of n eigenvectors

form an orthogonal basis of the n-dimensional linear vector space V.

The respective normalized eigenvectors can then be represented by per-

pendicular projections which can be summed up to yield the identity

(iii).

More explicitly, suppose, for the sake of a proof by contradiction of

the pairwise orthogonality of the eigenvectors (ii), that two different

eigenvalues λ1 and λ2 belong to two respective eigenvectors x1 and x2

which are not orthogonal. But then, because A is self-adjoint with real

eigenvalues,

λ1〈x1|x2〉 = 〈λ1x1|x2〉 = 〈Ax1|x2〉
= 〈x1|A∗x2〉 = 〈x1|Ax2〉 = 〈x1|λ2x2〉 =λ2〈x1|x2〉,

(1.192)
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which implies that either λ1 = λ2 – which is in contradiction to our

assumption of the distinctness of λ1 and λ2; or that 〈x1|x2〉 = 0 (thus

allowing λ1 6= λ2) – which is in contradiction to our assumption that x1

and x2 are not orthogonal. Hence, for distinct λ1 and λ2, the associated

eigenvectors must be orthogonal, thereby assuring (ii).

Since by our assumption there are n distinct eigenvalues, this implies

that there are n orthogonal eigenvectors. These n mutually orthogonal

eigenvectors span the entire n-dimensional linear vector space V; and

hence their union {|xi 〉|i ≤ i ≤ n} forms an orthogonal basis. Conse-

quently, the sum of the associated perpendicular projections Ei = |xi 〉〈xi |
〈xi |xi 〉

is a resolution of the unit operator In , thereby justifying (iii).

In the last step, let us define the i ’th projection of an arbitrary vector

x ∈V by xi = Ei x, thereby keeping in mind that the resulting vector xi is

an eigenvector of A with the associated eigenvalue λi ; that is, Axi = λxi .

Then,

Ax =AIn x =A

(
n∑

i=1
Ei

)
x =A

(
n∑

i=1
Ei x

)
=A

(
n∑

i=1
xi

)

=
n∑

i=1
Axi =

n∑
i=1

λi xi =
n∑

i=1
λi Ei x =

(
n∑

i=1
λi Ei

)
x,

(1.193)

which is the spectral form of A.

1.28.2 Composition of the spectral form

If the spectrum of a Hermitian (or, more general, normal) operator A is

nondegenerate, that is, k = n, then the i th projection can be written as

the outer (dyadic or tensor) product Ei = xi ⊗xT
i of the i th normalized

eigenvector xi of A. In this case, the set of all normalized eigenvectors

{x1, . . . ,xn} is an orthonormal basis of the vector space V. If the spec-

trum of A is degenerate, then the projection can be chosen to be the or-

thogonal sum of projections corresponding to orthogonal eigenvectors,

associated with the same eigenvalues.

Furthermore, for a Hermitian (or, more general, normal) operator A, if

1 ≤ i ≤ k, then there exist polynomials with real coefficients, such as, for

instance,

pi (t ) = ∏
1 ≤ j ≤ k

j 6= i

t −λ j

λi −λ j
(1.194)

so that pi (λ j ) = δi j ; moreover, for every such polynomial, pi (A) =Ei .

For a proof, it is not too difficult to show that pi (λi ) = 1, since in this

case in the product of fractions all numerators are equal to denomina-

tors, and pi (λ j ) = 0 for j 6= i , since some numerator in the product of

fractions vanishes.

Now, substituting for t the spectral form A = ∑k
i=1λi Ei of A, as well

as resolution of the unit operator in terms of the projections Ei in the

spectral form of A; that is, In =∑k
i=1 Ei , yields

pi (A) = ∏
1≤ j≤k, j 6=i

A−λ j In

λi −λ j
= ∏

1≤ j≤k, j 6=i

∑k
l=1λl El −λ j

∑k
l=1 El

λi −λ j
, (1.195)
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and, because of the idempotence and pairwise orthogonality of the

projections El ,

= ∏
1≤ j≤k, j 6=i

∑k
l=1 El (λl −λ j )

λi −λ j

=
k∑

l=1
El

∏
1≤ j≤k, j 6=i

λl −λ j

λi −λ j
=

k∑
l=1

Elδl i =Ei .

(1.196)

With the help of the polynomial pi (t ) defined in Eq. (1.194), which

requires knowledge of the eigenvalues, the spectral form of a Hermitian

(or, more general, normal) operator A can thus be rewritten as

A=
k∑

i=1
λi pi (A) =

k∑
i=1

λi
∏

1≤ j≤k, j 6=i

A−λ j In

λi −λ j
. (1.197)

That is, knowledge of all the eigenvalues entails construction of all the

projections in the spectral decomposition of a normal transformation.

For the sake of an example, consider again the matrix

A =

1 0 1

0 1 0

1 0 1

 (1.198)

and the associated Eigensystem

{{λ1,λ2,λ3} , {E1,E2,E3}}

=

{0,1,2} ,

1

2

 1 0 −1

0 0 0

−1 0 1

 ,

0 0 0

0 1 0

0 0 0

 ,
1

2

1 0 1

0 0 0

1 0 1




 .
(1.199)

The projections associated with the eigenvalues, and, in particular, E1,

can be obtained from the set of eigenvalues {0,1,2} by

p1(A) =
(

A−λ2I

λ1 −λ2

)(
A−λ3I

λ1 −λ3

)

=


1 0 1

0 1 0

1 0 1

−1 ·

1 0 0

0 1 0

0 0 1




(0−1)
·


1 0 1

0 1 0

1 0 1

−2 ·

1 0 0

0 1 0

0 0 1




(0−2)

= 1

2

0 0 1

0 0 0

1 0 0


−1 0 1

0 −1 0

1 0 −1

= 1

2

 1 0 −1

0 0 0

−1 0 1

=E1.

(1.200)

For the sake of another, degenerate, example consider again the ma-

trix

B =

1 0 1

0 2 0

1 0 1

 (1.201)

Again, the projections E1,E2 can be obtained from the set of eigenval-
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ues {0,2} by

p1(A) = A−λ2I

λ1 −λ2
=

1 0 1

0 2 0

1 0 1

−2 ·

1 0 0

0 1 0

0 0 1


(0−2)

= 1

2

 1 0 −1

0 0 0

−1 0 1

=E1,

p2(A) = A−λ1I

λ2 −λ1
=

1 0 1

0 2 0

1 0 1

−0 ·

1 0 0

0 1 0

0 0 1


(2−0)

= 1

2

1 0 1

0 2 0

1 0 1

=E2.

(1.202)

Note that, in accordance with the spectral theorem, E1E2 = 0, E1 +E2 = I
and 0 ·E1 +2 ·E2 = B .

1.29 Functions of normal transformations

Suppose A = ∑k
i=1λi Ei is a normal transformation in its spectral form. If

f is an arbitrary complex-valued function defined at least at the eigenval-

ues of A, then a linear transformation f (A) can be defined by

f (A) = f

(
k∑

i=1
λi Ei

)
=

k∑
i=1

f (λi )Ei . (1.203)

Note that, if f has a polynomial expansion such as analytic functions,

then orthogonality and idempotence of the projections Ei in the spectral

form guarantees this kind of “linearization.”

For the definition of the “square root” for every positve operator A),

consider
p

A=
k∑

i=1

√
λi Ei . (1.204)

With this definition,
(p

A
)2 =p

A
p

A=A.

Consider, for instance, the “square root” of the not operator The denomination “not” for not
can be motivated by enumerat-

ing its performance at the two

“classical bit states” |0〉 ≡ (1,0)T

and |1〉 ≡ (0,1)T : not|0〉 = |1〉 and

not|1〉 = |0〉.

not=
(

0 1

1 0

)
. (1.205)

To enumerate
p

not we need to find the spectral form of not first. The

eigenvalues of not can be obtained by solving the secular equation

det(not−λI2) = det

((
0 1

1 0

)
−λ

(
1 0

0 1

))
= det

(
−λ 1

1 −λ

)
=λ2 −1 = 0.

(1.206)

λ2 = 1 yields the two eigenvalues λ1 = 1 and λ1 = −1. The associ-

ated eigenvectors x1 and x2 can be derived from either the equations

notx1 = x1 and notx2 =−x2, or inserting the eigenvalues into the polyno-

mial (1.194).

We choose the former method. Thus, for λ1 = 1,(
0 1

1 0

)(
x1,2

x1,2

)
=

(
x1,2

x1,2

)
, (1.207)
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which yields x1,2 = x1,2, and thus, by normalizing the eigenvector, x1 =
(1/

p
2)(1,1)T . The associated projection is

E1 = x1xT
1 = 1

2

(
1 1

1 1

)
. (1.208)

Likewise, for λ2 =−1, (
0 1

1 0

)(
x2,2

x2,2

)
=−

(
x2,2

x2,2

)
, (1.209)

which yields x2,2 = −x2,2, and thus, by normalizing the eigenvector,

x2 = (1/
p

2)(1,−1)T . The associated projection is

E2 = x2xT
2 = 1

2

(
1 −1

−1 1

)
. (1.210)

Thus we are finally able to calculate
p

not through its spectral form

p
not=

√
λ1E1 +

√
λ2E2

=p
1

1

2

(
1 1

1 1

)
+p−1

1

2

(
1 −1

−1 1

)
= 1

2

(
1+ i 1− i

1− i 1+ i

)
.

(1.211)

It can be readily verified that
p

not
p

not= not.

1.30 Decomposition of operators
For proofs and additional information see
§83 in

Paul Richard Halmos. Finite-
dimensional Vector Spaces. Springer,
New York, Heidelberg, Berlin, 1974

1.30.1 Standard decomposition

In analogy to the decomposition of every imaginary number z =ℜz + iℑz

with ℜz,ℑz ∈R, every arbitrary transformation A on a finite-dimensional

vector space can be decomposed into two Hermitian operators B and C
such that

A=B+ iC; with

B= 1

2
(A+A†),

C= 1

2i
(A−A†).

(1.212)

Proof by insertion; that is,

A=B+ iC

= 1

2
(A+A†)+ i

[
1

2i
(A−A†)

]
,

B† =
[

1

2
(A+A†)

]†

= 1

2

[
A† + (A†)†

]
= 1

2

[
A† +A

]
=B,

C† =
[

1

2i
(A−A†)

]†

=− 1

2i

[
A† − (A†)†

]
=− 1

2i

[
A† −A

]
=C.

(1.213)
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1.30.2 Polar representation

In analogy to the polar representation of every imaginary number z =
Re iϕ with R,ϕ ∈ R, R > 0, 0 ≤ ϕ < 2π, every arbitrary transformation A
on a finite-dimensional inner product space can be decomposed into a

unique positive transform P and an isometry U, such that A = UP. If A is

invertible, then U is uniquely determined by A. A necessary and sufficient

condition that A is normal is that UP=PU.

1.30.3 Decomposition of isometries

Any unitary or orthogonal transformation in finite-dimensional inner

product space can be composed from a succession of two-parameter

unitary transformations in two-dimensional subspaces, and a multipli-

cation of a single diagonal matrix with elements of modulus one in an

algorithmic, constructive and tractable manner. The method is similar to

Gaussian elimination and facilitates the parameterization of elements of

the unitary group in arbitrary dimensions (e.g., Ref. 22, Chapter 2). 22 F. D. Murnaghan. The Unitary and Rota-
tion Groups. Spartan Books, Washington,
D.C., 1962

It has been suggested to implement these group theoretic results by

realizing interferometric analogues of any discrete unitary and Hermitian

operator in a unified and experimentally feasible way by “generalized

beam splitters” 23. 23 Michael Reck, Anton Zeilinger, Her-
bert J. Bernstein, and Philip Bertani.
Experimental realization of any discrete
unitary operator. Physical Review Letters,
73:58–61, 1994. D O I : 10.1103/Phys-
RevLett.73.58. URL http://dx.doi.

org/10.1103/PhysRevLett.73.58; and
Michael Reck and Anton Zeilinger. Quan-
tum phase tracing of correlated photons
in optical multiports. In F. De Martini,
G. Denardo, and Anton Zeilinger, editors,
Quantum Interferometry, pages 170–177,
Singapore, 1994. World Scientific

1.30.4 Singular value decomposition

The singular value decomposition (SVD) of an (m×n) matrix A is a factor-

ization of the form

A=UΣV, (1.214)

where U is a unitary (m×m) matrix (i.e. an isometry), V is a unitary (n×n)

matrix, and Σ is a unique (m ×n) diagonal matrix with nonnegative real

numbers on the diagonal; that is,

Σ=



σ1 | ...
. . . | · · · 0 · · ·

σr | ...

− − − − − −
... | ...

· · · 0 · · · | · · · 0 · · ·
... | ...


. (1.215)

The entries σ1 ≥ σ2 · · · ≥ σr >0 of Σ are called singular values of A. No

proof is presented here.

1.30.5 Schmidt decomposition of the tensor product of two vectors

Let U and V be two linear vector spaces of dimension n ≥ m and m,

respectively. Then, for any vector z ∈ U⊗V in the tensor product

space, there exist orthonormal basis sets of vectors {u1, . . . ,un} ⊂ U and

{v1, . . . ,vm} ⊂V such that z = ∑m
i=1σi ui ⊗vi , where the σi s are nonnega-

tive scalars and the set of scalars is uniquely determined by z.

http://dx.doi.org/10.1103/PhysRevLett.73.58
http://dx.doi.org/10.1103/PhysRevLett.73.58
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Equivalently 24, suppose that |z〉 is some tensor product contained in 24 Michael A. Nielsen and I. L. Chuang.
Quantum Computation and Quantum
Information. Cambridge University Press,
Cambridge, 2000

the set of all tensor products of vectors U⊗V of two linear vector spaces

U and V. Then there exist orthonormal vectors |ui 〉 ∈ U and |v j 〉 ∈V so

that

|z〉 =∑
i
σi |ui 〉|vi 〉, (1.216)

where the σi s are nonnegative scalars; if |z〉 is normalized, then the σi s

are satisfying
∑

i σ
2
i = 1; they are called the Schmidt coefficients.

For a proof by reduction to the singular value decomposition, let

|i 〉 and | j 〉 be any two fixed orthonormal bases of U and V, respec-

tively. Then, |z〉 can be expanded as |z〉 = ∑
i j ai j |i 〉| j 〉, where the ai j s

can be interpreted as the components of a matrix A. A can then be

subjected to a singular value decomposition A = UΣV, or, written

in index form [note that Σ = diag(σ1, . . . ,σn) is a diagonal matrix],

ai j = ∑
l ui lσl vl j ; and hence |z〉 = ∑

i j l ui lσl vl j |i 〉| j 〉. Finally, by iden-

tifying |ul 〉 =
∑

i ui l |i 〉 as well as |vl 〉 =
∑

l vl j | j 〉 one obtains the Schmidt

decompsition (1.216). Since ui l and vl j represent unitary martices, and

because |i 〉 as well as | j 〉 are orthonormal, the newly formed vectors |ul 〉
as well as |vl 〉 form orthonormal bases as well. The sum of squares of the

σi ’s is one if |z〉 is a unit vector, because (note that σi s are real-valued)

〈z|z〉 = 1 =∑
l mσlσm〈ul |um〉〈vl |vm〉 =∑

lmσlσmδlm =∑
l σ

2
l .

Note that the Schmidt decomposition cannot, in general, be extended

for more factors than two. Note also that the Schmidt decomposition

needs not be unique 25; in particular if some of the Schmidt coeffi- 25 Artur Ekert and Peter L. Knight. En-
tangled quantum systems and the
Schmidt decomposition. Ameri-
can Journal of Physics, 63(5):415–423,
1995. D O I : 10.1119/1.17904. URL
http://dx.doi.org/10.1119/1.17904

cients σi are equal. For the sake of an example of nonuniqueness of

the Schmidt decomposition, take, for instance, the representation of the

Bell state with the two bases{|e1〉 ≡ (1,0)T , |e2〉 ≡ (0,1)T }
and{

|f1〉 ≡ 1p
2

(1,1)T , |f2〉 ≡ 1p
2

(−1,1)T
}

.
(1.217)

as follows:

|Ψ−〉 = 1p
2

(|e1〉|e2〉− |e2〉|e1〉)

≡ 1p
2

[
(1(0,1),0(0,1))T − (0(1,0),1(1,0))T ]= 1p

2
(0,1,−1,0)T ;

|Ψ−〉 = 1p
2

(|f1〉|f2〉− |f2〉|f1〉)

≡ 1

2
p

2

[
(1(−1,1),1(−1,1))T − (−1(1,1),1(1,1))T ]

≡ 1

2
p

2

[
(−1,1,−1,1)T − (−1,−1,1,1)T ]= 1p

2
(0,1,−1,0)T .

(1.218)

1.31 Purification
For additional information see page 110,
Sect. 2.5 in

Michael A. Nielsen and I. L. Chuang.
Quantum Computation and Quantum
Information. Cambridge University
Press, Cambridge, 2010. 10th Anniversary
Edition

In general, quantum states ρ satisfy three criteria 26: (i) Tr(ρ) = 1, (imply-

26 L. E. Ballentine. Quantum Mechanics.
Prentice Hall, Englewood Cliffs, NJ, 1989

ing that ρ is self-adjoint; that is, ρ† = ρ), and (ii) 〈x|ρ|x〉 = 〈x|ρx〉 ≥ 0 for

all vectors x of some Hilbert space.

With dimension n it follows immediately from (ii) that ρ is normal and

http://dx.doi.org/10.1119/1.17904
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thus has a spectral decomposition

ρ =
n∑

i=1
ρi |ψi 〉〈ψi | (1.219)

into orthogonal projections |ψi 〉〈ψi |, with (i) yielding
∑n

i=1ρi = 1 (hint:

take a trace with the orthonormal basis corresponding to all the |ψi 〉); (ii)

yielding ρi = ρi ; and (iii) implying ρi ≥ 0, and hence [with (i)] 0 ≤ ρi ≤ 1

for all 1 ≤ i ≤ n.

As has been pointed out earlier, quantum mechanics differentiates

between “two sorts of states,” namely pure states and mixed ones:

(i) Pure states ρp are represented by one-dimensional orthogonal pro-

jections; or, equivalently as one-dimensional linear subspaces by

some (unit) vector. They can be written as ρp = |ψ〉〈ψ| for some unit

vector |ψ〉 (discussed in Sec. 1.12), and satisfy (ρp )2 =ρp .

(ii) General, mixed states ρm , are ones that are no projections and there-

fore satisfy (ρm)2 6= ρm . They can be composed from projections by

their spectral form (1.219).

The question arises: is it possible to “purify” any mixed state by

(maybe somewhat superficially) “enlarging” its Hilbert space, such that

the resulting state “living in a larger Hilbert space” is pure? This can

indeed be achieved by a rather simple procedure: By considering the

spectral form (1.219) of a general mixed state ρ, define a new, “enlarged,”

pure state |Ψ〉〈Ψ|, with

|Ψ〉 =
n∑

i=1

p
ρi |ψi 〉|ψi 〉. (1.220)

That |Ψ〉〈Ψ| is pure can be tediously verified by proving that it is idem-

potent:

(|Ψ〉〈Ψ|)2

=
{[

n∑
i=1

p
ρi |ψi 〉|ψi 〉

][
n∑

j=1

√
ρ j 〈ψ j |〈ψ j |

]}2

=
[

n∑
i1=1

√
ρi1 |ψi1〉|ψi1〉

][
n∑

j1=1

√
ρ j1〈ψ j1 |〈ψ j1 |

]
×[

n∑
i2=1

√
ρi2 |ψi2〉|ψi2〉

][
n∑

j2=1

√
ρ j2〈ψ j2 |〈ψ j2 |

]

=
[

n∑
i1=1

√
ρi1 |ψi1〉|ψi1〉

][
n∑

j1=1

n∑
i2=1

√
ρ j1

√
ρi2 (δi2 j1 )2

][
n∑

j2=1

√
ρ j2〈ψ j2 |〈ψ j2 |

]

=
[

n∑
i1=1

√
ρi1 |ψi1〉|ψi1〉

][
n∑

j2=1

√
ρ j2〈ψ j2 |〈ψ j2 |

]
= |Ψ〉〈Ψ|.

(1.221)

Note that this construction is not unique – any auxiliary component

representing some orthonormal basis would suffice.
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The original mixed state ρ is obtained from the pure state correspond-

ing to the unit vector |Ψ〉 = |ψ〉|ψa〉 = |ψψa〉 – we might say that “the

superscript a stands for auxiliary” – by a partial trace (cf. Sec. 1.18.3) over

one of its components, say |ψa〉.
For the sake of a proof let us “trace out of the auxiliary components

|ψa〉,” that is, take the trace

Tra(|Ψ〉〈Ψ|) =
n∑

k=1
〈ψa

k |(|Ψ〉〈Ψ|)|ψa
k 〉 (1.222)

of |Ψ〉〈Ψ| with respect to one of its components |ψa〉:

Tra (|Ψ〉〈Ψ|)

= Tra

([
n∑

i=1

p
ρi |ψi 〉|ψa

i 〉
][

n∑
j=1

√
ρ j 〈ψa

j |〈ψ j |
])

=
n∑

k=1

〈
ψa

k

∣∣∣∣∣
([

n∑
i=1

p
ρi |ψi 〉|ψa

i 〉
][

n∑
j=1

√
ρ j 〈ψa

j |〈ψ j |
])∣∣∣∣∣ψa

k

〉

=
n∑

k=1

n∑
i=1

n∑
j=1

δkiδk j
p
ρi

√
ρ j |ψi 〉〈ψ j |

=
n∑

k=1
ρl |ψk〉〈ψk | =ρ.

(1.223)

1.32 Commutativity
For proofs and additional information see
§79 & §84 in

Paul Richard Halmos. Finite-
dimensional Vector Spaces. Springer,
New York, Heidelberg, Berlin, 1974

If A =∑k
i=1λi Ei is the spectral form of a self-adjoint transformation A on

a finite-dimensional inner product space, then a necessary and sufficient

condition (“if and only if = iff”) that a linear transformation B commutes

with A is that it commutes with each Ei , 1 ≤ i ≤ k.

Sufficiency is derived easily: whenever B commutes with all the pro-

cectors Ei , 1 ≤ i ≤ k in the spectral composition of A, then, by linearity, it

commutes with A.

Necessity follows from the fact that, if B commutes with A then it also

commutes with every polynomial of A; and hence also with pi (A) =Ei , as

shown in (1.196).

If A = ∑k
i=1λi Ei and B = ∑l

j=1µi F j are the spectral forms of a self-

adjoint transformations A and B on a finite-dimensional inner product

space, then a necessary and sufficient condition (“if and only if = iff”)

that A and B commute is that the projections Ei , 1 ≤ i ≤ k and F j , 1 ≤ j ≤
l commute with each other; i.e.,

[
Ei ,F j

]=Ei F j −F j Ei = 0.

Again, sufficiency is derived easily: if F j , 1 ≤ j ≤ l occurring in the

spectral decomposition of B commutes with all the procectors Ei , 1 ≤ i ≤
k in the spectral composition of A, then, by linearity, B commutes with A.

Necessity follows from the fact that, if F j , 1 ≤ j ≤ l commutes with A
then it also commutes with every polynomial of A; and hence also with

pi (A) =Ei , as shown in (1.196). Conversely, if Ei , 1 ≤ i ≤ k commutes with

B then it also commutes with every polynomial of B; and hence also with

the associated polynomial q j (A) =E j , as shown in (1.196).

If Ex = |x〉〈x| and Ey = |y〉〈y| are two commuting projections (into one-

dimensional subspaces of V) corresponding to the normalized vectors
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x and y, respectively; that is, if
[
Ex,Ey

] = ExEy −EyEx = 0, then they are

either identical (the vectors are collinear) or orthogonal (the vectors x is

orthogonal to y).

For a proof, note that if Ex and Ey commute, then ExEy = EyEx; and

hence |x〉〈x|y〉〈y| = |y〉〈y|x〉〈x|. Thus, (〈x|y〉)|x〉〈y| = (〈x|y〉)|y〉〈x|, which,

applied to arbitrary vectors |v〉 ∈V, is only true if either x =±y, or if x ⊥ y

(and thus 〈x|y〉 = 0).

A set M = {A1,A2, . . . ,Ak } of self-adjoint transformations on a finite-

dimensional inner product space are mutually commuting if and only

if there exists a self-adjoint transformation R and a set of real-valued

functions F = { f1, f2, . . . , fk } of a real variable so that A1 = f1(R), A2 =
f2(R), . . ., Ak = fk (R). If such a maximal operator R exists, then it can

be written as a function of all transformations in the set M; that is, R =
G(A1,A2, . . . ,Ak ), where G is a suitable real-valued function of n variables

(cf. Ref. 27, Satz 8). 27 John von Neumann. Über Funktionen
von Funktionaloperatoren. Annals of
Mathematics, 32:191–226, 1931. URL
http://www.jstor.org/stable/

1968185

The maximal operator R can be interpreted as encoding or containing

all the information of a collection of commuting operators at once; stated

pointedly, rather than consider all the operators in M separately, the

maximal operator R represents M; in a sense, the operators Ai ∈ M are

all just incomplete aspects of, or individual “lossy” (i.e., one-to-many)

functional views on, the maximal operator R.

Let us demonstrate the machinery developed so far by an example.

Consider the normal matrices

A=

0 1 0

1 0 0

0 0 0

 , B=

2 3 0

3 2 0

0 0 0

 , C=

5 7 0

7 5 0

0 0 11

 ,

which are mutually commutative; that is, [A,B] = AB−BA = [A,C] =
AC−BC= [B,C] =BC−CB= 0.

The eigensystems – that is, the set of the set of eigenvalues and the set

of the associated eigenvectors – of A, B and C are

{{1,−1,0}, {(1,1,0)T , (−1,1,0)T , (0,0,1)T }},

{{5,−1,0}, {(1,1,0)T , (−1,1,0)T , (0,0,1)T }},

{{12,−2,11}, {(1,1,0)T , (−1,1,0)T , (0,0,1)T }}.

(1.224)

They share a common orthonormal set of eigenvectors

 1p
2

1

1

0

 ,
1p
2

−1

1

0

 ,

0

0

1




which form an orthonormal basis of R3 or C3. The associated projections

are obtained by the outer (dyadic or tensor) products of these vectors;

http://www.jstor.org/stable/1968185
http://www.jstor.org/stable/1968185
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that is,

E1 = 1

2

1 1 0

1 1 0

0 0 0

 ,

E2 = 1

2

 1 −1 0

−1 1 0

0 0 0

 ,

E3 =

0 0 0

0 0 0

0 0 1

 .

(1.225)

Thus the spectral decompositions of A, B and C are

A=E1 −E2 +0E3,

B= 5E1 −E2 +0E3,

C= 12E1 −2E2 +11E3,

(1.226)

respectively.

One way to define the maximal operator R for this problem would be

R=αE1 +βE2 +γE3,

with α,β,γ ∈ R−0 and α 6= β 6= γ 6= α. The functional coordinates fi (α),

fi (β), and fi (γ), i ∈ {A,B,C}, of the three functions fA(R), fB(R), and fC(R)

chosen to match the projection coefficients obtained in Eq. (1.226); that

is,

A= fA(R) =E1 −E2 +0E3,

B= fB(R) = 5E1 −E2 +0E3,

C= fC(R) = 12E1 −2E2 +11E3.

(1.227)

As a consequence, the functions A, B, C need to satisfy the relations

fA(α) = 1, fA(β) =−1, fA(γ) = 0,

fB(α) = 5, fB(β) =−1, fB(γ) = 0,

fC(α) = 12, fC(β) =−2, fC(γ) = 11.

(1.228)

It is no coincidence that the projections in the spectral forms of A, B
and C are identical. Indeed it can be shown that mutually commuting

normal operators always share the same eigenvectors; and thus also the

same projections.

Let the set M= {A1,A2, . . . ,Ak } be mutually commuting normal (or Her-

mitian, or self-adjoint) transformations on an n-dimensional inner prod-

uct space. Then there exists an orthonormal basis B = {f1, . . . , fn} such

that every f j ∈ B is an eigenvector of each of the Ai ∈ M. Equivalently,

there exist n orthogonal projections (let the vectors f j be represented by

the coordinates which are column vectors) E j = f j ⊗ fT
j such that every E j ,

1 ≤ j ≤ n occurs in the spectral form of each of the Ai ∈M.

Informally speaking, a “generic” maximal operator R on an n-

dimensional Hilbert space V can be interpreted as some orthonormal

basis {f1, f2, . . . , fn} of V – indeed, the n elements of that basis would have
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to correspond to the projections occurring in the spectral decomposition

of the self-adjoint operators generated by R.

Likewise, the “maximal knowledge” about a quantized physical system

– in terms of empirical operational quantities – would correspond to such

a single maximal operator; or to the orthonormal basis corresponding to

the spectral decomposition of it. Thus it might not be unreasonable to

speculate that a particular (pure) physical state is best characterized by a

particular orthonomal basis.

1.33 Measures on closed subspaces

In what follows we shall assume that all (probability) measures or states

behave quasi-classically on sets of mutually commuting self-adjoint

operators, and, in particular, on orthogonal projections. One could call

this property subclassicality.

This can be formalized as follows. Consider some set

{|x1〉, |x2〉, . . . , |xk〉} of mutually orthogonal, normalized vectors, so that

〈xi |x j 〉 = δi j ; and associated with it, the set {E1,E2, . . . ,Ek } of mutu-

ally orthogonal (and thus commuting) one-dimensional projections

Ei = |xi 〉〈xi | on a finite-dimensional inner product space V.

We require that probability measures µ on such mutually commuting

sets of observables behave quasi-classically. Therefore, they should be

additive; that is,

µ

(
k∑

i=1
Ei

)
=

k∑
i=1

µ (Ei ) . (1.229)

Such a measure is determined by its values on the one-dimensional

projections.

Stated differently, we shall assume that, for any two orthogonal projec-

tions E and F if EF = FE = 0, their sum G = E+F has expectation value

µ(G) ≡ 〈G〉 = 〈E〉+〈F〉 ≡µ(E)+µ(F). (1.230)

Any such measure µ satisfying (1.229) can be expressed in terms of a

(positive) real valued function f on the unit vectors in V by

µ (Ex ) = f (|x〉) ≡ f (x), (1.231)

(where Ex = |x〉〈x| for all unit vectors |x〉 ∈V) by requiring that, for every

orthonormal basis B = {|e1〉, |e2〉, . . . , |en〉}, the sum of all basis vectors

yields 1; that is,
n∑

i=1
f (|ei 〉) ≡

n∑
i=1

f (ei ) = 1. (1.232)

f is called a (positive) frame function of weight 1.

1.33.1 Gleason’s theorem

From now on we shall mostly consider vector spaces of dimension three

or greater, since only in these cases two orthonormal bases intertwine in

a common vector, making possible some arguments involving multiple

intertwining bases – in two dimensions, distinct orthonormal bases

contain distinct basis vectors.
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Gleason’s theorem 28 states that, for a Hilbert space of dimension three 28 Andrew M. Gleason. Measures on the
closed subspaces of a Hilbert space. Jour-
nal of Mathematics and Mechanics (now
Indiana University Mathematics Journal),
6(4):885–893, 1957. ISSN 0022-2518.
D O I : 10.1512/iumj.1957.6.56050". URL
http://dx.doi.org/10.1512/iumj.

1957.6.56050; Anatolij Dvurečenskij.
Gleason’s Theorem and Its Applications.
Kluwer Academic Publishers, Dordrecht,
1993; Itamar Pitowsky. Infinite and fi-
nite Gleason’s theorems and the logic
of indeterminacy. Journal of Mathe-
matical Physics, 39(1):218–228, 1998.
D O I : 10.1063/1.532334. URL http:

//dx.doi.org/10.1063/1.532334;
Fred Richman and Douglas Bridges. A
constructive proof of Gleason’s theorem.
Journal of Functional Analysis, 162:287–
312, 1999. D O I : 10.1006/jfan.1998.3372.
URL http://dx.doi.org/10.1006/

jfan.1998.3372; Asher Peres. Quantum
Theory: Concepts and Methods. Kluwer
Academic Publishers, Dordrecht, 1993;
and Jan Hamhalter. Quantum Measure
Theory. Fundamental Theories of Physics,
Vol. 134. Kluwer Academic Publishers,
Dordrecht, Boston, London, 2003. ISBN
1-4020-1714-6

or greater, every frame function defined in (1.232) is of the form of the

inner product

f (x) ≡ f (|x〉) = 〈x|ρx〉 =
k≤n∑
i=1

ρi 〈x|ψi 〉〈ψi |x〉 =
k≤n∑
i=1

ρi |〈x|ψi 〉|2, (1.233)

where (i) ρ is a positive operator (and therefore self-adjoint; see Sec-

tion 1.21 on page 41), and (ii) ρ is of the trace class, meaning its trace (cf.

Section 1.18 on page 37) is one. That is, ρ = ∑k≤n
i=1 ρi |ψi 〉〈ψi | with ρi ∈ R,

ρi ≥ 0, and
∑k≤n

i=1 ρi = 1. No proof is given here.

In terms of projections [cf. Eqs.(1.60) on page 20], (1.233) can be writ-

ten as

µ (Ex ) = Tr(ρEx ) (1.234)

Therefore, for a Hilbert space of dimension three or greater, the spec-

tral theorem suggests that the only possible form of the expectation value

of a self-adjoint operator A has the form

〈A〉 = Tr(ρA). (1.235)

In quantum physical terms, in the formula (1.235) above the trace is

taken over the operator product of the density matrix [which represents

a positive (and thus self-adjoint) operator of the trace class] ρ with the

observable A=∑k
i=1λi Ei .

In particular, if A is a projection E = |e〉〈e| corresponding to an

elementary yes-no proposition “the system has property Q,” then

〈E〉 = Tr(ρE) = |〈e|ρ〉|2 corresponds to the probability of that property

Q if the system is in state ρ = |ρ〉〈ρ| [for a motivation, see again Eqs. (1.60)

on page 20].

Indeed, as already observed by Gleason, even for two-dimensional

Hilbert spaces, a straightforward Ansatz yields a probability measure

satisfying (1.229) as follows. Suppose some unit vector |ρ〉 correspond-

ing to a pure quantum state (preparation) is selected. For each one-

dimensional closed subspace corresponding to a one-dimensional or-

thogonal projection observable (interpretable as an elementary yes-no

proposition) E = |e〉〈e| along the unit vector |e〉, define wρ(|e〉) = |〈e|ρ〉|2
to be the square of the length |〈ρ|e〉| of the projection of |ρ〉 onto the

subspace spanned by |e〉.
The reason for this is that an orthonormal basis {|ei 〉} “induces” an ad

hoc probability measure wρ on any such context (and thus basis). To see

this, consider the length of the orthogonal (with respect to the basis vec-

tors) projections of |ρ〉 onto all the basis vectors |ei 〉, that is, the norm of

the resulting vector projections of |ρ〉 onto the basis vectors, respectively.

This amounts to computing the absolute value of the Euclidean scalar

products 〈ei |ρ〉 of the state vector with all the basis vectors.

In order that all such absolute values of the scalar products (or the

associated norms) sum up to one and yield a probability measure as

required in Eq. (1.229), recall that |ρ〉 is a unit vector and note that, by

the Pythagorean theorem, these absolute values of the individual scalar

products – or the associated norms of the vector projections of |ρ〉 onto

http://dx.doi.org/10.1512/iumj.1957.6.56050
http://dx.doi.org/10.1512/iumj.1957.6.56050
http://dx.doi.org/10.1063/1.532334
http://dx.doi.org/10.1063/1.532334
http://dx.doi.org/10.1006/jfan.1998.3372
http://dx.doi.org/10.1006/jfan.1998.3372
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the basis vectors – must be squared. Thus the value wρ(|ei 〉) must be the

square of the scalar product of |ρ〉 with |ei 〉, corresponding to the square

of the length (or norm) of the respective projection vector of |ρ〉 onto

|ei 〉. For complex vector spaces one has to take the absolute square of the

scalar product; that is, fρ(|ei 〉) = |〈ei |ρ〉|2.

-

6

1

�I

R

|ρ〉

|e1〉

|f1〉

|e2〉

|f2〉

−|f2〉

|〈ρ|e1〉|

|〈ρ|e2〉|

|〈ρ|f1〉|

|〈ρ|f2〉|

Figure 1.5: Different orthonormal
bases {|e1〉, |e2〉} and {|f1〉, |f2〉} offer
different “views” on the pure state
|ρ〉. As |ρ〉 is a unit vector it follows
from the Pythagorean theorem that
|〈ρ|e1〉|2 +|〈ρ|e2〉|2 = |〈ρ|f1〉|2 +|〈ρ|f2〉|2 =
1, thereby motivating the use of the
abolute value (modulus) squared of the
amplitude for quantum probabilities on
pure states.

Pointedly stated, from this point of view the probabilities wρ(|ei 〉) are

just the (absolute) squares of the coordinates of a unit vector |ρ〉 with

respect to some orthonormal basis {|ei 〉}, representable by the square

|〈ei |ρ〉|2 of the length of the vector projections of |ρ〉 onto the basis vec-

tors |ei 〉 – one might also say that each orthonormal basis allows “a view”

on the pure state |ρ〉. In two dimensions this is illustrated for two bases

in Fig. 1.5. The squares come in because the absolute values of the in-

dividual components do not add up to one; but their squares do. These

considerations apply to Hilbert spaces of any, including two, finite di-

mensions. In this non-general, ad hoc sense the Born rule for a system in

a pure state and an elementary proposition observable (quantum encod-

able by a one-dimensional projection operator) can be motivated by the

requirement of additivity for arbitrary finite dimensional Hilbert space.

1.33.2 Kochen-Specker theorem

For a Hilbert space of dimension three or greater, there does not exist

any two-valued probability measures interpretable as consistent, overall

truth assignment 29. As a result of the nonexistence of two-valued states, 29 Ernst Specker. Die Logik nicht gle-
ichzeitig entscheidbarer Aussagen.
Dialectica, 14(2-3):239–246, 1960. D O I :
10.1111/j.1746-8361.1960.tb00422.x.
URL http://dx.doi.org/10.1111/j.

1746-8361.1960.tb00422.x; and Simon
Kochen and Ernst P. Specker. The problem
of hidden variables in quantum mechan-
ics. Journal of Mathematics and Mechan-
ics (now Indiana University Mathematics
Journal), 17(1):59–87, 1967. ISSN 0022-
2518. D O I : 10.1512/iumj.1968.17.17004.
URL http://dx.doi.org/10.1512/

iumj.1968.17.17004

the classical strategy to construct probabilities by a convex combination

of all two-valued states fails entirely.

In Greechie diagram 30, points represent basis vectors. If they belong

30 Richard J. Greechie. Orthomodular
lattices admitting no states. Journal of
Combinatorial Theory, 10:119–132, 1971.
D O I : 10.1016/0097-3165(71)90015-X.
URL http://dx.doi.org/10.1016/

0097-3165(71)90015-X

to the same basis, they are connected by smooth curves.
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The most compact way of deriving the Kochen-Specker theorem in four

dimensions has been given by Cabello 31. For the sake of demonstra- 31 Adán Cabello, José M. Estebaranz,
and G. García-Alcaine. Bell-Kochen-
Specker theorem: A proof with 18 vectors.
Physics Letters A, 212(4):183–187, 1996.
D O I : 10.1016/0375-9601(96)00134-
X. URL http://dx.doi.org/10.

1016/0375-9601(96)00134-X; and
Adán Cabello. Kochen-Specker theo-
rem and experimental test on hidden
variables. International Journal of Mod-
ern Physics, A 15(18):2813–2820, 2000.
D O I : 10.1142/S0217751X00002020.
URL http://dx.doi.org/10.1142/

S0217751X00002020

tion, consider a Greechie (orthogonality) diagram of a finite subset of

the continuum of blocks or contexts embeddable in four-dimensional

real Hilbert space without a two-valued probability measure The proof

http://dx.doi.org/10.1111/j.1746-8361.1960.tb00422.x
http://dx.doi.org/10.1111/j.1746-8361.1960.tb00422.x
http://dx.doi.org/10.1512/iumj.1968.17.17004
http://dx.doi.org/10.1512/iumj.1968.17.17004
http://dx.doi.org/10.1016/0097-3165(71)90015-X
http://dx.doi.org/10.1016/0097-3165(71)90015-X
http://dx.doi.org/10.1016/0375-9601(96)00134-X
http://dx.doi.org/10.1016/0375-9601(96)00134-X
http://dx.doi.org/10.1142/S0217751X00002020
http://dx.doi.org/10.1142/S0217751X00002020
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of the Kochen-Specker theorem uses nine tightly interconnected con-

texts a = {A,B ,C ,D}, b = {D ,E ,F ,G}, c = {G , H , I , J }, d = {J ,K ,L, M },

e = {M , N ,O,P }, f = {P ,Q,R, A}, g = {F , H ,O,Q} h = {C ,E ,L, N },

i = {B , I ,K ,R}, consisting of the 18 projections associated with the

one dimensional subspaces spanned by the vectors from the ori-

gin (0,0,0,0) to A = (0,0,1,−1), B = (1,−1,0,0), C = (1,1,−1,−1),

D = (1,1,1,1), E = (1,−1,1,−1), F = (1,0,−1,0), G = (0,1,0,−1),

H = (1,0,1,0), I = (1,1,−1,1), J = (−1,1,1,1), K = (1,1,1,−1), L = (1,0,0,1),

M = (0,1,−1,0), N = (0,1,1,0), O = (0,0,0,1), P = (1,0,0,0), Q = (0,1,0,0),

R = (0,0,1,1), respectively. Greechie diagrams represent atoms by points,

and contexts by maximal smooth, unbroken curves.

In a proof by contradiction,note that, on the one hand, every observ-

able proposition occurs in exactly two contexts. Thus, in an enumeration

of the four observable propositions of each of the nine contexts, there ap-

pears to be an even number of true propositions, provided that the value

of an observable does not depend on the context (i.e. the assignment is

noncontextual). Yet, on the other hand, as there is an odd number (actu-

ally nine) of contexts, there should be an odd number (actually nine) of

true propositions.

b



2
Tensors

What follows is a “corollary,” or rather an expansion and extension, of

what has been presented in the previous chapter; in particular, with

regards to dual vector spaces (page 14), and the tensor product (page 21).

2.1 Notation

Let us consider the vector space Rn of dimension n; a basis B =
{e1,e2, . . . ,en} consisting of n basis vectors ei , and k arbitrary vec-

tors x1,x2, . . . ,xk ∈ Rn ; the vector xi having the vector components

X i
1, X i

2, . . . , X i
k ∈R.

Please note again that, just like any tensor (field), the product z = x×y

of two vectors x and y has three equivalent representations:

(i) as the scalar coordinates X i Y j with respect to the basis in which the

vectors x and y have been defined and coded; this form is often used

in the theory of (general) relativity;

(ii) as the quasi-matrix zi j = X i Y j , whose components zi j are defined

with respect to the basis in which the vectors x and y have been de-

fined and coded; this form is often used in classical (as compared to

quantum) mechanics and electrodynamics;

(iii) as a quasi-vector or “flattened matrix” defined by

the Kronecker product z = (X 1y, X 2y, . . . , X n y) =
(X 1Y 1, . . . , X 1Y n , . . . , X nY 1, . . . , X nY n). Again, the scalar coordinates

X i Y j are defined with respect to the basis in which the vectors x and

y have been defined and coded. This latter form is often used in (few-

partite) quantum mechanics.

In all three cases, the pairs X i Y j are properly represented by distinct

mathematical entities.

Tensor fields define tensors in every point of Rn separately. In gen-

eral, with respect to a particular basis, the components of a tensor field

depend on the coordinates.

We adopt Einstein’s summation convention to sum over equal indices

(a pair with a superscript and a subscript). Sometimes, sums are written

out explicitly.
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In what follows, the notations “x · y”, “(x, y)” and “〈x | y〉” will be used

synonymously for the scalar product or inner product. Note, however,

that the “dot notation x · y” may be a little bit misleading; for example,

in the case of the “pseudo-Euclidean” metric represented by the matrix

diag(+,+,+, · · · ,+,−), it is no more the standard Euclidean dot product

diag(+,+,+, · · · ,+,+).

For a more systematic treatment, see for instance Klingbeil’s or

Dirschmid’s introductions 1. 1 Ebergard Klingbeil. Tensorrechnung
für Ingenieure. Bibliographisches In-
stitut, Mannheim, 1966; and Hans Jörg
Dirschmid. Tensoren und Felder. Springer,
Vienna, 1996

2.2 Multilinear form

A multilinear form α : Vk 7→R or C is a map from (multiple) arguments xi

which are elements of some vector space V into some scalars in R or C,

satisfying

α(x1,x2, . . . , Ay+Bz, . . . ,xk ) = Aα(x1,x2, . . . ,y, . . . ,xk )

+Bα(x1,x2, . . . ,z, . . . ,xk )
(2.1)

for every one of its (multi-)arguments.

In what follows we shall concentrate on real-valued multilinear forms

which map k vectors in Rn into R.

2.3 Covariance and contra-variance

As already mentioned in section 1.13 on page 28, [see, in particular,

Eq. (1.91)], in order to code and represent the same vector, any change

of scale in the basis vectors, which can be identified with the coordi-

nate or reference axes, has to be compensated by an inverse change of

scale in the coordinates or components. Thus, the vector coordinates (or,

used synonymuously, the components) must contra-vary with respect

to variances of scales of the basis vectors (or, used synonymuously, the

reference axes). Thus, we will say that, whenever the basis vectors vary

covariantly, their respective coordinates (components) vary contravari-

antly.

Let xi =∑n
ji=1 X ji

i e ji = X ji
i e ji be some vector in (i.e., some element of)

an n–dimensional vector space V labelled by an index i . A tensor of rank

k

α :Vk 7→R (2.2)

is a multilinear form

α(x1,x2, . . . ,xk ) =
n∑

i1=1

n∑
i2=1

· · ·
n∑

ik=1
X i1

1 X i2
2 . . . X ik

k α(ei1 ,ei2 , . . . ,eik ). (2.3)

The

Ai1i2···ik

def= α(ei1 ,ei2 , . . . ,eik ) (2.4)

are the components or coordinates of the tensor α with respect to the

basis B.

Note that a tensor of type (or rank) k in n-dimensional vector space

has nk coordinates.
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To prove that tensors are multilinear forms, insert

α(x1,x2, . . . , Ax1
j +Bx2

j , . . . ,xk )

=
n∑

i1=1

n∑
i2=1

· · ·
n∑

ik=1
X ii

1 X i2
2 . . . [A(X 1)

i j

j +B(X 2)
i j

j ] . . . X ik
k α(ei1 ,ei2 , . . . ,ei j , . . . ,eik )

= A
n∑

i1=1

n∑
i2=1

· · ·
n∑

ik=1
X ii

1 X i2
2 . . . (X 1)

i j

j . . . X ik
k α(ei1 ,ei2 , . . . ,ei j , . . . ,eik )

+B
n∑

i1=1

n∑
i2=1

· · ·
n∑

ik=1
X ii

1 X i2
2 . . . (X 2)

i j

j . . . X ik
k α(ei1 ,ei2 , . . . ,ei j , . . . ,eik )

= Aα(x1,x2, . . . ,x1
j , . . . ,xk )+Bα(x1,x2, . . . ,x2

j , . . . ,xk )

2.3.1 Change of Basis

Let B and B′ be two arbitrary bases of Rn . Then every vector e′i of B′ can

be represented as linear combination of basis vectors from B [see also

Eqs. (1.92) and (1.93]; that is,

e′i =
n∑

j=1
ai

j e j , i = 1, . . . ,n. (2.5)

Consider an arbitrary vector x ∈ Rn with components X i with respect

to the basis B and X ′i with respect to the basis B′:

x =
n∑

i=1
X i ei =

n∑
i=1

X ′i e′i . (2.6)

Insertion into (2.5) yields

x =
n∑

i=1
X i ei =

n∑
i=1

X ′i e′i =
n∑

i=1
X ′i n∑

j=1
ai

j e j

=
n∑

i=1

[
n∑

j=1
ai

j X ′i
]

e j =
n∑

j=1

[
n∑

i=1
ai

j X ′i
]

e j =
n∑

i=1

[
n∑

j=1
a j

i X ′ j

]
ei .

(2.7)

A comparison of coefficient (and a renaming of the indices i ↔ j ) yields

the transformation laws of vector components [see also Eq. (1.99)]

X j =
n∑

i=1
ai

j X ′i . (2.8)

The matrix a = {ai
j } is called the transformation matrix.

If the basis transformations involve nonlinear coordinate changes

– such as from the Cartesian to the polar or spherical coordinates dis-

cussed later – we have to employ differentials

d X j =
n∑

i=1
ai

j d X ′i , (2.9)

as well as

ai
j = ∂X j

∂X ′i . (2.10)

By assuming that the coordinate transformations are linear, ai
j can be

expressed as in terms of the coordinates X j

ai
j = X j

X ′i . (2.11)
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A similar argument using

ei =
n∑

j=1
a′

i
j e′j , i = 1, . . . ,n (2.12)

yields the transformation laws for the contravariant components (coordi-

nates)

X ′ j =
n∑

i=1
a′

i
j X i (2.13)

with respect to the covariant basis vectors, which will soon turn out to me

the inverse transformations. Thereby,

ei =
n∑

j=1
a′

i
j e′j =

n∑
j=1

a′
i

j
n∑

k=1
a j

k ek =
n∑

j=1

n∑
k=1

[a′
i

j a j
k ]ek , (2.14)

which, due to the linear independence of the basis vectors ei of B, is only

satisfied if

a′
i

j a j
k = δk

i or A′A= I. (2.15)

That is, A′ is the inverse matrix A−1 of A. In index notation,

(a−1)i
j = a′

i
j = X ′ j

X i
(2.16)

for linear coordinate transformations and

d X ′ j =
n∑

i=1
a′

i
j d X i ,=

n∑
i=1

(a−1)i
j

d X i , (2.17)

as well as

(a−1)i
j = a′

i
j = ∂X ′ j

∂X i
= Ji j , (2.18)

where Ji j stands for the Jacobian matrix

J ≡ Ji j = ∂X ′i

∂X j
≡


∂X ′1
∂X 1 · · · ∂X ′1

∂X n

...
. . .

...
∂X ′n
∂X 1 · · · ∂X ′n

∂X n

 . (2.19)

2.3.2 Transformation of tensor components

Because of multilinearity and by insertion into (2.5),

α(e′j1
,e′j2

, . . . ,e′jk
) =α

(
n∑

i1=1
a j1

i1 ei1 ,
n∑

i2=1
a j2

i2 ei2 , . . . ,
n∑

ik=1
a jk

ik eik

)

=
n∑

i1=1

n∑
i2=1

· · ·
n∑

ik=1
a j1

i1 a j2
i2 · · ·a jk

ikα(ei1 ,ei2 , . . . ,eik ) (2.20)

or

A′
j1 j2··· jk

=
n∑

i1=1

n∑
i2=1

· · ·
n∑

ik=1
a j1

i1 a j2
i2 · · ·a jk

ik Ai1i2...ik . (2.21)

2.4 Contravariant tensors

Very similar considerations that apply for the inverse scaling of con-

travariant vector coordinates with respect to covariant base vectors apply

for the inverse scaling of dual base vectors with respect to covariant base

vectors: in order to compensate those scale changes, dual basis vectors

vary contravariantly, and their respective dual coordinates vary covari-

antly.
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2.4.1 Definition of contravariant basis

Consider again a covariant basis B = {e1,e2, . . . ,en} consisting of n basis

vectors ei . Just as on page 15 earlier, we shall define a contravariant basis

B∗ = {e1,e2, . . . ,en} consisting of n basis vectors ei by the requirement

that the scalar product obeys

δ
j
i = ei ·e j ≡ (ei ,e j ) ≡ 〈ei | e j 〉 =

{
1 if i = j

0 if i 6= j
. (2.22)

To distinguish elements of the two bases, the covariant vectors are

denoted by subscripts, whereas the contravariant vectors are denoted

by superscripts. The last terms ei ·e j ≡ (ei ,e j ) ≡ 〈ei | e j 〉 recall different

notations of the scalar product.

Again, note that, for orthonormal bases and Euclidean scalar (dot)

products (the coordinates of) the dual basis vectors of an orthonormal

basis can be coded identically as (the coordinates of) the original basis

vectors; that is, in this case, (the coordinates of) the dual basis vectors are

just rearranged as the transposed form of the original basis vectors.

The entire tensor formalism developed so far can be transferred and

applied to define contravariant tensors as multinear forms

β :V∗k 7→R (2.23)

by

β(x1,x2, . . . ,xk ) =
n∑

i1=1

n∑
i2=1

· · ·
n∑

ik=1
X 1

i1
X 2

i2
. . . X k

ik
β(ei1 ,ei2 , . . . ,eik ). (2.24)

The

B i1i2···ik =β(ei1 ,ei2 , . . . ,eik ) (2.25)

are the components of the contravariant tensor β with respect to the basis

B∗.

More generally, suppose V is an n-dimensional vector space, and

B = {f1, . . . , fn} is a basis of V; if gi j is the metric tensor, the dual basis is

defined by

g ( f ∗
i , f j ) = g ( f i , f j ) = δi

j , (2.26)

where again δi
j is Kronecker delta function, which, due to the symmetry

of the metric, in particular, g ( f i , f j ) = g ( f j , fi ) = δ j
i , is defined by

δi
j = δ j

i =
0 for i 6= j ,

1 for i = j ;
(2.27)

regardless of the order of indices.

2.4.2 Connection between the transformation of covariant and

contravariant entities

Because of linearity we can make the formal Ansatz

e′ j =∑
i

bi
j ei , (2.28)
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where
[
bi

j ] = B is the transformation matrix associated with the con-

travariant basis. How is b related to a, the transformation matrix associ-

ated with the covariant basis?

By exploiting (2.22) one can find the connection between the trans-

formation of covariant and contravariant basis elements and thus tensor

components; that is,

δ
j
i = e′i ·e′ j = (ai

k ek ) · (bl
j el ) = ai

k bl
j ek ·el = ai

k bl
jδl

k = ai
k bk

j , (2.29)

and thus, if B represents the transformation (matrix) whose components

are bi
j ,

B=A−1 =A′, and e′ j =∑
i

(a−1)i
j
ei =∑

i
a′

i
j ei . (2.30)

The argument concerning transformations of covariant tensors and

components can be carried through to the contravariant case. Hence, the

contravariant components transform as

β(e′ j1 ,e′ j2 , . . . ,e′ jk ) =β
(

n∑
i1=1

a′
i1

j1 ei1 ,
n∑

i2=1
a′

i2

j2 ei2 , . . . ,
n∑

ik=1
a′

ik

jk eik

)

=
n∑

i1=1

n∑
i2=1

· · ·
n∑

ik=1
a′

i1

j1 a′
i2

j2 · · ·a′
ik

jkβ(ei1 ,ei2 , . . . ,eik ) (2.31)

or

B ′ j1 j2··· jk =
n∑

i1=1

n∑
i2=1

· · ·
n∑

ik=1
a′

i1

j1 a′
i2

j2 · · ·a′
ik

jk B i1i2...ik . (2.32)

For the same, compensatory, reasons yielding to the transformation

of the contravariant coordinates (or, used synonymously, components)

with respect to covariant bases – reflected in Eqs. (2.5), (2.13), and (2.18) –

the coordinates (or, used synonymously, components) with respect to the

dual, contravariant, basis vectors, transform covariantly.

We may therefore say that “basis vectors ei , as well as dual compo-

nents (coordinates) Xi vary covariantly.” Likewise, “vector components

(coordinates) X i , as well as dual basis vectors e∗i = ei vary contra-

variantly.”

2.5 Orthonormal bases

For orthonormal bases of n-dimensional Hilbert space,

δ
j
i = ei ·e j if and only if ei = ei for all 1 ≤ i , j ≤ n. (2.33)

Therefore, the vector space and its dual vector space are “identical” in

the sense that the coordinate tuples representing their bases are identical

(though relatively transposed). That is, besides transposition, the two

bases are identical

B≡B∗ (2.34)

and formally any distinction between covariant and contravariant

vectors becomes irrelevant. Conceptually, such a distinction persists,

though. In this sense, we might “forget about the difference between

covariant and contravariant orders.”
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2.6 Invariant tensors and physical motivation

2.7 Metric tensor

Metric tensors are defined in metric vector spaces. A metric vector space

(sometimes also refered to as “vector space with metric” or “geome-

try”) is a vector space with some inner or scalar product. This includes

(pseudo-) Euclidean spaces with indefinite metric. (I.e., the distance

needs not be positive or zero.)

2.7.1 Definition metric

A metric g is a functional Rn ×Rn 7→Rwith the following properties:

• g is symmetric; that is, g (x, y) = g (y , x);

• g is bilinear; that is, g (αx +βy , z) =αg (x, z)+βg (y , z) (due to symme-

try g is also bilinear in the second argument);

• g is nondegenerate; that is, for every x ∈V, x 6= 0, there exists a y ∈V

such that g (x, y) 6= 0.

2.7.2 Construction of a metric from a scalar product by metric

tensor

In particular cases, the metric tensor may be defined via the scalar prod-

uct

gi j = ei ·e j ≡ (ei ,e j ) ≡ 〈ei | e j 〉. (2.35)

and

g i j = ei ·e j ≡ (ei ,e j ) ≡ 〈ei | e j 〉. (2.36)

By definition of the (dual) basis in Eq. (1.39) on page 15,

g i
j = g (ei ,e j ) = δi

j , (2.37)

which is a reflection of the covariant and contravariant metric tensors

being inverse, since the basis and the associated dual basis is inverse

(and vice versa). Note that it is possible to change a covariant tensor into

a contravariant one and vice versa by the application of a metric tensor.

This can be seen as follows. Because of linearity, any contravariant basis

vector ei can be written as a linear sum of covariant (transposed, but we

do not mark transposition here) basis vectors:

ei = Ai j e j . (2.38)

Then,

g i k = ei ·ek = (Ai j e j ) ·ek = Ai j (e j ·ek ) = Ai jδk
j = Ai k (2.39)

and thus

ei = g i j e j (2.40)

and

ei = gi j e j . (2.41)
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For orthonormal bases, the metric tensor can be represented as a

Kronecker delta function, and thus remains form invariant. Moreover, its

covariant and contravariant components are identical; that is, gi j = δi j =
δi

j = δ
j
i = δi j = g i j .

2.7.3 What can the metric tensor do for us?

Most often it is used to raise or lower the indices; that is, to change from

contravariant to covariant and conversely from covariant to contravari-

ant. For example,

x = X i ei = X i gi j e j = X j e j , (2.42)

and hence X j = X i gi j .

In the previous section, the metric tensor has been derived from the

scalar product. The converse can be true as well. (Note, however, that

the metric need not be positive.) In Euclidean space with the dot (scalar,

inner) product the metric tensor represents the scalar product between

vectors: let x = X i ei ∈ Rn and y = Y j e j ∈ Rn be two vectors. Then ("T "

stands for the transpose),

x ·y ≡ (x,y) ≡ 〈x | y〉 = X i ei ·Y j e j = X i Y j ei ·e j = X i Y j gi j = X T g Y . (2.43)

It also characterizes the length of a vector: in the above equation, set

y = x. Then,

x ·x ≡ (x,x) ≡ 〈x | x〉 = X i X j gi j ≡ X T g X , (2.44)

and thus

||x|| =
√

X i X j gi j =
√

X T g X . (2.45)

The square of an infinitesimal vector d s = ||dx|| is

(d s)2 = gi j dxi dx j = dxT g dx. (2.46)

2.7.4 Transformation of the metric tensor

Insertion into the definitions and coordinate transformations (2.12) as

well as (2.16) yields

gi j = ei ·e j = a′
i

l e′l ·a′
j

m e′m = a′
i

l a′
j

m e′l ·e′m

= a′
i

l a′
j

m g ′
lm = ∂X ′l

∂X i

∂X ′m

∂X j
g ′

lm .
(2.47)

Conversely, (2.5) as well as (2.11) yields

g ′
i j = e′i ·e′j = ai

l el ·a j
m em = ai

l a j
m el ·em

= ai
l a j

m glm = ∂X l

∂X ′i
∂X m

∂X ′ j
glm .

(2.48)

If the geometry (i.e., the basis) is locally orthonormal, glm = δlm , then

g ′
i j = ∂X l

∂X ′i
∂Xl

∂X ′ j .

Just to check consistency with Eq. (2.37) we can compute, for suitable

differentiable coordinates X and X ′,

g ′
i

j = e′i ·e′ j = ai
l el · (a−1) j

m em = ai
l (a−1) j

m el ·em

= ai
l (a−1) j

mδ
m
l = ai

l (a−1) j
l

= ∂X l

∂X ′i
∂X ′

l

∂X j
= ∂X l

∂X j

∂X ′
l

∂X ′
i
= δl jδl i = δl

i .

(2.49)
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In terms of the Jacobian matrix defined in Eq. (2.19) the metric tensor

in Eq. (2.47) can be rewritten as

g = J T g ′ J ≡ gi j = Jl i Jm j g ′
lm . (2.50)

The metric tensor and the Jacobian (determinant) are thus related by

det g = (det J T )(det g ′)(det J ). (2.51)

If the manifold is embedded into an Euclidean space, then g ′
lm = δlm and

g = J T J .

2.7.5 Examples

In what follows a few metrics are enumerated and briefly commented.

For a more systematic treatment, see, for instance, Snapper and Troyer’s

Metric Affine geometry 2. 2 Ernst Snapper and Robert J. Troyer.
Metric Affine Geometry. Academic Press,
New York, 1971

Note also that due to the properties of the metric tensor, its coordinate

representation has to be a symmetric matrix with nonzero diagonals. For

the symmetry g (x,y) = g (y,x) implies that gi j xi y j = gi j y i x j = gi j x j y i =
g j i xi y j for all coordinate tuples xi and y j . And for any zero diagonal

entry (say, in the k’th position of the diagonal we can choose a nonzero

vector z whose coordinates are all zero except the k’th coordinate. Then

g (z,x) = 0 for all x in the vector space.

n-dimensional Euclidean space

g ≡ {gi j } = diag(1,1, . . . ,1︸ ︷︷ ︸
n times

) (2.52)

One application in physics is quantum mechanics, where n stands

for the dimension of a complex Hilbert space. Some definitions can be

easily adopted to accommodate the complex numbers. E.g., axiom 5

of the scalar product becomes (x, y) = (x, y), where “(x, y)” stands for

complex conjugation of (x, y). Axiom 4 of the scalar product becomes

(x,αy) =α(x, y).

Lorentz plane

g ≡ {gi j } = diag(1,−1) (2.53)

Minkowski space of dimension n

In this case the metric tensor is called the Minkowski metric and is often

denoted by “η”:

η≡ {ηi j } = diag(1,1, . . . ,1︸ ︷︷ ︸
n−1 times

,−1) (2.54)

One application in physics is the theory of special relativity, where

D = 4. Alexandrov’s theorem states that the mere requirement of the

preservation of zero distance (i.e., lightcones), combined with bijectivity

(one-to-oneness) of the transformation law yields the Lorentz transfor-

mations 3. 3 A. D. Alexandrov. On Lorentz transfor-
mations. Uspehi Mat. Nauk., 5(3):187,
1950; A. D. Alexandrov. A contribution to
chronogeometry. Canadian Journal of
Math., 19:1119–1128, 1967; A. D. Alexan-
drov. Mappings of spaces with families of
cones and space-time transformations.
Annali di Matematica Pura ed Applicata,
103:229–257, 1975. ISSN 0373-3114.
D O I : 10.1007/BF02414157. URL http:

//dx.doi.org/10.1007/BF02414157;
A. D. Alexandrov. On the principles of
relativity theory. In Classics of Soviet
Mathematics. Volume 4. A. D. Alexan-
drov. Selected Works, pages 289–318.
1996; H. J. Borchers and G. C. Hegerfeldt.
The structure of space-time transfor-
mations. Communications in Math-
ematical Physics, 28(3):259–266, 1972.
URL http://projecteuclid.org/

euclid.cmp/1103858408; Walter Benz.
Geometrische Transformationen. BI
Wissenschaftsverlag, Mannheim, 1992;
June A. Lester. Distance preserving
transformations. In Francis Buekenhout,
editor, Handbook of Incidence Geometry,
pages 921–944. Elsevier, Amsterdam,
1995; and Karl Svozil. Conventions in
relativity theory and quantum mechan-
ics. Foundations of Physics, 32:479–502,
2002. D O I : 10.1023/A:1015017831247.
URL http://dx.doi.org/10.1023/A:

1015017831247

http://dx.doi.org/10.1007/BF02414157
http://dx.doi.org/10.1007/BF02414157
http://projecteuclid.org/euclid.cmp/1103858408
http://projecteuclid.org/euclid.cmp/1103858408
http://dx.doi.org/10.1023/A:1015017831247
http://dx.doi.org/10.1023/A:1015017831247
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Negative Euclidean space of dimension n

g ≡ {gi j } = diag(−1,−1, . . . ,−1︸ ︷︷ ︸
n times

) (2.55)

Artinian four-space

g ≡ {gi j } = diag(+1,+1,−1,−1) (2.56)

General relativity

In general relativity, the metric tensor g is linked to the energy-mass

distribution. There, it appears as the primary concept when compared

to the scalar product. In the case of zero gravity, g is just the Minkowski

metric (often denoted by “η”) diag(1,1,1,−1) corresponding to “flat”

space-time.

The best known non-flat metric is the Schwarzschild metric

g ≡


(1−2m/r )−1 0 0 0

0 r 2 0 0

0 0 r 2 sin2θ 0

0 0 0 − (1−2m/r )

 (2.57)

with respect to the spherical space-time coordinates r ,θ,φ, t .

Computation of the metric tensor of the circle of radius r

Consider the transformation from the standard orthonormal threedi-

mensional “Cartesian” coordinates X1 = x, X2 = y , into polar coordinates

X ′
1 = r , X ′

2 = ϕ. In terms of r and ϕ, the Cartesian coordinates can be

written as

X1 = r cosϕ≡ X ′
1 cos X ′

2,

X2 = r sinϕ≡ X ′
1 sin X ′

2.
(2.58)

Furthermore, since the basis we start with is the Cartesian orthonormal

basis, gi j = δi j ; therefore,

g ′
i j =

∂X l

∂X ′i
∂Xk

∂X ′ j
glk = ∂X l

∂X ′i
∂Xk

∂X ′ j
δl k = ∂X l

∂X ′i
∂Xl

∂X ′ j
. (2.59)
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More explicity, we obtain for the coordinates of the transformed metric

tensor g ′

g ′
11 =

∂X l

∂X ′1
∂Xl

∂X ′1

= ∂(r cosϕ)

∂r

∂(r cosϕ)

∂r
+ ∂(r sinϕ)

∂r

∂(r sinϕ)

∂r

= (cosϕ)2 + (sinϕ)2 = 1,

g ′
12 =

∂X l

∂X ′1
∂Xl

∂X ′2

= ∂(r cosϕ)

∂r

∂(r cosϕ)

∂ϕ
+ ∂(r sinϕ)

∂r

∂(r sinϕ)

∂ϕ

= (cosϕ)(−r sinϕ)+ (sinϕ)(r cosϕ) = 0,

g ′
21 =

∂X l

∂X ′2
∂Xl

∂X ′1

= ∂(r cosϕ)

∂ϕ

∂(r cosϕ)

∂r
+ ∂(r sinϕ)

∂ϕ

∂(r sinϕ)

∂r

= (−r sinϕ)(cosϕ)+ (r cosϕ)(sinϕ) = 0,

g ′
22 =

∂X l

∂X ′2
∂Xl

∂X ′2

= ∂(r cosϕ)

∂ϕ

∂(r cosϕ)

∂ϕ
+ ∂(r sinϕ)

∂ϕ

∂(r sinϕ)

∂ϕ

= (−r sinϕ)2 + (r cosϕ)2 = r 2;

(2.60)

that is, in matrix notation,

g ′ =
(

1 0

0 r 2

)
, (2.61)

and thus

(d s′)2 = g ′
i j dx′i dx′ j = (dr )2 + r 2(dϕ)2. (2.62)

Computation of the metric tensor of the ball

Consider the transformation from the standard orthonormal threedi-

mensional “Cartesian” coordinates X1 = x, X2 = y , X3 = z, into spherical

coordinates X ′
1 = r , X ′

2 = θ, X ′
3 = ϕ. In terms of r ,θ,ϕ, the Cartesian

coordinates can be written as

X1 = r sinθcosϕ≡ X ′
1 sin X ′

2 cos X ′
3,

X2 = r sinθ sinϕ≡ X ′
1 sin X ′

2 sin X ′
3,

X3 = r cosθ ≡ X ′
1 cos X ′

2.

(2.63)

Furthermore, since the basis we start with is the Cartesian orthonormal

basis, gi j = δi j ; hence finally

g ′
i j =

∂X l

∂X ′i
∂Xl

∂X ′ j
≡ diag(1,r 2,r 2 sin2θ), (2.64)

and

(d s′)2 = (dr )2 + r 2(dθ)2 + r 2 sin2θ(dϕ)2. (2.65)

The expression (d s)2 = (dr )2 + r 2(dϕ)2 for polar coordinates in two

dimensions (i.e., n = 2) of Eq. (2.62) is recovereded by setting θ = π/2 and

dθ = 0.
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Computation of the metric tensor of the Moebius strip

The parameter representation of the Moebius strip is

Φ(u, v) =

 (1+ v cos u
2 )sinu

(1+ v cos u
2 )cosu

v sin u
2

 , (2.66)

where u ∈ [0,2π] represents the position of the point on the circle, and

where 2a > 0 is the “width” of the Moebius strip, and where v ∈ [−a, a].

Φv = ∂Φ

∂v
=

cos u
2 sinu

cos u
2 cosu

sin u
2



Φu = ∂Φ

∂u
=

−
1
2 v sin u

2 sinu + (
1+ v cos u

2

)
cosu

− 1
2 v sin u

2 cosu − (
1+ v cos u

2

)
sinu

1
2 v cos u

2


(2.67)

(
∂Φ

∂v
)T ∂Φ

∂u
=

cos u
2 sinu

cos u
2 cosu

sin u
2


T −

1
2 v sin u

2 sinu + (
1+ v cos u

2

)
cosu

− 1
2 v sin u

2 cosu − (
1+ v cos u

2

)
sinu

1
2 v cos u

2


=−1

2

(
cos

u

2
sin2 u

)
v sin

u

2
− 1

2

(
cos

u

2
cos2 u

)
v sin

u

2

+1

2
sin

u

2
v cos

u

2
= 0

(2.68)

(
∂Φ

∂v
)T ∂Φ

∂v
=

cos u
2 sinu

cos u
2 cosu

sin u
2


T cos u

2 sinu

cos u
2 cosu

sin u
2


= cos2 u

2
sin2 u +cos2 u

2
cos2 u + sin2 u

2
= 1

(2.69)

(
∂Φ

∂u
)T ∂Φ

∂u
=−

1
2 v sin u

2 sinu + (
1+ v cos u

2

)
cosu

− 1
2 v sin u

2 cosu − (
1+ v cos u

2

)
sinu

1
2 v cos u

2


T

·

·

−
1
2 v sin u

2 sinu + (
1+ v cos u

2

)
cosu

− 1
2 v sin u

2 cosu − (
1+ v cos u

2

)
sinu

1
2 v cos u

2


= 1

4
v2 sin2 u

2
sin2 u +cos2 u +2v cos2 u cos

u

2
+ v2 cos2 u cos2 u

2

+1

4
v2 sin2 u

2
cos2 u + sin2 u +2v sin2 u cos

u

2
+ v2 sin2 u cos2 u

2

+1

4
v2 cos2 1

2
u = 1

4
v2 + v2 cos2 u

2
+1+2v cos

1

2
u

=
(
1+ v cos

u

2

)2
+ 1

4
v2

(2.70)



Tensors 79

Thus the metric tensor is given by

g ′
i j =

∂X s

∂X ′i
∂X t

∂X ′ j
gst = ∂X s

∂X ′i
∂X t

∂X ′ j
δst

≡
(
Φu ·Φu Φv ·Φu

Φv ·Φu Φv ·Φv

)
= diag

((
1+ v cos

u

2

)2
+ 1

4
v2,1

)
.

(2.71)

2.8 General tensor

A (general) Tensor T can be defined as a multilinear form on the r -fold

product of a vector space V, times the s-fold product of the dual vector

space V∗; that is,

T : (V)r × (
V∗)s =V×·· ·×V︸ ︷︷ ︸

r copies

×V∗×·· ·×V∗︸ ︷︷ ︸
s copies

7→ F, (2.72)

where, most commonly, the scalar field Fwill be identified with the set

R of reals, or with the set C of complex numbers. Thereby, r is called the

covariant order, and s is called the contravariant order of T . A tensor of

covariant order r and contravariant order s is then pronounced a tensor

of type (or rank) (r , s). By convention, covariant indices are denoted by

subscripts, whereas the contravariant indices are denoted by superscripts.

With the standard, “inherited” addition and scalar multiplication, the

set Ts
r of all tensors of type (r , s) forms a linear vector space.

Note that a tensor of type (1,0) is called a covariant vector , or just a

vector. A tensor of type (0,1) is called a contravariant vector.

Tensors can change their type by the invocation of the metric tensor.

That is, a covariant tensor (index) i can be made into a contravariant

tensor (index) j by summing over the index i in a product involving

the tensor and g i j . Likewise, a contravariant tensor (index) i can be

made into a covariant tensor (index) j by summing over the index i in a

product involving the tensor and gi j .

Under basis or other linear transformations, covariant tensors with

index i transform by summing over this index with (the transformation

matrix) ai
j . Contravariant tensors with index i transform by summing

over this index with the inverse (transformation matrix) (a−1)i
j
.

2.9 Decomposition of tensors

Although a tensor of type (or rank) n transforms like the tensor product

of n tensors of type 1, not all type-n tensors can be decomposed into a

single tensor product of n tensors of type (or rank) 1.

Nevertheless, by a generalized Schmidt decomposition (cf. page 57),

any type-2 tensor can be decomposed into the sum of tensor products of

two tensors of type 1.

2.10 Form invariance of tensors

A tensor (field) is form invariant with respect to some basis change if its

representation in the new basis has the same form as in the old basis.
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For instance, if the “12122–component” T12122(x) of the tensor T with

respect to the old basis and old coordinates x equals some function f (x)

(say, f (x) = x2), then, a necessary condition for T to be form invariant

is that, in terms of the new basis, that component T ′
12122(x ′) equals the

same function f (x ′) as before, but in the new coordinates x ′. A sufficient

condition for form invariance of T is that all coordinates or components

of T are form invariant in that way.

Although form invariance is a gratifying feature for the reasons ex-

plained shortly, a tensor (field) needs not necessarily be form invariant

with respect to all or even any (symmetry) transformation(s).

A physical motivation for the use of form invariant tensors can be

given as follows. What makes some tuples (or matrix, or tensor com-

ponents in general) of numbers or scalar functions a tensor? It is the

interpretation of the scalars as tensor components with respect to a par-

ticular basis. In another basis, if we were talking about the same tensor,

the tensor components; that is, the numbers or scalar functions, would

be different. Pointedly stated, the tensor coordinates represent some

encoding of a multilinear function with respect to a particular basis.

Formally, the tensor coordinates are numbers; that is, scalars, which

are grouped together in vector touples or matrices or whatever form we

consider useful. As the tensor coordinates are scalars, they can be treated

as scalars. For instance, due to commutativity and associativity, one can

exchange their order. (Notice, though, that this is generally not the case

for differential operators such as ∂i = ∂/∂xi .)

A form invariant tensor with respect to certain transformations is a

tensor which retains the same functional form if the transformations are

performed; that is, if the basis changes accordingly. That is, in this case,

the functional form of mapping numbers or coordinates or other entities

remains unchanged, regardless of the coordinate change. Functions

remain the same but with the new parameter components as arguement.

For instance; 4 7→ 4 and f (X1, X2, X3) 7→ f (X ′
1, X ′

2, X ′
3).

Furthermore, if a tensor is invariant with respect to one transforma-

tion, it need not be invariant with respect to another transformation, or

with respect to changes of the scalar product; that is, the metric.

Nevertheless, totally symmetric (antisymmetric) tensors remain to-

tally symmetric (antisymmetric) in all cases:

Ai1i2...is it ...ik =±Ai1i2...it is ...ik (2.73)

implies

A′
j1i2... js jt ... jk

= a j1
i1 a j2

i2 · · ·a js
is a jt

it · · ·a jk
ik Ai1i2...is it ...ik

=±a j1
i1 a j2

i2 · · ·a js
is a jt

it · · ·a jk
ik Ai1i2...it is ...ik

=±a j1
i1 a j2

i2 · · ·a jt
it a js

is · · ·a jk
ik Ai1i2...it is ...ik

=±A′
j1i2... jt js ... jk

.

(2.74)

In physics, it would be nice if the natural laws could be written into a

form which does not depend on the particular reference frame or basis

used. Form invariance thus is a gratifying physical feature, reflecting the

symmetry against changes of coordinates and bases.
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After all, physicists want the formalization of their fundamental laws

not to artificially depend on, say, spacial directions, or on some particular

basis, if there is no physical reason why this should be so. Therefore,

physicists tend to be crazy to write down everything in a form invariant

manner.

One strategy to accomplish form invariance is to start out with form

invariant tensors and compose – by tensor products and index reduction

– everything from them. This method guarantees form invarince.

The “simplest” form invariant tensor under all transformations is the

constant tensor of rank 0.

Another constant form invariant tensor under all transformations is

represented by the Kronecker symbol δi
j , because

(δ′)i
j = (a−1)i ′

i
a j

j ′δi ′
j ′ = (a−1)i ′

i
a j

i ′ = a j
i ′ (a−1)i ′

i = δi
j . (2.75)

A simple form invariant tensor field is a vector x, because if T (x) =
xi ti = xi ei = x, then the “inner transformation” x 7→ x′ and the “outer

transformation” T 7→ T ′ = AT just compensate each other; that is, in

coordinate representation, Eqs.(2.8) and (2.21) yield

T ′(x′) = x ′i t ′i = (a−1)l
i
x l ai

j t j = (a−1)l
i
ai

j e j x l = δ j
l e j x l = x = T (x).

(2.76)

For the sake of another demonstration of form invariance, consider

the following two factorizable tensor fields: while

S(x) =
(

x2

−x1

)
⊗

(
x2

−x1

)T

= (x2,−x1)T ⊗ (x2,−x1) ≡
(

x2
2 −x1x2

−x1x2 x2
1

)
(2.77)

is a form invariant tensor field with respect to the basis {(0,1), (1,0)} and

orthogonal transformations (rotations around the origin)(
cosϕ sinϕ

−sinϕ cosϕ

)
, (2.78)

T (x) =
(

x2

x1

)
⊗

(
x2

x1

)T

= (x2, x1)T ⊗ (x2, x1) ≡
(

x2
2 x1x2

x1x2 x2
1

)
(2.79)

is not.

This can be proven by considering the single factors from which S

and T are composed. Eqs. (2.20)-(2.21) and (2.31)-(2.32) show that the

form invariance of the factors implies the form invariance of the tensor

products.

For instance, in our example, the factors (x2,−x1)T of S are invariant,

as they transform as(
cosϕ sinϕ

−sinϕ cosϕ

)(
x2

−x1

)
=

(
x2 cosϕ−x1 sinϕ

−x2 sinϕ−x1 cosϕ

)
=

(
x ′

2

−x ′
1

)
,

where the transformation of the coordinates(
x ′

1

x ′
2

)
=

(
cosϕ sinϕ

−sinϕ cosϕ

)(
x1

x2

)
=

(
x1 cosϕ+x2 sinϕ

−x1 sinϕ+x2 cosϕ

)

has been used.
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Note that the notation identifying tensors of type (or rank) two with

matrices, creates an “artifact” insofar as the transformation of the “sec-

ond index” must then be represented by the exchanged multiplication

order, together with the transposed transformation matrix; that is,

ai k a j l Akl = ai k Akl a j l = ai k Akl
(
aT )

l j ≡ a · A ·aT .

Thus for a transformation of the transposed touple (x2,−x1) we must

consider the transposed transformation matrix arranged after the factor;

that is,

(x2,−x1)

(
cosϕ −sinϕ

sinϕ cosϕ

)
= (

x2 cosϕ−x1 sinϕ,−x2 sinϕ−x1 cosϕ
)= (

x ′
2,−x ′

1

)
.

In contrast, a similar calculation shows that the factors (x2, x1)T of T

do not transform invariantly. However, noninvariance with respect to

certain transformations does not imply that T is not a valid, “respectable”

tensor field; it is just not form invariant under rotations.

Nevertheless, note again that, while the tensor product of form in-

variant tensors is again a form invariant tensor, not every form invariant

tensor might be decomposed into products of form invariant tensors.

Let |+〉 ≡ (0,1) and |−〉 ≡ (1,0). For a nondecomposable tensor, con-

sider the sum of two-partite tensor products (associated with two “entan-

gled” particles) Bell state (cf. Eq. (1.69) on page 23) in the standard basis

|Ψ−〉 = 1p
2

(|+−〉−|−+〉)

≡
(
0,

1p
2

,− 1p
2

,0

)

≡ 1

2


0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0

 .

(2.80)

|Ψ−〉, together with the other three
Bell states |Ψ+〉 = 1p

2
(|+−〉+|−+〉),

|Φ+〉 = 1p
2

(|−−〉+|++〉), and |Φ−〉 =
1p
2

(|−−〉−|++〉), forms an orthonormal

basis of C4.

Why is |Ψ−〉 not decomposable? In order to be able to answer this

question (see alse Section 1.10.3 on page 22), consider the most general

two-partite state

|ψ〉 =ψ−−|−−〉+ψ−+|−+〉+ψ+−|+−〉+ψ++|++〉, (2.81)

with ψi j ∈C, and compare it to the most general state obtainable through

products of single-partite states |φ1〉 =α−|−〉+α+|+〉, and |φ2〉 = β−|−〉+
β+|+〉 with αi ,βi ∈C; that is,

|φ〉 = |φ1〉|φ2〉
= (α−|−〉+α+|+〉)(β−|−〉+β+|+〉)

=α−β−|−−〉+α−β+|−+〉+α+β−|+−〉+α+β+|++〉.
(2.82)

Since the two-partite basis states

|−−〉 ≡ (1,0,0,0),

|−+〉 ≡ (0,1,0,0),

|+−〉 ≡ (0,0,1,0),

|++〉 ≡ (0,0,0,1)

(2.83)
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are linear independent (indeed, orthonormal), a comparison of |ψ〉 with

|φ〉 yields

ψ−− =α−β−,

ψ−+ =α−β+,

ψ+− =α+β−,

ψ++ =α+β+.

(2.84)

Hence, ψ−−/ψ−+ = β−/β+ = ψ+−/ψ++, and thus a necessary and suffi-

cient condition for a two-partite quantum state to be decomposable into

a product of single-particle quantum states is that its amplitudes obey

ψ−−ψ++ =ψ−+ψ+−. (2.85)

This is not satisfied for the Bell state |Ψ−〉 in Eq. (2.80), because in this

case ψ−− =ψ++ = 0 and ψ−+ =−ψ+− = 1/
p

2. Such nondecomposability

is in physics referred to as entanglement 4. 4 Erwin Schrödinger. Discussion of
probability relations between sepa-
rated systems. Mathematical Pro-
ceedings of the Cambridge Philosoph-
ical Society, 31(04):555–563, 1935a.
D O I : 10.1017/S0305004100013554.
URL http://dx.doi.org/10.1017/

S0305004100013554; Erwin Schrödinger.
Probability relations between sepa-
rated systems. Mathematical Pro-
ceedings of the Cambridge Philosoph-
ical Society, 32(03):446–452, 1936.
D O I : 10.1017/S0305004100019137.
URL http://dx.doi.org/10.1017/

S0305004100019137; and Erwin
Schrödinger. Die gegenwärtige Situation
in der Quantenmechanik. Naturwis-
senschaften, 23:807–812, 823–828, 844–
849, 1935b. D O I : 10.1007/BF01491891,
10.1007/BF01491914,
10.1007/BF01491987. URL
http://dx.doi.org/10.1007/

BF01491891,http://dx.doi.

org/10.1007/BF01491914,http:

//dx.doi.org/10.1007/BF01491987

Note also that |Ψ−〉 is a singlet state, as it is form invariant under the

following generalized rotations in two-dimensional complex Hilbert

subspace; that is, (if you do not believe this please check yourself)

|+〉 = e i ϕ2

(
cos

θ

2
|+′〉− sin

θ

2
|−′〉

)
,

|−〉 = e−i ϕ2

(
sin

θ

2
|+′〉+cos

θ

2
|−′〉

) (2.86)

in the spherical coordinates θ,ϕ, but it cannot be composed or written

as a product of a single (let alone form invariant) two-partite tensor

product.

In order to prove form invariance of a constant tensor, one has to

transform the tensor according to the standard transformation laws

(2.21) and (2.25), and compare the result with the input; that is, with the

untransformed, original, tensor. This is sometimes referred to as the

“outer transformation.”

In order to prove form invariance of a tensor field, one has to addi-

tionally transform the spatial coordinates on which the field depends;

that is, the arguments of that field; and then compare. This is sometimes

referred to as the “inner transformation.” This will become clearer with

the following example.

Consider again the tensor field defined earlier in Eq. (2.77), but let us

not choose the “elegant” ways of proving form invariance by factoring;

rather we explicitly consider the transformation of all the components

Si j (x1, x2) =
(
−x1x2 −x2

2

x2
1 x1x2

)

with respect to the standard basis {(1,0), (0,1)}.

Is S form invariant with respect to rotations around the origin? That is,

S should be form invariant with repect to transformations x ′
i = ai j x j with

ai j =
(

cosϕ sinϕ

−sinϕ cosϕ

)
.

http://dx.doi.org/10.1017/S0305004100013554
http://dx.doi.org/10.1017/S0305004100013554
http://dx.doi.org/10.1017/S0305004100019137
http://dx.doi.org/10.1017/S0305004100019137
http://dx.doi.org/10.1007/BF01491891, http://dx.doi.org/10.1007/BF01491914, http://dx.doi.org/10.1007/BF01491987
http://dx.doi.org/10.1007/BF01491891, http://dx.doi.org/10.1007/BF01491914, http://dx.doi.org/10.1007/BF01491987
http://dx.doi.org/10.1007/BF01491891, http://dx.doi.org/10.1007/BF01491914, http://dx.doi.org/10.1007/BF01491987
http://dx.doi.org/10.1007/BF01491891, http://dx.doi.org/10.1007/BF01491914, http://dx.doi.org/10.1007/BF01491987
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Consider the “outer” transformation first. As has been pointed out

earlier, the term on the right hand side in S′
i j = ai k a j l Skl can be rewritten

as a product of three matrices; that is,

ai k a j l Skl (xn) = ai k Skl a j l = ai k Skl
(
aT )

l j ≡ a ·S ·aT .

aT stands for the transposed matrix; that is, (aT )i j = a j i .(
cosϕ sinϕ

−sinϕ cosϕ

)(
−x1x2 −x2

2

x2
1 x1x2

)(
cosϕ −sinϕ

sinϕ cosϕ

)
=

=
(

−x1x2 cosϕ+x2
1 sinϕ −x2

2 cosϕ+x1x2 sinϕ

x1x2 sinϕ+x2
1 cosϕ x2

2 sinϕ+x1x2 cosϕ

)(
cosϕ −sinϕ

sinϕ cosϕ

)
=

=



cosϕ
(−x1x2 cosϕ+x2

1 sinϕ
)+ −sinϕ

(−x1x2 cosϕ+x2
1 sinϕ

)+
+sinϕ

(−x2
2 cosϕ+x1x2 sinϕ

) +cosϕ
(−x2

2 cosϕ+x1x2 sinϕ
)

cosϕ
(
x1x2 sinϕ+x2

1 cosϕ
)+ −sinϕ

(
x1x2 sinϕ+x2

1 cosϕ
)+

+sinϕ
(
x2

2 sinϕ+x1x2 cosϕ
) +cosϕ

(
x2

2 sinϕ+x1x2 cosϕ
)

=

=



x1x2
(
sin2ϕ−cos2ϕ

)+ 2x1x2 sinϕcosϕ

+(
x2

1 −x2
2

)
sinϕcosϕ −x2

1 sin2ϕ−x2
2 cos2ϕ

2x1x2 sinϕcosϕ+ −x1x2
(
sin2ϕ−cos2ϕ

)−
+x2

1 cos2ϕ+x2
2 sin2ϕ −(

x2
1 −x2

2

)
sinϕcosϕ


Let us now perform the “inner” transform

x ′
i = ai j x j =⇒

x ′
1 = x1 cosϕ+x2 sinϕ

x ′
2 = −x1 sinϕ+x2 cosϕ.

Thereby we assume (to be corroborated) that the functional form

in the new coordinates are identical to the functional form of the old

coordinates. A comparison yields

−x ′
1 x ′

2 = −(
x1 cosϕ+x2 sinϕ

)(−x1 sinϕ+x2 cosϕ
)=

= −(−x2
1 sinϕcosϕ+x2

2 sinϕcosϕ−x1x2 sin2ϕ+x1x2 cos2ϕ
)=

= x1x2
(
sin2ϕ−cos2ϕ

)+ (
x2

1 −x2
2

)
sinϕcosϕ

(x ′
1)2 = (

x1 cosϕ+x2 sinϕ
)(

x1 cosϕ+x2 sinϕ
)=

= x2
1 cos2ϕ+x2

2 sin2ϕ+2x1x2 sinϕcosϕ

(x ′
2)2 = (−x1 sinϕ+x2 cosϕ

)(−x1 sinϕ+x2 cosϕ
)=

= x2
1 sin2ϕ+x2

2 cos2ϕ−2x1x2 sinϕcosϕ

and hence

S′(x ′
1, x ′

2) =
(

−x ′
1x ′

2 −(x ′
2)2

(x ′
1)2 x ′

1x ′
2

)
is invariant with respect to rotations by angles ϕ, yielding the new basis

{(cosϕ,−sinϕ), (sinϕ,cosϕ)}.
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Incidentally, as has been stated earlier, S(x) can be written as the

product of two invariant tensors bi (x) and c j (x):

Si j (x) = bi (x)c j (x),

with b(x1, x2) = (−x2, x1), and c(x1, x2) = (x1, x2). This can be easily

checked by comparing the components:

b1c1 = −x1x2 = S11,

b1c2 = −x2
2 = S12,

b2c1 = x2
1 = S21,

b2c2 = x1x2 = S22.

Under rotations, b and c transform into

ai j b j =
(

cosϕ sinϕ

−sinϕ cosϕ

)(
−x2

x1

)
=

(
−x2 cosϕ+x1 sinϕ

x2 sinϕ+x1 cosϕ

)
=

(
−x ′

2

x ′
1

)

ai j c j =
(

cosϕ sinϕ

−sinϕ cosϕ

)(
x1

x2

)
=

(
x1 cosϕ+x2 sinϕ

−x1 sinϕ+x2 cosϕ

)
=

(
x ′

1

x ′
2

)
.

This factorization of S is nonunique, since Eq. (2.77) uses a different

factorization; also, S is decomposible into, for example,

S(x1, x2) =
(

−x1x2 −x2
2

x2
1 x1x2

)
=

(
−x2

2

x1x2

)
⊗

(
x1

x2
,1

)
.

2.11 The Kronecker symbol δ

For vector spaces of dimension n the totally symmetric Kronecker sym-

bol δ, sometimes referred to as the delta symbol δ–tensor, can be defined

by

δi1i2···ik =
{

+1 if i1 = i2 = ·· · = ik

0 otherwise (that is, some indices are not identical).
(2.87)

Note that, with the Einstein summation convention,

δi j a j = a jδi j = δi 1a1 +δi 2a2 +·· ·+δi n an = ai ,

δ j i a j = a jδ j i = δ1i a1 +δ2i a2 +·· ·+δni an = ai .
(2.88)

2.12 The Levi-Civita symbol ε

For vector spaces of dimension n the totally antisymmetric Levi-Civita

symbol ε, sometimes referred to as the Levi-Civita symbol ε–tensor, can

be defined by the number of permutations of its indices; that is,

εi1i2···ik =


+1 if (i1i2 . . . ik ) is an even permutation of (1,2, . . .k)

−1 if (i1i2 . . . ik ) is an odd permutation of (1,2, . . .k)

0 otherwise (that is, some indices are identical).
(2.89)
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Hence, εi1i2···ik stands for the the sign of the permutation in the case of a

permutation, and zero otherwise.

In two dimensions,

εi j ≡
(
ε11 ε12

ε21 ε22

)
=

(
0 1

−1 0

)
.

In threedimensional Euclidean space, the cross product, or vector

product of two vectors x ≡ xi and y ≡ yi can be written as x×y ≡ εi j k x j yk .

For a direct proof, consider, for arbirtrary threedimensional vectors x

and y, and by enumerating all nonvanishing terms; that is, all permuta-

tions,

x×y ≡ εi j k x j yk ≡

ε123x2 y3 +ε132x3 y2

ε213x1 y3 +ε231x3 y1

ε312x2 y3 +ε321x3 y2



=

 ε123x2 y3 −ε123x3 y2

−ε123x1 y3 +ε123x3 y1

ε123x2 y3 −ε123x3 y2

=

 x2 y3 −x3 y2

−x1 y3 +x3 y1

x2 y3 −x3 y2

 .

(2.90)

2.13 The nabla, Laplace, and D’Alembert operators

The nabla operator

∇=
(
∂

∂X1
,
∂

∂X2
, . . . ,

∂

∂Xn

)
. (2.91)

is a vector differential operator in an n-dimensional vector space V. In

index notation, ∇i = ∂i = ∂X i .

The nabla operator transforms in the following manners: ∇i = ∂i = ∂X i

transforms like a covariant basis vector [compare with Eqs. (2.12) and

(2.18)], since

∂i = ∂

∂X i
= ∂X ′ j

∂X i

∂

∂X ′ j
= ∂X ′ j

∂X i
∂′i = (a−1)i

j
∂′i = Ji j∂

′
i , (2.92)

where Ji j stands for the Jacobian matrix defined in Eq. (2.19).

As very similar calculation demonstrates that ∂i = ∂
∂Xi

transforms like

a contravariant vector.

In three dimensions and in the standard Cartesian basis,

∇=
(
∂

∂X1
,
∂

∂X2
,
∂

∂X3

)
= e1

∂

∂X1
+e2

∂

∂X2
+e3

∂

∂X3
. (2.93)

It is often used to define basic differential operations; in particular, (i)

to denote the gradient of a scalar field f (X1, X2, X3) (rendering a vector

field with respect to a particular basis), (ii) the divergence of a vector field

v(X1, X2, X3) (rendering a scalar field with respect to a particular basis),

and (iii) the curl (rotation) of a vector field v(X1, X2, X3) (rendering a
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vector field with respect to a particular basis) as follows:

grad f = ∇ f =
(
∂ f

∂X1
,
∂ f

∂X2
,
∂ f

∂X3

)
, (2.94)

div v = ∇·v = ∂v1

∂X1
+ ∂v2

∂X2
+ ∂v3

∂X3
, (2.95)

rot v = ∇×v =
(
∂v3

∂X2
− ∂v2

∂X3
,
∂v1

∂X3
− ∂v3

∂X1
,
∂v2

∂X1
− ∂v1

∂X2

)
(2.96)

≡ εi j k∂ j vk . (2.97)

The Laplace operator is defined by

∆=∇2 =∇·∇= ∂2

∂2X1
+ ∂2

∂2X2
+ ∂2

∂2X3
. (2.98)

In special relativity and electrodynamics, as well as in wave the-

ory and quantized field theory, with the Minkowski space-time of

dimension four (referring to the metric tensor with the signature

“±,±,±,∓”), the D’Alembert operator is defined by the Minkowski metric

η= diag(1,1,1,−1)

2= ∂i∂
i = ηi j∂

i∂ j =∇2 − ∂2

∂2t
=∇·∇− ∂2

∂2t
= ∂2

∂2X1
+ ∂2

∂2X2
+ ∂2

∂2X3
− ∂2

∂2t
.

(2.99)

2.14 Some tricks and examples

There are some tricks which are commonly used. Here, some of them are

enumerated:

(i) Indices which appear as internal sums can be renamed arbitrarily

(provided their name is not already taken by some other index). That

is, ai bi = a j b j for arbitrary a,b, i , j .

(ii) With the Euclidean metric, δi i = n.

(iii) ∂X i

∂X j = δi
j .

(iv) With the Euclidean metric, ∂X i

∂X i = n.

(v) εi jδi j = −ε j iδi j = −ε j iδ j i = (i ↔ j ) = −εi jδi j = 0, since a = −a im-

plies a = 0; likewise, εi j xi x j = 0. In general, the Einstein summations

si j ...ai j ... over objects si j ... which are symmetric with respect to index

exchanges over objects ai j ... which are antisymmetric with respect to

index exchanges yields zero.

(vi) For threedimensional vector spaces (n = 3) and the Euclidean met-

ric, the Grassmann identity holds:

εi j kεklm = δi lδ j m −δi mδ j l . (2.100)
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For the sake of a proof, consider

x× (y×z) ≡
in index notation

x jεi j k yl zmεklm = x j yl zmεi j kεklm ≡
in coordinate notationx1

x2

x3

×


y1

y2

y3

×

z1

z2

z3


=

x1

x2

x3

×

y2z3 − y3z2

y3z1 − y1z3

y1z2 − y2z1

=

x2(y1z2 − y2z1)−x3(y3z1 − y1z3)

x3(y2z3 − y3z2)−x1(y1z2 − y2z1)

x1(y3z1 − y1z3)−x2(y2z3 − y3z2)

=

x2 y1z2 −x2 y2z1 −x3 y3z1 +x3 y1z3

x3 y2z3 −x3 y3z2 −x1 y1z2 +x1 y2z1

x1 y3z1 −x1 y1z3 −x2 y2z3 +x2 y3z2

=

y1(x2z2 +x3z3)− z1(x2 y2 +x3 y3)

y2(x3z3 +x1z1)− z2(x1 y1 +x3 y3)

y3(x1z1 +x2z2)− z3(x1 y1 +x2 y2)



(2.101)

The “incomplete” dot products can be completed through addition

and subtraction of the same term, respectively; that is,y1(x1z1 +x2z2 +x3z3)− z1(x1 y1 +x2 y2 +x3 y3)

y2(x1z1 +x2z2 +x3z3)− z2(x1 y1 +x2 y2 +x3 y3)

y3(x1z1 +x2z2 +x3z3)− z3(x1 y1 +x2 y2 +x3 y3)

≡

in vector notation

y (x ·z)−z
(
x ·y

)≡
in index notation

x j yl zm
(
δi lδ j m −δi mδ j l

)
.

(2.102)

(vii) For threedimensional vector spaces (n = 3) and the Euclidean

metric,

|a × b| =
√
εi j kεi st a j as bk bt =

√
|a|2|b|2 − (a ·b)2 =√√√√det

(
a ·a a ·b

a ·b b ·b

)
= |a||b|sinθab .

(viii) Let u, v ≡ X ′
1, X ′

2 be two parameters associated with an orthonor-

mal Cartesian basis {(0,1), (1,0)}, and letΦ : (u, v) 7→ R3 be a mapping

from some area of R2 into a twodimensional surface of R3. Then the

metric tensor is given by gi j = ∂Φk

∂X ′i
∂Φm

∂X ′ j δkm .

Consider the following examples in threedimensional vector space.

Let r 2 =∑3
i=1 x2

i .

1.

∂ j r = ∂ j

√∑
i

x2
i = 1

2

1√∑
i x2

i

2x j =
x j

r (2.103)
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By using the chain rule one obtains

∂ j rα =αrα−1 (
∂ j r

)=αrα−1
( x j

r

)
=αrα−2x j (2.104)

and thus ∇rα =αrα−2x.

2.

∂ j logr = 1

r

(
∂ j r

)
(2.105)

With ∂ j r = x j

r derived earlier in Eq. (2.104) one obtains ∂ j logr = 1
r

x j

r =
x j

r 2 , and thus ∇ logr = x
r 2 .

3.

∂ j

(∑
i

(xi −ai )2

)− 1
2

+
(∑

i
(xi +ai )2

)− 1
2

=

=−1

2

 1(∑
i (xi −ai )2

) 3
2

2
(
x j −a j

)+ 1(∑
i (xi +ai )2

) 3
2

2
(
x j +a j

)=

−
(∑

i
(xi −ai )2

)− 3
2 (

x j −a j
)−(∑

i
(xi +ai )2

)− 3
2 (

x j +a j
)

.

(2.106)

4. For three dimensions and for r 6= 0,

∇( r

r 3

)≡ ∂i

( ri

r 3

)
= 1

r 3 ∂i ri︸︷︷︸
=3

+ri

(
−3

1

r 4

)(
1

2r

)
2ri = 3

1

r 3 −3
1

r 3 = 0. (2.107)

5. With this solution (2.107) one obtains, for three dimensions and r 6= 0,

∆
(1

r

)≡ ∂i∂i
1

r
= ∂i

(
− 1

r 2

)(
1

2r

)
2ri =−∂i

ri

r 3 = 0. (2.108)

6. With the earlier solution (2.107) one obtains

∆
(rp

r 3

)≡
∂i∂i

r j p j

r 3 = ∂i

[
pi

r 3 + r j p j

(
−3

1

r 5

)
ri

]
=

= pi

(
−3

1

r 5

)
ri +pi

(
−3

1

r 5

)
ri+

+r j p j

[(
15

1

r 6

)(
1

2r

)
2ri

]
ri + r j p j

(
−3

1

r 5

)
∂i ri︸︷︷︸
=3

=

= ri pi
1

r 5 (−3−3+15−9) = 0

(2.109)

7. With r 6= 0 and constant p one obtains Note that, in three dimensions, the
Grassmann identity (2.100) εi j kεklm =
δi lδ j m −δi mδ j l holds.
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∇× (p× r

r 3 ) ≡ εi j k∂ jεklm pl
rm

r 3 = plεi j kεklm

[
∂ j

rm

r 3

]
= plεi j kεklm

[
1

r 3 ∂ j rm + rm

(
−3

1

r 4

)(
1

2r

)
2r j

]
= plεi j kεklm

[
1

r 3 δ j m −3
r j rm

r 5

]
= pl (δi lδ j m −δi mδ j l )

[
1

r 3 δ j m −3
r j rm

r 5

]
= pi

(
3

1

r 3 −3
1

r 3

)
︸ ︷︷ ︸

=0

−p j

(
1

r 3 ∂ j ri︸︷︷︸
=δi j

−3
r j ri

r 5

)

=− p

r 3 +3

(
rp

)
r

r 5 .

(2.110)

8.

∇× (∇Φ)

≡ εi j k∂ j∂kΦ

= εi k j∂k∂ jΦ

= εi k j∂ j∂kΦ

=−εi j k∂ j∂kΦ= 0.

(2.111)

This is due to the fact that ∂ j∂k is symmetric, whereas εi j k ist totally

antisymmetric.

9. For a proof that (x×y)×z 6= x× (y×z) consider

(x×y)×z

≡ εi j lε j km xk ym zl

=−εi l jε j km xk ym zl

=−(δi kδlm −δi mδl k )xk ym zl

=−xi y ·z+ yi x ·z.

(2.112)

versus

x× (y×z)

≡ εi l jε j km xl yk zm

= (δi kδl m −δi mδlk )xl yk zm

= yi x ·z− zi x ·y.

(2.113)

10. Let w = p
r with pi = pi

(
t − r

c

)
, whereby t and c are constants. Then,

divw = ∇·w

≡ ∂i wi = ∂i

[
1

r
pi

(
t − r

c

)]
=

=
(
− 1

r 2

)(
1

2r

)
2ri pi + 1

r
p ′

i

(
−1

c

)(
1

2r

)
2ri =

= − ri pi

r 3 − 1

cr 2 p ′
i ri .

Hence, divw =∇·w =−
(

rp
r 3 + rp′

cr 2

)
.
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rotw = ∇×w

εi j k∂ j wk = ≡ εi j k

[(
− 1

r 2

)(
1

2r

)
2r j pk +

1

r
p ′

k

(
−1

c

)(
1

2r

)
2r j

]
=

= − 1

r 3 εi j k r j pk −
1

cr 2 εi j k r j p ′
k =

≡ − 1

r 3

(
r×p

)− 1

cr 2

(
r×p′) .

11. Let us verify some specific examples of Gauss’ (divergence) theo-

rem, stating that the outward flux of a vector field through a closed

surface is equal to the volume integral of the divergence of the region

inside the surface. That is, the sum of all sources subtracted by the

sum of all sinks represents the net flow out of a region or volume of

threedimensional space: ∫
V

∇·wd v =
∫

FV

w ·df. (2.114)

Consider the vector field w = (4x,−2y2, z2) and the (cylindric)

volume bounded by the planes z = 0 und z = 3, as well as by the

surface x2 + y2 = 4.

Let us first look at the left hand side
∫
V
∇·wd v of Eq. (2.114):

∇w = div w = 4−4y +2z

=⇒
∫
V

div wd v =
3∫

z=0

d z

2∫
x=−2

d x

p
4−x2∫

y=−
p

4−x2

d y
(
4−4y +2z

)=

cylindric coordinates:

[ x = r cosϕ

y = r sinϕ

z = z

]

=
3∫

z=0

d z

2∫
0

r dr

2π∫
0

dϕ
(
4−4r sinϕ+2z

)=
=

3∫
z=0

d z

2∫
0

r dr
(
4ϕ+4r cosϕ+2ϕz

)∣∣∣∣2π

ϕ=0
=

=
3∫

z=0

d z

2∫
0

r dr (8π+4r +4πz −4r ) =

=
3∫

z=0

d z

2∫
0

r dr (8π+4πz)

= 2

(
8πz +4π

z2

2

)∣∣∣∣z=3

z=0
= 2(24+18)π= 84π

Now consider the right hand side
∫
F

w ·df of Eq. (2.114). The surface

consists of three parts: the lower plane F1 of the cylinder is charac-

terized by z = 0; the upper plane F2 of the cylinder is characterized

by z = 3; the surface on the side of the zylinder F3 is characterized by
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x2 + y2 = 4. df must be normal to these surfaces, pointing outwards;

hence

F1 :
∫

F 1

w ·df1 =
∫

F1

 4x

−2y2

z2 = 0


 0

0

−1

 d xd y = 0

F2 :
∫

F2

w ·df2 =
∫

F2

 4x

−2y2

z2 = 9


 0

0

1

 d xd y =

= 9
∫

Kr=2

d f = 9 ·4π= 36π

F3 :
∫

F3

w ·df3 =
∫

F3

 4x

−2y2

z2

(
∂x

∂ϕ
× ∂x

∂z

)
dϕd z (r = 2 = const.)

∂x

∂ϕ
=

 −r sinϕ

r cosϕ

0

=

 −2sinϕ

2cosϕ

0

 ;
∂x

∂z
=

 0

0

1



=⇒
(
∂x

∂ϕ
× ∂x

∂z

)
=

 2cosϕ

2sinϕ

0



=⇒ F3 =
2π∫

ϕ=0

dϕ

3∫
z=0

d z

 4 ·2cosϕ

−2(2sinϕ)2

z2


 2cosϕ

2sinϕ

0

=

=
2π∫

ϕ=0

dϕ

3∫
z=0

d z
(
16cos2ϕ−16sin3ϕ

)=
= 3 ·16

2π∫
ϕ=0

dϕ
(
cos2ϕ− sin3ϕ

)=
=

[ ∫
cos2ϕdϕ = ϕ

2 + 1
4 sin2ϕ∫

sin3ϕdϕ = −cosϕ+ 1
3 cos3ϕ

]
=

= 3 ·16

{
2π

2
−

[(
1+ 1

3

)
−

(
1+ 1

3

)]
︸ ︷︷ ︸

=0

}
= 48π

For the flux through the surfaces one thus obtains∮
F

w ·df = F1 +F2 +F3 = 84π.

12. Let us verify some specific examples of Stokes’ theorem in three

dimensions, stating that∫
F

rot b ·df =
∮

CF

b ·ds. (2.115)

Consider the vector field b = (y z,−xz,0) and the volume bounded

by spherical cap formed by the plane at z = a/
p

2 of a sphere of radius

a centered around the origin.
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Let us first look at the left hand side
∫
F

rot b ·df of Eq. (2.115):

b =

 y z

−xz

0

=⇒ rot b =∇×b =

 x

y

−2z


Let us transform this into spherical coordinates:

x =

 r sinθcosϕ

r sinθ sinϕ

r cosθ



⇒ ∂x

∂θ
= r

 cosθcosϕ

cosθ sinϕ

−sinθ

 ;
∂x

∂ϕ
= r

 −sinθ sinϕ

sinθcosϕ

0



df =
(
∂x

∂θ
× ∂x

∂ϕ

)
dθdϕ= r 2

 sin2θcosϕ

sin2θ sinϕ

sinθcosθ

dθdϕ

∇×b = r

 sinθcosϕ

sinθ sinϕ

−2cosθ



∫
F

rot b ·df =
π/4∫

θ=0

dθ

2π∫
ϕ=0

dϕa3

 sinθcosϕ

sinθ sinϕ

−2cosθ


 sin2θcosϕ

sin2θ sinϕ

sinθcosθ

=

= a3

π/4∫
θ=0

dθ

2π∫
ϕ=0

dϕ

[
sin3θ

(
cos2ϕ+ sin2ϕ

)︸ ︷︷ ︸
=1

−2sinθcos2θ

]
=

= 2πa3

 π/4∫
θ=0

dθ
(
1−cos2θ

)
sinθ−2

π/4∫
θ=0

dθ sinθcos2θ

=

= 2πa3

π/4∫
θ=0

dθ sinθ
(
1−3cos2θ

)=
[

transformation of variables:

cosθ = u ⇒ du =−sinθdθ⇒ dθ =− du
sinθ

]

= 2πa3

π/4∫
θ=0

(−du)
(
1−3u2)= 2πa3

(
3u3

3
−u

)∣∣∣∣π/4

θ=0
=

= 2πa3 (
cos3θ−cosθ

)∣∣∣∣π/4

θ=0
= 2πa3

(
2
p

2

8
−
p

2

2

)
=

= 2πa3

8

(
−2

p
2
)
=−πa3

p
2

2

Now consider the right hand side
∮

CF

b ·ds of Eq. (2.115). The radius

r ′ of the circle surface {(x, y , z) | x, y ∈ R, z = a/
p

2} bounded by the

sphere with radius a is determined by a2 = (r ′)2 + (a/
p

2)2; hence,

r ′ = a/
p

2. The curve of integration CF can be parameterized by

{(x, y , z) | x = ap
2

cosϕ, y = ap
2

sinϕ, z = ap
2

}.
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Therefore,

x = a


1p
2

cosϕ

1p
2

sinϕ

1p
2

= ap
2

 cosϕ

sinϕ

1

 ∈CF

Let us transform this into polar coordinates:

ds = dx

dϕ
dϕ= ap

2

 −sinϕ

cosϕ

0

dϕ

b =


ap
2

sinϕ · ap
2

− ap
2

cosϕ · ap
2

0

= a2

2

 sinϕ

−cosϕ

0


Hence the circular integral is given by

∮
CF

b ·ds = a2

2

ap
2

2π∫
ϕ=0

(−sin2ϕ−cos2ϕ
)︸ ︷︷ ︸

=−1

dϕ=− a3

2
p

2
2π=−a3πp

2
.

2.15 Some common misconceptions

2.15.1 Confusion between component representation and “the real

thing”

Given a particular basis, a tensor is uniquely characterized by its compo-

nents. However, without reference to a particular basis, any components

are just blurbs.

Example (wrong!): a type-1 tensor (i.e., a vector) is given by (1,2).

Correct: with respect to the basis {(0,1), (1,0)}, a rank-1 tensor (i.e., a

vector) is given by (1,2).

2.15.2 A matrix is a tensor

See the above section. Example (wrong!): A matrix is a tensor of type

(or rank) 2. Correct: with respect to the basis {(0,1), (1,0)}, a matrix

represents a type-2 tensor. The matrix components are the tensor com-

ponents.

Also, for non-orthogonal bases, covariant, contravariant, and mixed

tensors correspond to different matrices.

c



3
Projective and incidence geometry

P RO J E C T I V E G E O M E T RY is about the geometric properties that are invari-

ant under projective transformations. Incidence geometry is about which

points lie on which line.

3.1 Notation

In what follows, for the sake of being able to formally represent geometric

transformations as “quasi-linear” transformations and matrices, the

coordinates of n-dimensional Euclidean space will be augmented with

one additional coordinate which is set to one. For instance, in the plane

R2, we define new “three-componen” coordinates by

x =
(

x1

x2

)
≡

 x1

x2

1

= X. (3.1)

In order to differentiate these new coordinates X from the usual ones x,

they will be written in capital letters.

3.2 Affine transformations

Affine transformations

f (x) =Ax+ t (3.2)

with the translation t, and encoded by a touple (t1, t2)T , and an arbitrary

linear transformation A encoding rotations, as well as dilatation and

skewing transformations and represented by an arbitrary matrix A, can

be “wrapped together” to form the new transformation matrix (“0T ”

indicates a row matrix with entries zero)

f=
(

A t

0T 1

)
≡

 a11 a12 t1

a21 a22 t2

0 0 1

 . (3.3)

As a result, the affine transformation f can be represented in the “quasi-

linear” form

f(X) = fX =
(

A t

0T 1

)
X. (3.4)
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3.2.1 One-dimensional case

In one dimension, that is, for z ∈C, among the five basic operatios

(i) scaling: f(z) = r z for r ∈R,

(ii) translation: f(z) = z+w for w ∈C,

(iii) rotation: f(z) = e iϕz for ϕ ∈R,

(iv) complex conjugation: f(z) = z,

(v) inversion: f(z) = z−1,

there are three types of affine transformations (i)–(iii) which can be

combined.

3.3 Similarity transformations

Similarity transformations involve translations t, rotations R and a dilata-

tion r and can be represented by the matrix

(
r R t

0T 1

)
≡

 m cosϕ −m sinϕ t1

m sinϕ m cosϕ t2

0 0 1

 . (3.5)

3.4 Fundamental theorem of affine geometry
For a proof and further references, see

June A. Lester. Distance preserving
transformations. In Francis Buekenhout,
editor, Handbook of Incidence Geometry,
pages 921–944. Elsevier, Amsterdam, 1995

Any bijection from Rn , n ≥ 2, onto itself which maps all lines onto lines is

an affine transformation.

3.5 Alexandrov’s theorem
For a proof and further references, see

June A. Lester. Distance preserving
transformations. In Francis Buekenhout,
editor, Handbook of Incidence Geometry,
pages 921–944. Elsevier, Amsterdam, 1995

Consider the Minkowski space-timeMn ; that is, Rn , n ≥ 3, and the

Minkowski metric [cf. (2.54) on page 75] η ≡ {ηi j } = diag(1,1, . . . ,1︸ ︷︷ ︸
n−1 times

,−1).

Consider further bijections f fromMn onto itself preserving light cones;

that is for all x,y ∈Mn ,

ηi j (xi − y i )(x j − y j ) = 0 if and only if ηi j (fi (x)− fi (y))(f j (x)− f j (y)) = 0.

Then f(x) is the product of a Lorentz transformation and a positive scale

factor.

b



4
Group theory

G RO U P T H E O RY is about transformations and symmetries.

4.1 Definition

A group is a set of objects G which satify the following conditions (or,

stated differently, axioms):

(i) closedness: There exists a composition rule “◦” such that G is closed

under any composition of elements; that is, the combination of any

two elements a,b ∈G results in an element of the group G.

(ii) associativity: for all a, b, and c in G, the following equality holds:

a ◦ (b ◦ c) = (a ◦b)◦ c;

(iii) identity (element): there exists an element of G, called the identity

(element) and denoted by I , such that for all a in G, a ◦ I = a.

(iv) inverse (element): for every a in G, there exists an element a−1 in G,

such that a−1 ◦a = I .

(v) (optional) commutativity: if, for all a and b in G, the following equal-

ities hold: a ◦ b = b ◦ a, then the group G is called Abelian (group);

otherwise it is called non-Abelian (group).

A subgroup of a group is a subset which also satisfies the above ax-

ioms.

The order of a group is the number og distinct emements of that

group.

In discussing groups one should keep in mind that there are two

abstract spaces involved:

(i) Representation space is the space of elements on which the group

elements – that is, the group transformations – act.

(ii) Group space is the space of elements of the group transformations.

Its dimension is the number of independent transformations which

the group is composed of. These independent elements – also called
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the generators of the group – form a basis for all group elements. The

coordinates in this space are defined relative (in terms of) the (basis

elements, also called) generators. A continuous group can geomet-

rically be imagined as a linear space (e.g., a linear vector or matrix

space) continuous group linear space in which every point in this

linear space is an element of the group.

Suppose we can find a structure- and distiction-preserving mapping

U – that is, an injective mapping preserving the group operation ◦ –

between elements of a group G and the groups of general either real or

complex non-singular matrices GL(n,R) or GL(n,C), respectively. Then

this mapping is called a representation of the group G. In particular, for

this U :G 7→ GL(n,R) or U :G 7→ GL(n,C),

U (a ◦b) =U (a) ·U (b), (4.1)

for all a,b, a ◦b ∈G.

Consider, for the sake of an example, the Pauli spin matrices which are

proportional to the angular momentum operators along the x, y , z-axis 1: 1 Leonard I. Schiff. Quantum Mechanics.
McGraw-Hill, New York, 1955

σ1 =σx =
(

0 1

1 0

)
,

σ2 =σy =
(

0 −i

i 0

)
,

σ3 =σz =
(

1 0

0 −1

)
.

(4.2)

Suppose these matrices σ1,σ2,σ3 serve as generators of a group. With

respect to this basis system of matrices {σ1,σ2,σ3} a general point in

group in group space might be labelled by a three-dimensional vector

with the coordinates (x1, x2, x3) (relative to the basis {σ1,σ2,σ3}); that is,

x = x1σ1 +x2σ2 +x3σ3. (4.3)

If we form the exponential A(x) = e
i
2 x, we can show (no proof is given

here) that A(x) is a two-dimensional matrix representation of the group

SU(2), the special unitary group of degree 2 of 2×2 unitary matrices with

determinant 1.

4.2 Lie theory

4.2.1 Generators

We can generalize this examply by defining the generators of a continu-

ous group as the first coefficient of a Taylor expansion around unity; that

is, if the dimension of the group is n, and the Taylor expansion is

G(X) =
n∑

i=1
Xi Ti + . . . , (4.4)

then the matrix generator Ti is defined by

Ti = ∂G(X)

∂Xi

∣∣∣∣
X=0

. (4.5)
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4.2.2 Exponential map

There is an exponential connection exp : X 7→ G between a matrix Lie

group and the Lie algebra X generated by the generators Ti .

4.2.3 Lie algebra

A Lie algebra is a vector space X, together with a binary Lie bracket opera-

tion [·, ·] :X×X 7→X satisfying

(i) bilinearity;

(ii) antisymmetry: [X ,Y ] =−[Y , X ], in particular [X , X ] = 0;

(iii) the Jacobi identity: [X , [Y , Z ]]+ [Z , [X ,Y ]]+ [Y , [Z , X ]] = 0

for all X ,Y , Z ∈X.

4.3 Some important groups

4.3.1 General linear group GL(n,C)

The general linear group GL(n,C) contains all non-singular (i.e., invert-

ible; there exist an inverse) n ×n matrices with complex entries. The

composition rule “◦” is identified with matrix multiplication (which is

associative); the neutral element is the unit matrix In = diag(1, . . . ,1︸ ︷︷ ︸
n times

).

4.3.2 Orthogonal group O(n)

The orthogonal group O(n) 2 contains all orthogonal [i.e., A−1 = AT ] 2 F. D. Murnaghan. The Unitary and Rota-
tion Groups. Spartan Books, Washington,
D.C., 1962

n ×n matrices. The composition rule “◦” is identified with matrix mul-

tiplication (which is associative); the neutral element is the unit matrix

In = diag(1, . . . ,1︸ ︷︷ ︸
n times

).

Because of orthogonality, only half of the off-diagonal entries are

independent of one another; also the diagonal elements must be real;

that leaves us with the liberty of dimension n(n+1)/2: (n2−n)/2 complex

numbers from the off-diagonal elements, plus n reals from the diagonal.

4.3.3 Rotation group SO(n)

The special orthogonal group or, by another name, the rotation group

SO(n) contains all orthogonal n ×n matrices with unit determinant.

SO(n) is a subgroup of O(n)

The rotation group in two-dimensional configuration space SO(2)

corresponds to planar rotations around the origin. It has dimension 1

corresponding to one parameter θ. Its elements can be written as

R(θ) =
(

cosθ sinθ

−sinθ cosθ

)
. (4.6)
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4.3.4 Unitary group U(n)

The unitary group U(n) 3 contains all unitary [i.e., A−1 = A† = (A)T ] 3 F. D. Murnaghan. The Unitary and Rota-
tion Groups. Spartan Books, Washington,
D.C., 1962

n ×n matrices. The composition rule “◦” is identified with matrix mul-

tiplication (which is associative); the neutral element is the unit matrix

In = diag(1, . . . ,1︸ ︷︷ ︸
n times

).

Because of unitarity, only half of the off-diagonal entries are indepen-

dent of one another; also the diagonal elements must be real; that leaves

us with the liberty of dimension n2: (n2 −n)/2 complex numbers from

the off-diagonal elements, plus n reals from the diagonal yield n2 real

parameters.

Not that, for instance, U(1) is the set of complex numbers z = e iθ of

unit modulus |z|2 = 1. It forms an Abelian group.

4.3.5 Special unitary group SU(n)

The special unitary group SU(n) contains all unitary n ×n matrices with

unit determinant. SU(n) is a subgroup of U(n).

4.3.6 Symmetric group S(n)

The symmetric group S(n) on a finite set of n elements (or symbols) is The symmetric group should not be
confused with a symmetry group.the group whose elements are all the permutations of the n elements,

and whose group operation is the composition of such permutations.

The identity is the identity permutation. The permutations are bijective

functions from the set of elements onto itself. The order (number of

elements) of S(n) is n!. Generalizing these groups to an infinite number

of elements S∞ is straightforward.

4.3.7 Poincaré group

The Poincaré group is the group of isometries – that is, bijective maps

preserving distances – in space-time modelled by R4 endowed with a

scalar product and thus of a norm induced by the Minkowski metric

η≡ {ηi j } = diag(1,1,1,−1) introduced in (2.54).

It has dimension ten (4+ 3+ 3 = 10), associated with the ten funda-

mental (distance preserving) operations from which general isometries

can be composed: (i) translation through time and any of the three di-

mensions of space (1+3 = 4), (ii) rotation (by a fixed angle) around any of

the three spatial axes (3), and a (Lorentz) boost, increasing the velocity in

any of the three spatial directions of two uniformly moving bodies (3).

The rotations and Lorentz boosts form the Lorentz group.

4.4 Cayley’s representation theorem

Cayley’s theorem states that every group G can be imbedded as – equiv-

alently, is isomorphic to – a subgroup of the symmetric group; that is, it

is a imorphic with some permutation group. In particular, every finite

group G of order n can be imbedded as – equivalently, is isomorphic to –

a subgroup of the symmetric group S(n).
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Stated pointedly: permutations exhaust the possible structures of

(finite) groups. The study of subgroups of the symmetric groups is no less

general than the study of all groups. No proof is given here. For a proof, see

Joseph J. Rotman. An Introduction to the
Theory of Groups, volume 148 of Graduate
texts in mathematics. Springer, New York,
fourth edition, 1995. ISBN 0387942858

]





Part II
Functional analysis





5
Brief review of complex analysis

Is it not amazing that complex numbers 1 can be used for physics? Robert 1 Edmund Hlawka. Zum Zahlbegriff.
Philosophia Naturalis, 19:413–470, 1982Musil (a mathematician educated in Vienna), in “Verwirrungen des

Zögling Törleß” , expressed the amazement of a youngster confronted German original
(http://www.gutenberg.org/ebooks/34717):
“In solch einer Rechnung sind am Anfang
ganz solide Zahlen, die Meter oder
Gewichte, oder irgend etwas anderes
Greifbares darstellen können und
wenigstens wirkliche Zahlen sind. Am
Ende der Rechnung stehen ebensolche.
Aber diese beiden hängen miteinander
durch etwas zusammen, das es gar nicht
gibt. Ist das nicht wie eine Brücke, von der
nur Anfangs- und Endpfeiler vorhanden
sind und die man dennoch so sicher
überschreitet, als ob sie ganz dastünde?
Für mich hat so eine Rechnung etwas
Schwindliges; als ob es ein Stück des Weges
weiß Gott wohin ginge. Das eigentlich
Unheimliche ist mir aber die Kraft, die
in solch einer Rechnung steckt und einen
so festhalt, daß man doch wieder richtig
landet.”

with the applicability of imaginaries, states that, at the beginning of

any computation involving imaginary numbers are “solid” numbers

which could represent something measurable, like lengths or weights,

or something else tangible; or are at least real numbers. At the end of

the computation there are also such “solid” numbers. But the beginning

and the end of the computation are connected by something seemingly

nonexisting. Does this not appear, Musil’s Zögling Törleß wonders, like a

bridge crossing an abyss with only a bridge pier at the very beginning and

one at the very end, which could nevertheless be crossed with certainty

and securely, as if this bridge would exist entirely?

In what follows, a very brief review of complex analysis, or, by another

term, function theory, will be presented. For much more detailed intro-

ductions to complex analysis, including proofs, take, for instance, the

“classical” books 2, among a zillion of other very good ones 3. We shall
2 Eberhard Freitag and Rolf Busam. Funk-
tionentheorie 1. Springer, Berlin, Heidel-
berg, fourth edition, 1993,1995,2000,2006.
English translation in ; E. T. Whittaker
and G. N. Watson. A Course of Mod-
ern Analysis. Cambridge University
Press, Cambridge, 4th edition, 1927.
URL http://archive.org/details/

ACourseOfModernAnalysis. Reprinted
in 1996. Table errata: Math. Comp. v. 36
(1981), no. 153, p. 319; Robert E. Greene
and Stephen G. Krantz. Function theory of
one complex variable, volume 40 of Grad-
uate Studies in Mathematics. American
Mathematical Society, Providence, Rhode
Island, third edition, 2006; Einar Hille.
Analytic Function Theory. Ginn, New
York, 1962. 2 Volumes; and Lars V. Ahlfors.
Complex Analysis: An Introduction of
the Theory of Analytic Functions of One
Complex Variable. McGraw-Hill Book Co.,
New York, third edition, 1978

Eberhard Freitag and Rolf Busam.
Complex Analysis. Springer, Berlin,
Heidelberg, 2005
3 Klaus Jänich. Funktionentheorie.
Eine Einführung. Springer, Berlin,
Heidelberg, sixth edition, 2008. D O I :
10.1007/978-3-540-35015-6. URL
10.1007/978-3-540-35015-6;
and Dietmar A. Salamon. Funk-
tionentheorie. Birkhäuser, Basel,
2012. D O I : 10.1007/978-3-0348-0169-
0. URL http://dx.doi.org/10.

1007/978-3-0348-0169-0. see also
URL http://www.math.ethz.ch/ sala-
mon/PREPRINTS/cxana.pdf

study complex analysis not only for its beauty, but also because it yields

very important analytical methods and tools; for instance for the solu-

tion of (differential) equations and the computation of definite integrals.

These methods will then be required for the computation of distributions

and Green’s functions, as well for the solution of differential equations of

mathematical physics – such as the Schrödinger equation.

One motivation for introducing imaginary numbers is the (if you

perceive it that way) “malady” that not every polynomial such as P (x) =
x2 + 1 has a root x – and thus not every (polynomial) equation P (x) =
x2 +1 = 0 has a solution x – which is a real number. Indeed, you need the

imaginary unit i 2 =−1 for a factorization P (x) = (x + i )(x − i ) yielding the

two roots ±i to achieve this. In that way, the introduction of imaginary

numbers is a further step towards omni-solvability. No wonder that

the fundamental theorem of algebra, stating that every non-constant

polynomial with complex coefficients has at least one complex root – and

thus total factorizability of polynomials into linear factors, follows!

If not mentioned otherwise, it is assumed that the Riemann surface,

representing a “deformed version” of the complex plane for functional

http://archive.org/details/ACourseOfModernAnalysis
http://archive.org/details/ACourseOfModernAnalysis
10.1007/978-3-540-35015-6
http://dx.doi.org/10.1007/978-3-0348-0169-0
http://dx.doi.org/10.1007/978-3-0348-0169-0
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purposes, is simply connected. Simple connectedness means that the

Riemann surface it is path-connected so that every path between two

points can be continuously transformed, staying within the domain, into

any other path while preserving the two endpoints between the paths. In

particular, suppose that there are no “holes” in the Riemann surface; it is

not “punctured.”

Furthermore, let i be the imaginary unit with the property that i 2 =
−1 is the solution of the equation x2 + 1 = 0. With the introduction of

imaginary numbers we can guarantee that all quadratic equations have

two roots (i.e., solutions).

By combining imaginary and real numbers, any complex number can

be defined to be some linear combination of the real unit number “1”

with the imaginary unit number i that is, z = 1× (ℜz)+ i × (ℑz), with

the real valued factors (ℜz) and (ℑz), respectively. By this definition, a

complex number z can be decomposed into real numbers x, y , r and ϕ

such that

z
def= ℜz + iℑz = x + i y = r e iϕ, (5.1)

with x = r cosϕ and y = r sinϕ, where Euler’s formula

e iϕ = cosϕ+ i sinϕ (5.2)

has been used. If z = ℜz we call z a real number. If z = iℑz we call z a

purely imaginary number.

The modulus or absolute value of a complex number z is defined by

|z| def= +
√

(ℜz)2 + (ℑz)2. (5.3)

Many rules of classical arithmetic can be carried over to complex

arithmetic 4. Note, however, that, for instance,
p

a
p

b =p
ab is only valid 4 Tom M. Apostol. Mathematical Analysis:

A Modern Approach to Advanced Calculus.
Addison-Wesley Series in Mathematics.
Addison-Wesley, Reading, MA, second
edition, 1974. ISBN 0-201-00288-4; and
Eberhard Freitag and Rolf Busam. Funk-
tionentheorie 1. Springer, Berlin, Heidel-
berg, fourth edition, 1993,1995,2000,2006.
English translation in

Eberhard Freitag and Rolf Busam.
Complex Analysis. Springer, Berlin,
Heidelberg, 2005

if at least one factor a or b is positive; hence −1 = i 2 =p
i
p

i =p−1
p−1 6=√

(−1)2 = 1. More generally, for two arbitrary numbers, u and v ,
p

u
p

v is

not always equal to
p

uv .

Nevertheless,
p|u|p|v | =p|uv |.

For many mathematicians Euler’s identity

e iπ =−1, or e iπ+1 = 0, (5.4)

is the “most beautiful” theorem 5.

5 David Wells. Which is the most beauti-
ful? The Mathematical Intelligencer, 10:
30–31, 1988. ISSN 0343-6993. D O I :
10.1007/BF03023741. URL http:

//dx.doi.org/10.1007/BF03023741

Euler’s formula (5.2) can be used to derive de Moivre’s formula for

integer n (for non-integer n the formula is multi-valued for different

arguments ϕ):

e i nϕ = (cosϕ+ i sinϕ)n = cos(nϕ)+ i sin(nϕ). (5.5)

It is quite suggestive to consider the complex numbers z, which are

linear combinations of the real and the imaginary unit, in the complex

plane C = R×R as a geometric representation of complex numbers.

Thereby, the real and the imaginary unit are identified with the (or-

thonormal) basis vectors of the standard (Cartesian) basis; that is, with

the tuples

1 ≡ (1,0),

i ≡ (0,1).
(5.6)

http://dx.doi.org/10.1007/BF03023741
http://dx.doi.org/10.1007/BF03023741
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The addition and multiplication of two complex numbers represented by

(x, y) and (u, v) with x, y ,u, v ∈R are then defined by

(x, y)+ (u, v) = (x +u, y + v),

(x, y) · (u, v) = (xu − y v , xv + yu),
(5.7)

and the neutral elements for addition and multiplication are (0,0) and

(1,0), respectively.

We shall also consider the extended plane C=C∪ {∞} consisting of the

entire complex plane C together with the point “∞” representing infinity.

Thereby, ∞ is introduced as an ideal element, completing the one-to-one

(bijective) mapping w = 1
z , which otherwise would have no image at

z = 0, and no pre-image (argument) at w = 0.

5.1 Differentiable, holomorphic (analytic) function

Consider the function f (z) on the domain G ⊂ Domain( f ).

f is called differentiable at the point z0 if the differential quotient

d f

d z

∣∣∣∣
z0

= f ′(z)
∣∣

z0
= ∂ f

∂x

∣∣∣∣
z0

= 1

i

∂ f

∂y

∣∣∣∣
z0

(5.8)

exists.

If f is differentiable in the domain G it is called holomorphic, or, used

synonymuously, analytic in the domain G .

5.2 Cauchy-Riemann equations

The function f (z) = u(z)+ i v(z) (where u and v are real valued functions)

is analytic or holomorph if and only if (ab = ∂a/∂b)

ux = vy , uy =−vx . (5.9)

For a proof, differentiate along the real, and then along the complex axis,

taking

f ′(z) = lim
x→0

f (z +x)− f (z)

x
= ∂ f

∂x
= ∂u

∂x
+ i

∂v

∂x
,

and f ′(z) = lim
y→0

f (z + i y)− f (z)

i y
= ∂ f

∂i y
=−i

∂ f

∂y
=−i

∂u

∂y
+ ∂v

∂y
.

(5.10)

For f to be analytic, both partial derivatives have to be identical, and

thus ∂ f
∂x = ∂ f

∂i y , or

∂u

∂x
+ i

∂v

∂x
=−i

∂u

∂y
+ ∂v

∂y
. (5.11)

By comparing the real and imaginary parts of this equation, one obtains

the two real Cauchy-Riemann equations

∂u

∂x
= ∂v

∂y
,

∂v

∂x
=−∂u

∂y
.

(5.12)
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5.3 Definition analytical function

If f is analytic in G , all derivatives of f exist, and all mixed derivatives are

independent on the order of differentiations. Then the Cauchy-Riemann

equations imply that

∂

∂x

(
∂u

∂x

)
= ∂

∂x

(
∂v

∂y

)
= ∂

∂y

(
∂v

∂x

)
=− ∂

∂y

(
∂u

∂y

)
,

and
∂

∂y

(
∂v

∂y

)
= ∂

∂y

(
∂u

∂x

)
= ∂

∂x

(
∂u

∂y

)
=− ∂

∂x

(
∂v

∂x

)
,

(5.13)

and thus (
∂2

∂x2 + ∂2

∂y2

)
u = 0, and

(
∂2

∂x2 + ∂2

∂y2

)
v = 0 . (5.14)

If f = u + i v is analytic in G , then the lines of constant u and v are

orthogonal.

The tangential vectors of the lines of constant u and v in the two-

dimensional complex plane are defined by the two-dimensional nabla

operator ∇u(x, y) and ∇v(x, y). Since, by the Cauchy-Riemann equations

ux = vy and uy =−vx

∇u(x, y) ·∇v(x, y) =
(

ux

uy

)
·
(

vx

vy

)
= ux vx +uy vy = ux vx + (−vx )ux = 0

(5.15)

these tangential vectors are normal.

f is angle (shape) preserving conformal if and only if it is holomorphic

and its derivative is everywhere non-zero.

Consider an analytic function f and an arbitrary path C in the com-

plex plane of the arguments parameterized by z(t ), t ∈ R. The image of C

associated with f is f (C ) =C ′ : f (z(t )), t ∈R.

The tangent vector of C ′ in t = 0 and z0 = z(0) is

d

d t
f (z(t ))

∣∣∣∣
t=0

= d

d z
f (z)

∣∣∣∣
z0

d

d t
z(t )

∣∣∣∣
t=0

=λ0e iϕ0
d

d t
z(t )

∣∣∣∣
t=0

. (5.16)

Note that the first term d
d z f (z)

∣∣∣
z0

is independent of the curve C and only

depends on z0. Therefore, it can be written as a product of a squeeze

(stretch) λ0 and a rotation e iϕ0 . This is independent of the curve; hence

two curves C1 and C2 passing through z0 yield the same transformation

of the image λ0e iϕ0 .

5.4 Cauchy’s integral theorem

If f is analytic on G and on its borders ∂G , then any closed line integral of

f vanishes ∮
∂G

f (z)d z = 0 . (5.17)

No proof is given here.

In particular,
∮

C⊂∂G f (z)d z is independent of the particular curve, and

only depends on the initial and the end points.

For a proof, subtract two line integral which follow arbitrary paths

C1 and C2 to a common initial and end point, and which have the same
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integral kernel. Then reverse the integration direction of one of the line

integrals. According to Cauchy’s integral theorem the resulting integral

over the closed loop has to vanish.

Often it is useful to parameterize a contour integral by some form of

∫
C

f (z)d z =
∫ b

a
f (z(t ))

d z(t )

d t
d t . (5.18)

Let f (z) = 1/z and C : z(ϕ) = Re iϕ, with R > 0 and −π<ϕ≤π. Then

∮
|z|=R

f (z)d z =
∫ π

−π
f (z(ϕ))

d z(ϕ)

dϕ
dϕ

=
∫ π

−π
1

Re iϕ
R i e iϕdϕ

=
∫ π

−π
iϕ

= 2πi

(5.19)

is independent of R.

5.5 Cauchy’s integral formula

If f is analytic on G and on its borders ∂G , then

f (z0) = 1

2πi

∮
∂G

f (z)

z − z0
d z . (5.20)

No proof is given here.

Note that because of Cauchy’s integral formula, analytic functions

have an integral representation. This might appear as not very exciting;

alas it has far-reaching consequences, because analytic functions have

integral representation, they have higher derivatives, which also have

integral representation. And, as a result, if a function has one complex

derivative, then it has infnitely many complex derivatives. This statement

can be expressed formally precisely by the generalized Cauchy’s integral

formula or, by another term, Cauchy’s differentiation formula states that

if f is analytic on G and on its borders ∂G , then

f (n)(z0) = n!
2πi

∮
∂G

f (z)

(z − z0)n+1 d z . (5.21)

No proof is given here.

Cauchy’s integral formula presents a powerful method to compute

integrals. Consider the following examples.

(i) First, let us calculate ∮
|z|=3

3z +2

z(z +1)3 d z.

The kernel has two poles at z = 0 and z =−1 which are both inside the

domain of the contour defined by |z| = 3. By using Cauchy’s integral
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formula we obtain for “small” ε ∮
|z|=3

3z +2

z(z +1)3 d z

=
∮
|z|=ε

3z +2

z(z +1)3 d z +
∮
|z+1|=ε

3z +2

z(z +1)3 d z

=
∮
|z|=ε

3z +2

(z +1)3

1

z
d z +

∮
|z+1|=ε

3z +2

z

1

(z +1)3 d z

= 2πi

0!
[[

d 0

d z0 ]]
3z +2

(z +1)3

∣∣∣∣
z=0

+ 2πi

2!
d 2

d z2

3z +2

z

∣∣∣∣
z=−1

= 2πi

0!
3z +2

(z +1)3

∣∣∣∣
z=0

+ 2πi

2!
d 2

d z2

3z +2

z

∣∣∣∣
z=−1

= 4πi −4πi

= 0.

(5.22)

(ii) Consider ∮
|z|=3

e2z

(z +1)4 d z

= 2πi

3!
3!

2πi

∮
|z|=3

e2z

(z − (−1))3+1 d z

= 2πi

3!
d 3

d z3

∣∣e2z ∣∣
z=−1

= 2πi

3!
23 ∣∣e2z ∣∣

z=−1

= 8πi e−2

3
.

(5.23)

Suppose g (z) is a function with a pole of order n at the point z0; that is

g (z) = f (z)

(z − z0)n (5.24)

where f (z) is an analytic function. Then,∮
∂G

g (z)d z = 2πi

(n −1)!
f (n−1)(z0) . (5.25)

5.6 Series representation of complex differentiable functions

As a consequence of Cauchy’s (generalized) integral formula, analytic

functions have power series representations.

For the sake of a proof, we shall recast the denominator z − z0 in

Cauchy’s integral formula (5.20) as a geometric series as follows (we shall

assume that |z0 −a| < |z −a|)
1

z − z0
= 1

(z −a)− (z0 −a)

= 1

(z −a)

[
1

1− z0−a
z−a

]

= 1

(z −a)

[ ∞∑
n=0

(z0 −a)n

(z −a)n

]
=

∞∑
n=0

(z0 −a)n

(z −a)n+1 .

(5.26)
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By substituting this in Cauchy’s integral formula (5.20) and using

Cauchy’s generalized integral formula (5.21) yields an expansion of the

analytical function f around z0 by a power series

f (z0) = 1

2πi

∮
∂G

f (z)

z − z0
d z

= 1

2πi

∮
∂G

f (z)
∞∑

n=0

(z0 −a)n

(z −a)n+1 d z

=
∞∑

n=0
(z0 −a)n 1

2πi

∮
∂G

f (z)

(z −a)n+1 d z

=
∞∑

n=0

f n(z0)

n!
(z0 −a)n .

(5.27)

5.7 Laurent series

Every function f which is analytic in a concentric region R1 < |z − z0| < R2

can in this region be uniquely written as a Laurent series

f (z) =
∞∑

k=−∞
(z − z0)k ak (5.28)

The coefficients ak are (the closed contour C must be in the concentric

region)

ak = 1

2πi

∮
C

(χ− z0)−k−1 f (χ)dχ . (5.29)

The coefficient

Res( f (z0)) = a−1 = 1

2πi

∮
C

f (χ)dχ (5.30)

is called the residue, denoted by “Res.”

For a proof, as in Eqs. (5.26) we shall recast (a −b)−1 for |a| > |b| as a

geometric series

1

a −b
= 1

a

(
1

1− b
a

)
== 1

a

( ∞∑
n=0

bn

an

)
=

∞∑
n=0

bn

an+1

[substitution n +1 →−k, n →−k −1k →−n −1] =
−∞∑

k=−1

ak

bk+1
,

(5.31)

and, for |a| < |b|,
1

a −b
=− 1

b −a
=−

∞∑
n=0

an

bn+1

[substitution n +1 →−k, n →−k −1k →−n −1] =−
−∞∑

k=−1

bk

ak+1
.

(5.32)

Furthermore since a +b = a − (−b), we obtain, for |a| > |b|,
1

a +b
=

∞∑
n=0

(−1)n bn

an+1 =
−∞∑

k=−1
(−1)−k−1 ak

bk+1
=−

−∞∑
k=−1

(−1)k ak

bk+1
, (5.33)

and, for |a| < |b|,
1

a +b
=−

∞∑
n=0

(−1)n+1 an

bn+1 =
∞∑

n=0
(−1)n an

bn+1

=
−∞∑

k=−1
(−1)−k−1 bk

ak+1
=−

−∞∑
k=−1

(−1)k bk

ak+1
.

(5.34)



112 Mathematical Methods of Theoretical Physics

Suppose that some function f (z) is analytic in an annulus bounded by

the radius r1 and r2 > r1. By substituting this in Cauchy’s integral formula

(5.20) for an annulus bounded by the radius r1 and r2 > r1 (note that the

orientations of the boundaries with respect to the annulus are opposite,

rendering a relative factor “−1”) and using Cauchy’s generalized integral

formula (5.21) yields an expansion of the analytical function f around

z0 by the Laurent series for a point a on the annulus; that is, for a path

containing the point z around a circle with radius r1, |z − a| < |z0 − a|;
likewise, for a path containing the point z around a circle with radius

r2 > a > r1, |z −a| > |z0 −a|,

f (z0) = 1

2πi

∮
r1

f (z)

z − z0
d z − 1

2πi

∮
r2

f (z)

z − z0
d z

= 1

2πi

[∮
r1

f (z)
∞∑

n=0

(z0 −a)n

(z −a)n+1 d z +
∮

r2

f (z)
−∞∑

n=−1

(z0 −a)n

(z −a)n+1 d z

]
= 1

2πi

[ ∞∑
n=0

(z0 −a)n
∮

r1

f (z)

(z −a)n+1 d z +
−∞∑

n=−1
(z0 −a)n

∮
r2

f (z)

(z −a)n+1 d z

]
=

∞∑
−∞

(z0 −a)n
[

1

2πi

∮
r1≤r≤r2

f (z)

(z −a)n+1 d z

]
.

(5.35)

Suppose that g (z) is a function with a pole of order n at the point z0;

that is g (z) = h(z)/(z − z0)n , where h(z) is an analytic function. Then

the terms k ≤ −(n + 1) vanish in the Laurent series. This follows from

Cauchy’s integral formula

ak = 1

2πi

∮
c
(χ− z0)−k−n−1h(χ)dχ= 0 (5.36)

for −k −n −1 ≥ 0.

Note that, if f has a simple pole (pole of order 1) at z0, then it can be

rewritten into f (z) = g (z)/(z − z0) for some analytic function g (z) =
(z − z0) f (z) that remains after the singularity has been “split” from f .

Cauchy’s integral formula (5.20), and the residue can be rewritten as

a−1 = 1

2πi

∮
∂G

g (z)

z − z0
d z = g (z0). (5.37)

For poles of higher order, the generalized Cauchy integral formula (5.21)

can be used.

5.8 Residue theorem

Suppose f is analytic on a simply connected open subset G with the

exception of finitely many (or denumerably many) points zi . Then,∮
∂G

f (z)d z = 2πi
∑
zi

Res f (zi ) . (5.38)

No proof is given here.

The residue theorem presents a powerful tool for calculating integrals,

both real and complex. Let us first mention a rather general case of a

situation often used. Suppose we are interested in the integral

I =
∫ ∞

−∞
R(x)d x
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with rational kernel R; that is, R(x) = P (x)/Q(x), where P (x) and Q(x)

are polynomials (or can at least be bounded by a polynomial) with no

common root (and therefore factor). Suppose further that the degrees of

the polynomial is

degP (x) ≤ degQ(x)−2.

This condition is needed to assure that the additional upper or lower

path we want to add when completing the contour does not contribute;

that is, vanishes.

Now first let us analytically continue R(x) to the complex plane R(z);

that is,

I =
∫ ∞

−∞
R(x)d x =

∫ ∞

−∞
R(z)d z.

Next let us close the contour by adding a (vanishing) path integral∫
å

R(z)d z = 0

in the upper (lower) complex plane

I =
∫ ∞

−∞
R(z)d z +

∫
å

R(z)d z =
∮
→&å

R(z)d z.

The added integral vanishes because it can be approximated by∣∣∣∣∫å R(z)d z

∣∣∣∣≤ lim
r→∞

(
const.

r 2 πr

)
= 0.

With the contour closed the residue theorem can be applied for an

evaluation of I ; that is,

I = 2πi
∑
zi

ResR(zi )

for all singularities zi in the region enclosed by “→ & å. ”

Let us consider some examples.

(i) Consider

I =
∫ ∞

−∞
d x

x2 +1
.

The analytic continuation of the kernel and the addition with vanish-

ing a semicircle “far away” closing the integration path in the upper

complex half-plane of z yields

I =
∫ ∞

−∞
d x

x2 +1

=
∫ ∞

−∞
d z

z2 +1

=
∫ ∞

−∞
d z

z2 +1
+

∫
å

d z

z2 +1

=
∫ ∞

−∞
d z

(z + i )(z − i )
+

∫
å

d z

(z + i )(z − i )

=
∮

1

(z − i )
f (z)d z with f (z) = 1

(z + i )

= 2πi Res

(
1

(z + i )(z − i )

)∣∣∣∣
z=+i

= 2πi f (+i )

= 2πi
1

(2i )

=π.

(5.39)
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Here, Eq. (5.37) has been used. Closing the integration path in the

lower complex half-plane of z yields (note that in this case the contour

integral is negative because of the path orientation)

I =
∫ ∞

−∞
d x

x2 +1

=
∫ ∞

−∞
d z

z2 +1

=
∫ ∞

−∞
d z

z2 +1
+

∫
lower path

d z

z2 +1

=
∫ ∞

−∞
d z

(z + i )(z − i )
+

∫
lower path

d z

(z + i )(z − i )

=
∮

1

(z + i )
f (z)d z with f (z) = 1

(z − i )

=−2πi Res

(
1

(z + i )(z − i )

)∣∣∣∣
z=−i

=−2πi f (−i )

= 2πi
1

(2i )

=π.

(5.40)

(ii) Consider

F (p) =
∫ ∞

−∞
e i px

x2 +a2 d x

with a 6= 0.

The analytic continuation of the kernel yields

F (p) =
∫ ∞

−∞
e i pz

z2 +a2 d z =
∫ ∞

−∞
e i pz

(z − i a)(z + i a)
d z.

Suppose first that p > 0. Then, if z = x + i y , e i pz = e i px e−py → 0 for

z →∞ in the upper half plane. Hence, we can close the contour in the

upper half plane and obtain F (p) with the help of the residue theorem.

If a > 0 only the pole at z = +i a is enclosed in the contour; thus we

obtain

F (p) = 2πi Res
e i pz

(z + i a)

∣∣∣∣
z=+i a

= 2πi
e i 2pa

2i a

= π

a
e−pa .

(5.41)

If a < 0 only the pole at z = −i a is enclosed in the contour; thus we

obtain

F (p) = 2πi Res
e i pz

(z − i a)

∣∣∣∣
z=−i a

= 2πi
e−i 2pa

−2i a

= π

−a
e−i 2pa

= π

−a
epa .

(5.42)
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Hence, for a 6= 0,

F (p) = π

|a|e−|pa|. (5.43)

For p < 0 a very similar consideration, taking the lower path for con-

tinuation – and thus aquiring a minus sign because of the “clockwork”

orientation of the path as compared to its interior – yields

F (p) = π

|a|e−|pa|. (5.44)

(iii) If some function f (z) can be expanded into a Taylor series or Lau-

rent series, the residue can be directly obtained by the coefficient of

the 1
z term. For instance, let f (z) = e

1
z and C : z(ϕ) = Re iϕ, with R = 1

and −π < ϕ ≤ π. This function is singular only in the origin z = 0,

but this is an essential singularity near which the function exhibits

extreme behavior. Nevertheless, f (z) = e
1
z can be expanded into a

Laurent series

f (z) = e
1
z =

∞∑
l=0

1

l !

(
1

z

)l

around this singularity. The residue can be found by using the series

expansion of f (z); that is, by comparing its coefficient of the 1/z term.

Hence, Res
(
e

1
z

)∣∣∣
z=0

is the coefficient 1 of the 1/z term. Thus,∮
|z|=1

e
1
z d z = 2πi Res

(
e

1
z

)∣∣∣
z=0

= 2πi . (5.45)

For f (z) = e−
1
z , a similar argument yields Res

(
e−

1
z

)∣∣∣
z=0

=−1 and thus∮
|z|=1 e−

1
z d z =−2πi .

An alternative attempt to compute the residue, with z = e iϕ, yields

a−1 = Res
(
e±

1
z

)∣∣∣
z=0

= 1

2πi

∮
C

e±
1
z d z

= 1

2πi

∫ π

−π
e
± 1

eiϕ
d z(ϕ)

dϕ
dϕ

=± 1

2πi

∫ π

−π
e
± 1

eiϕ i e±iϕdϕ

=± 1

2π

∫ π

−π
e±e∓iϕ

e±iϕdϕ

=± 1

2π

∫ π

−π
e±e∓iϕ±iϕdϕ.

(5.46)

5.9 Multi-valued relationships, branch points and and

branch cuts

Suppose that the Riemann surface of is not simply connected.

Suppose further that f is a multi-valued function (or multifunction).

An argument z of the function f is called branch point if there is a closed

curve Cz around z whose image f (Cz ) is an open curve. That is, the

multifunction f is discontinuous in z. Intuitively speaking, branch points

are the points where the various sheets of a multifunction come together.

A branch cut is a curve (with ends possibly open, closed, or half-open)

in the complex plane across which an analytic multifunction is discontin-

uous. Branch cuts are often taken as lines.
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5.10 Riemann surface

Suppose f (z) is a multifunction. Then the various z-surfaces on which

f (z) is uniquely defined, together with their connections through branch

points and branch cuts, constitute the Riemann surface of f . The re-

quired leafs are called Riemann sheet.

A point z of the function f (z) is called a branch point of order n if

through it and through the associated cut(s) n + 1 Riemann sheets are

connected.

5.11 Some special functional classes

The requirement that a function is holomorphic (analytic, differentiable)

puts some stringent conditions on its type, form, and on its behaviour.

For instance, let z0 ∈ G the limit of a sequence {zn} ∈ G , zn 6= z0. Then

it can be shown that, if two analytic functions f und g on the domain G

coincide in the points zn , then they coincide on the entire domain G .

5.11.1 Entire function

An function is said to be an entire function if it is defined and differen-

tiable (holomorphic, analytic) in the entire finite complex plane C.

An entire function may be either a rational function f (z) = P (z)/Q(z)

which can be written as the ratio of two polynomial functions P (z) and

Q(z), or it may be a transcendental function such as ez or sin z.

The Weierstrass factorization theorem states that an entire function

can be represented by a (possibly infinite 6) product involving its zeroes 6 Theodore W. Gamelin. Complex Analysis.
Springer, New York, NY, 2001[i.e., the points zk at which the function vanishes f (zk ) = 0]. For example

(for a proof, see Eq. (6.2) of 7), 7 J. B. Conway. Functions of Complex
Variables. Volume I. Springer, New York,
NY, 1973

sin z = z
∞∏

k=1

[
1−

( z

πk

)2
]

. (5.47)

5.11.2 Liouville’s theorem for bounded entire function

Liouville’s theorem states that a bounded (i.e., its absolute square is finite

everywhere in C) entire function which is defined at infinity is a constant.

Conversely, a nonconstant entire function cannot be bounded. It may (wrongly) appear that sin z is
nonconstant and bounded. However it is
only bounded on the real axis; indeeed,
sin i y = (1/2)(e y +e−y ) →∞ for y →∞.

For a proof, consider the integral representation of the derivative f ′(z)

of some bounded entire function f (z) < C (suppose the bound is C )

obtained through Cauchy’s integral formula (5.21), taken along a circular

path with arbitrarily large radius r of length 2πr in the limit of infinite

radius; that is,

∣∣ f ′(z0)
∣∣= ∣∣∣∣ 1

2πi

∮
∂G

f (z)

(z − z0)2 d z

∣∣∣∣
< 1

2πi

∮
∂G

∣∣ f (z)
∣∣

(z − z0)2 d z < 1

2πi
2πr

C

r 2 = C

r
r→∞−→ 0.

(5.48)

As a result, f (z0) = 0 and thus f = A ∈C.

A generalized Liouville theorem states that if f : C→ C is an entire

function and if for some real number c and some positive integer k it
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holds that | f (z)| ≤ c|z|k for all z with |z| > 1, then f is a polynomial in z of

degree at most k.

No proof 8 is presented here. This theorem is needed for an investiga- 8 Robert E. Greene and Stephen G. Krantz.
Function theory of one complex variable,
volume 40 of Graduate Studies in Mathe-
matics. American Mathematical Society,
Providence, Rhode Island, third edition,
2006

tion into the general form of the Fuchsian differential equation on page

187.

5.11.3 Picard’s theorem

Picard’s theorem states that any entire function that misses two or more

points f : C 7→ C− {z1, z2, . . .} is constant. Conversely, any nonconstant

entire function covers the entire complex plane C except a single point.

An example for a nonconstant entire function is ez which never

reaches the point 0.

5.11.4 Meromorphic function

If f has no singularities other than poles in the domain G it is called

meromorphic in the domain G .

We state without proof (e.g., Theorem 8.5.1 of 9) that a function f 9 Einar Hille. Analytic Function Theory.
Ginn, New York, 1962. 2 Volumeswhich is meromorphic in the extended plane is a rational function f (z) =

P (z)/Q(z) which can be written as the ratio of two polynomial functions

P (z) and Q(z).

5.12 Fundamental theorem of algebra

The factor theorem states that a polynomial P (z) in z of degree k has a

factor z − z0 if and only if P (z0) = 0, and can thus be written as P (z) =
(z − z0)Q(z), where Q(z) is a polynomial in z of degree k −1. Hence, by

iteration,

P (z) =α
k∏

i=1
(z − zi ) , (5.49)

where α ∈C.

No proof is presented here.

The fundamental theorem of algebra states that every polynomial

(with arbitrary complex coefficients) has a root [i.e. solution of f (z) = 0]

in the complex plane. Therefore, by the factor theorem, the number of

roots of a polynomial, up to multiplicity, equals its degree.

Again, no proof is presented here. https://www.dpmms.cam.ac.uk/ wtg10/ftalg.html
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Brief review of Fourier transforms

6.0.1 Functional spaces

That complex continuous waveforms or functions are comprised

of a number of harmonics seems to be an idea at least as old as the

Pythagoreans. In physical terms, Fourier analysis 1 attempts to decom- 1 T. W. Körner. Fourier Analysis. Cam-
bridge University Press, Cambridge,
UK, 1988; Kenneth B. Howell. Princi-
ples of Fourier analysis. Chapman &
Hall/CRC, Boca Raton, London, New
York, Washington, D.C., 2001; and Russell
Herman. Introduction to Fourier and
Complex Analysis with Applications to
the Spectral Analysis of Signals. Uni-
versity of North Carolina Wilmington,
Wilmington, NC, 2010. URL http:

//people.uncw.edu/hermanr/mat367/

FCABook/Book2010/FTCA-book.pdf.
Creative Commons Attribution-
NoncommercialShare Alike 3.0 United
States License

pose a function into its constituent frequencies, known as a frequency

spectrum. Thereby the goal is the expansion of periodic and aperiodic

functions into sine and cosine functions. Fourier’s observation or con-

jecture is, informally speaking, that any “suitable” function f (x) can be

expressed as a possibly infinite sum (i.e. linear combination), of sines

and cosines of the form

f (x) =
∞∑

k=−∞
[Ak cos(C kx)+Bk sin(C kx)] . (6.1)

Moreover, it is conjectured that any “suitable” function f (x) can be

expressed as a possibly infinite sum (i.e. linear combination), of expo-

nentials; that is,

f (x) =
∞∑

k=−∞
Dk e i kx . (6.2)

More generally, it is conjectured that any “suitable” function f (x) can

be expressed as a possibly infinite sum (i.e. linear combination), of other

(possibly orthonormal) functions gk (x); that is,

f (x) =
∞∑

k=−∞
γk gk (x). (6.3)

The bigger picture can then be viewed in terms of functional (vector)

spaces: these are spanned by the elementary functions gk , which serve

as elements of a functional basis of a possibly infinite-dimensional vec-

tor space. Suppose, in further analogy to the set of all such functions

G = ⋃
k gk (x) to the (Cartesian) standard basis, we can consider these

elementary functions gk to be orthonormal in the sense of a generalized

functional scalar product [cf. also Section 11.5 on page 204; in particular

Eq. (11.89)]

〈gk | gl 〉 =
∫ b

a
gk (x)gl (x)d x = δkl . (6.4)

http://people.uncw.edu/hermanr/mat367/FCABook/Book2010/FTCA-book.pdf
http://people.uncw.edu/hermanr/mat367/FCABook/Book2010/FTCA-book.pdf
http://people.uncw.edu/hermanr/mat367/FCABook/Book2010/FTCA-book.pdf
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One could arrange the coefficients γk into a tuple (an ordered list of

elements) (γ1,γ2, . . .) and consider them as components or coordinates of

a vector with respect to the linear orthonormal functional basis G.

6.0.2 Fourier series

Suppose that a function f (x) is periodic in the interval [− L
2 , L

2 ] with pe-

riod L. (Alternatively, the function may be only defined in this interval.) A

function f (x) is periodic if there exist a period L ∈ R such that, for all x in

the domain of f ,

f (L+x) = f (x). (6.5)

Then, under certain “mild” conditions – that is, f must be piecewise

continuous and have only a finite number of maxima and minima – f

can be decomposed into a Fourier series

f (x) = a0
2 +∑∞

k=1

[
ak cos

( 2π
L kx

)+bk sin
( 2π

L kx
)]

, with

ak = 2
L

L
2∫

− L
2

f (x)cos
( 2π

L kx
)

d x for k ≥ 0

bk = 2
L

L
2∫

− L
2

f (x)sin
( 2π

L kx
)

d x for k > 0.

(6.6)

For proofs and additional information see
§8.1 in

Kenneth B. Howell. Principles of Fourier
analysis. Chapman & Hall/CRC, Boca
Raton, London, New York, Washington,
D.C., 2001

For a (heuristic) proof, consider the Fourier conjecture (6.1), and

compute the coefficients Ak , Bk , and C .

First, observe that we have assumed that f is periodic in the interval

[− L
2 , L

2 ] with period L. This should be reflected in the sine and cosine

terms of (6.1), which themselves are periodic functions in the interval

[−π,π] with period 2π. Thus in order to map the functional period of f

into the sines and cosines, we can “stretch/shrink” L into 2π; that is, C in

Eq. (6.1) is identified with

C = 2π

L
. (6.7)

Thus we obtain

f (x) =
∞∑

k=−∞

[
Ak cos(

2π

L
kx)+Bk sin(

2π

L
kx)

]
. (6.8)

Now use the following properties: (i) for k = 0, cos(0) = 1 and

sin(0) = 0. Thus, by comparing the coefficient a0 in (6.6) with A0 in (6.1)

we obtain A0 = a0
2 .

(ii) Since cos(x) = cos(−x) is an even function of x, we can rear-

range the summation by combining identical functions cos(− 2π
L kx) =

cos( 2π
L kx), thus obtaining ak = A−k + Ak for k > 0.

(iii) Since sin(x) = −sin(−x) is an odd function of x, we can rear-

range the summation by combining identical functions sin(− 2π
L kx) =

−sin( 2π
L kx), thus obtaining bk =−B−k +Bk for k > 0.

Having obtained the same form of the Fourier series of f (x) as ex-

posed in (6.6), we now turn to the derivation of the coefficients ak and

bk . a0 can be derived by just considering the functional scalar product

exposedin Eq. (6.4) of f (x) with the constant identity function g (x) = 1;
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that is,

〈g | f 〉 = ∫ L
2

− L
2

f (x)d x

= ∫ L
2

− L
2

{ a0
2 +∑∞

n=1

[
an cos

( nπx
L

)+bn sin
( nπx

L

)]}
d x

= a0
L
2 ,

(6.9)

and hence

a0 = 2

L

∫ L
2

− L
2

f (x)d x (6.10)

In a very similar manner, the other coefficients can be computed by

considering
〈

cos
( 2π

L kx
) | f (x)

〉 〈
sin

( 2π
L kx

) | f (x)
〉

and exploiting the

orthogonality relations for sines and cosines

∫ L
2

− L
2

sin
( 2π

L kx
)

cos
( 2π

L l x
)

d x = 0,∫ L
2

− L
2

cos
( 2π

L kx
)

cos
( 2π

L l x
)

d x = ∫ L
2

− L
2

sin
( 2π

L kx
)

sin
( 2π

L l x
)

d x = L
2δkl .

(6.11)

For the sake of an example, let us compute the Fourier series of

f (x) = |x| =
−x, for −π≤ x < 0,

+x, for 0 ≤ x ≤π.

First observe that L = 2π, and that f (x) = f (−x); that is, f is an even

function of x; hence bn = 0, and the coefficients an can be obtained by

considering only the integration between 0 and π.

For n = 0,

a0 = 1

π

π∫
−π

d x f (x) = 2

π

π∫
0

xd x =π.

For n > 0,

an = 1

π

π∫
−π

f (x)cos(nx)d x = 2

π

π∫
0

x cos(nx)d x =

= 2

π

 sin(nx)

n
x

∣∣∣∣π
0
−

π∫
0

sin(nx)

n
d x

= 2

π

cos(nx)

n2

∣∣∣∣π
0
=

= 2

π

cos(nπ)−1

n2 =− 4

πn2 sin2 nπ

2
=

 0 for even n

− 4

πn2 for odd n

Thus,

f (x) = π

2
− 4

π

(
cos x + cos3x

9
+ cos5x

25
+·· ·

)
=

= π

2
− 4

π

∞∑
n=0

cos[(2n +1)x]

(2n +1)2 .

One could arrange the coefficients (a0, a1,b1, a2,b2, . . .) into a tuple (an

ordered list of elements) and consider them as components or coordinats

of a vector spanned by the linear independent sine and cosine functions

which serve as a basis of an infinite dimensional vector space.
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6.0.3 Exponential Fourier series

Suppose again that a function is periodic in the interval [− L
2 , L

2 ] with

period L. Then, under certain “mild” conditions – that is, f must be

piecewise continuous and have only a finite number of maxima and

minima – f can be decomposed into an exponential Fourier series

f (x) =∑∞
k=−∞ ck e i kx , with

ck = 1
L

∫ L
2

− L
2

f (x ′)e−i kx ′
d x ′.

(6.12)

The expontial form of the Fourier series can be derived from the

Fourier series (6.6) by Euler’s formula (5.2), in particular, e i kϕ =
cos(kϕ)+ i sin(kϕ), and thus

cos(kϕ) = 1

2

(
e i kϕ+e−i kϕ

)
, as well as sin(kϕ) = 1

2i

(
e i kϕ−e−i kϕ

)
.

By comparing the coefficients of (6.6) with the coefficients of (6.12), we

obtain
ak = ck + c−k for k ≥ 0,

bk = i (ck − c−k ) for k > 0,
(6.13)

or

ck =


1
2 (ak − i bk ) for k > 0,
a0
2 for k = 0,

1
2 (a−k + i b−k ) for k < 0.

(6.14)

Eqs. (6.12) can be combined into

f (x) = 1

L

∞∑
ǩ=−∞

∫ L
2

− L
2

f (x ′)e−i ǩ(x′−x)d x ′. (6.15)

6.0.4 Fourier transformation

Suppose we define ∆k = 2π/L, or 1/L = ∆k/2π. Then Eq. (6.15) can be

rewritten as

f (x) = 1

2π

∞∑
k=−∞

∫ L
2

− L
2

f (x ′)e−i k(x ′−x)d x ′∆k. (6.16)

Now, in the “aperiodic” limit L →∞ we obtain the Fourier transformation

and the Fourier inversion F−1[F [ f (x)]] =F [F−1[ f (x)]] = f (x) by

f (x) = 1
2π

∫ ∞
−∞

∫ ∞
−∞ f (x ′)e−i k(x′−x)d x ′dk, whereby

F−1[ f̃ (k)] = f (x) =α∫ ∞
−∞ f̃ (k)e±i kx dk, and

F [ f (x)] = f̃ (k) =β∫ ∞
−∞ f (x ′)e∓i kx ′

d x ′.
(6.17)

F [ f (x)] = f̃ (k) is called the Fourier transform of f (x). Per convention,

either one of the two sign pairs +− or −+ must be chosen. The factors α

and β must be chosen such that

αβ= 1

2π
; (6.18)

that is, the factorization can be “spread evenly among α and β,” such that

α = β = 1/
p

2π, or “unevenly,” such as, for instance, α = 1 and β = 1/2π,

or α= 1/2π and β= 1.



Brief review of Fourier transforms 123

Most generally, the Fourier transformations can be rewritten (change

of integration constant), with arbitrary A,B ∈R, as

F−1[ f̃ (k)](x) = f (x) = B
∫ ∞
−∞ f̃ (k)e i Akx dk, and

F [ f (x)](k) = f̃ (k) = A
2πB

∫ ∞
−∞ f (x ′)e−i Akx′

d x ′.
(6.19)

The coice A = 2π and B = 1 renders a very symmetric form of (6.19);

more precisely,

F−1[ f̃ (k)](x) = f (x) = ∫ ∞
−∞ f̃ (k)e2πi kx dk, and

F [ f (x)](k) = f̃ (k) = ∫ ∞
−∞ f (x ′)e−2πi kx ′

d x ′.
(6.20)

For the sake of an example, assume A = 2π and B = 1 in Eq. (6.19),

therefore starting with (6.20), and consider the Fourier transform of the

Gaussian function

ϕ(x) = e−πx2
. (6.21)

As a hint, notice that e−t 2
is analytic in the region 0 ≤ Im t ≤p

πk; also, as

will be shown in Eqs. (7.18), the Gaussian integral is∫ ∞

−∞
e−t 2

d t =p
π . (6.22)

With A = 2π and B = 1 in Eq. (6.19), the Fourier transform of the Gaussian

function is

F [ϕ(x)](k) = ϕ̃(k) =
∞∫

−∞
e−πx2

e−2πi kx d x

[completing the exponent]

=
∞∫

−∞
e−πk2

e−π(x+i k)2
d x

(6.23)

The variable transformation t = p
π(x + i k) yields d t/d x = p

π; thus

d x = d t/
p
π, and

F [ϕ(x)](k) = ϕ̃(k) = e−πk2

p
π

+∞+i
p
πk∫

−∞+i
p
πk

e−t 2
d t (6.24)

-

6

C-

�
�

�
�

Im t

Re t

+i
p
πk

-

�
?6

Figure 6.1: Integration path to compute
the Fourier transform of the Gaussian.

Let us rewrite the integration (6.24) into the Gaussian integral by con-

sidering the closed path whose “left and right pieces vanish;” moreover,

∮
C

d te−t 2 =
−∞∫

+∞
e−t 2

d t +
+∞+i

p
πk∫

−∞+i
p
πk

e−t 2
d t = 0, (6.25)

because e−t 2
is analytic in the region 0 ≤ Im t ≤p

πk. Thus, by substitut-

ing
+∞+i

p
πk∫

−∞+i
p
πk

e−t 2
d t =

+∞∫
−∞

e−t 2
d t , (6.26)

in (6.24) and by insertion of the value
p
π for the Gaussian integral, as

shown in Eq. (7.18), we finally obtain

F [ϕ(x)](k) = ϕ̃(k) = e−πk2

p
π

+∞∫
−∞

e−t 2
d t

︸ ︷︷ ︸p
π

= e−πk2
. (6.27)
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A very similar calculation yields

F−1[ϕ(k)](x) =ϕ(x) = e−πx2
. (6.28)

Eqs. (6.27) and (6.28) establish the fact that the Gaussian function

ϕ(x) = e−πx2
defined in (6.21) is an eigenfunction of the Fourier transfor-

mations F and F−1 with associated eigenvalue 1. See Sect. 6.3 in
Robert Strichartz. A Guide to Distribu-

tion Theory and Fourier Transforms. CRC
Press, Boca Roton, Florida, USA, 1994.
ISBN 0849382734

With a slightly different definition the Gaussian function f (x) = e−x2/2

is also an eigenfunction of the operator

H =− d 2

d x2 +x2 (6.29)

corresponding to a harmonic oscillator. The resulting eigenvalue equa-

tion is

H f (x) =
[
− d 2

d x2 +x2
]

f (x) =
[
− d

d x
(−x)+x2

]
f (x) = f (x); (6.30)

with eigenvalue 1.

Instead of going too much into the details here, it may suffice to say

that the Hermite functions

hn(x) =π−1/4(2nn!)−1/2
(

d

d x
−x

)n

e−x2/2 =π−1/4(2nn!)−1/2Hn(x)e−x2/2

(6.31)

are all eigenfunctions of the Fourier transform with the eigenvalue

i n
p

2π. The polynomial Hn(x) of degree n is called Hermite polynomial.

Hermite functions form a complete system, so that any function g (with∫ |g (x)|2d x <∞) has a Hermite expansion

g (x) =
∞∑

k=0
〈g ,hn〉hn(x). (6.32)

This is an example of an eigenfunction expansion.



7
Distributions as generalized functions

7.1 Heuristically coping with discontinuities

What follows are “recipes” and a “cooking course” for some “dishes”

Heaviside, Dirac and others have enjoyed “eating,” alas without being

able to “explain their digestion” (cf. the citation by Heaviside on page xii).

Insofar theoretical physics is natural philosophy, the question arises

if physical entities need to be smooth and continuous – in particular, if

physical functions need to be smooth (i.e., in C∞), having derivatives of

all orders 1 (such as polynomials, trigonometric and exponential func- 1 William F. Trench. Introduction to real
analysis. Free Hyperlinked Edition 2.01,
2012. URL http://ramanujan.math.

trinity.edu/wtrench/texts/TRENCH_

REAL_ANALYSIS.PDF

tions) – as “nature abhors sudden discontinuities,” or if we are willing to

allow and conceptualize singularities of different sorts. Other, entirely

different, scenarios are discrete 2 computer-generated universes 3. This
2 Konrad Zuse. Discrete mathematics
and Rechnender Raum. 1994. URL
http://www.zib.de/PaperWeb/

abstracts/TR-94-10/; and Konrad
Zuse. Rechnender Raum. Friedrich
Vieweg & Sohn, Braunschweig, 1969
3 Edward Fredkin. Digital mechanics. an
informational process based on reversible
universal cellular automata. Physica,
D45:254–270, 1990. D O I : 10.1016/0167-
2789(90)90186-S. URL http://dx.doi.

org/10.1016/0167-2789(90)90186-S;
Tommaso Toffoli. Applied General Systems
Research: Recent Developments and
Trends, chapter The Role of the Observer
in Uniform Systems, pages 395–400.
Plenum Press, Springer US, New York,
London, and Boston, MA, 1978. ISBN
978-1-4757-0555-3. D O I : 10.1007/978-1-
4757-0555-3_29. URL http://dx.doi.

org/10.1007/978-1-4757-0555-3_29;
and Karl Svozil. Computational universes.
Chaos, Solitons & Fractals, 25(4):845–859,
2006. D O I : 10.1016/j.chaos.2004.11.055.
URL http://dx.doi.org/10.1016/j.

chaos.2004.11.055

little course is no place for preference and judgments regarding these

matters. Let me just point out that contemporary mathematical physics

is not only leaning toward, but appears to be deeply committed to dis-

continuities; both in classical and quantized field theories dealing with

“point charges,” as well as in general relativity, the (nonquantized field

theoretical) geometrodynamics of graviation, dealing with singularities

such as “black holes” or “initial singularities” of various sorts.

Discontinuities were introduced quite naturally as electromagnetic

pulses, which can, for instance be described with the Heaviside function

H(t ) representing vanishing, zero field strength until time t = 0, when

suddenly a constant electrical field is “switched on eternally.” It is quite

natural to ask what the derivative of the (infinite pulse) function H(t )

might be. — At this point the reader is kindly ask to stop reading for a

moment and contemplate on what kind of function that might be.

Heuristically, if we call this derivative the (Dirac) delta function δ

defined by δ(t ) = d H(t )
d t , we can assure ourselves of two of its properties

(i) “δ(t ) = 0 for t 6= 0,” as well as as the antiderivative of the Heaviside

function, yielding (ii) “
∫ ∞
−∞δ(t )d t = ∫ ∞

−∞
d H(t )

d t d t = H(∞)− H(−∞) =
1−0 = 1.” This heuristic definition of the Dirac

delta function δy (x) = δ(x, y) = δ(x − y)
with a discontinuity at y is not unlike
the discrete Kronecker symbol δi j ,
as (i) δi j = 0 for i 6= j , as well as (ii)
“
∑∞

i=−∞δi j = ∑∞
i=−∞δi j = 1,” We may

even define the Kronecker symbol δi j as
the difference quotient of some “discrete
Heaviside function” Hi j = 1 for i ≥ j , and
Hi , j = 0 else: δi j = Hi j −H(i−1) j = 1 only
for i = j ; else it vanishes.

Indeed, we could follow a pattern of “growing discontinuity,” reach-

able by ever higher and higher derivatives of the absolute value (or mod-

http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF
http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF
http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF
http://www.zib.de/PaperWeb/abstracts/TR-94-10/
http://www.zib.de/PaperWeb/abstracts/TR-94-10/
http://dx.doi.org/10.1016/0167-2789(90)90186-S
http://dx.doi.org/10.1016/0167-2789(90)90186-S
http://dx.doi.org/10.1007/978-1-4757-0555-3_29
http://dx.doi.org/10.1007/978-1-4757-0555-3_29
http://dx.doi.org/10.1016/j.chaos.2004.11.055
http://dx.doi.org/10.1016/j.chaos.2004.11.055
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ulus); that is, we shall pursue the path sketched by

|x|
d

d x−→ sgn(x), H(x)
d

d x−→ δ(x)
dn

d xn−→ δ(n)(x).

Objects like |x|, H(t ) or δ(t ) may be heuristically understandable

as “functions” not unlike the regular analytic functions; alas their nth

derivatives cannot be straightforwardly defined. In order to cope with

a formally precised definition and derivation of (infinite) pulse func-

tions and to achieve this goal, a theory of generalized functions, or, used

synonymously, distributions has been developed. In what follows we

shall develop the theory of distributions; always keeping in mind the

assumptions regarding (dis)continuities that make necessary this part of

calculus.

Thereby, we shall “pair” these generalized functions F with suitable

“good” test functions ϕ; integrate over these pairs, and thereby obtain a

linear continuous functional F [ϕ], also denoted by 〈F ,ϕ〉. A further strat-

egy then is to “transfer” or “shift” operations on and transformations of F

– such as differentiations or Fourier transformations, but also multiplica-

tions with polynomials or other smooth functions – to the test function ϕ

according to adjoint identities See Sect. 2.3 in
Robert Strichartz. A Guide to Distribu-

tion Theory and Fourier Transforms. CRC
Press, Boca Roton, Florida, USA, 1994.
ISBN 0849382734

〈TF ,ϕ〉 = 〈F ,Sϕ〉. (7.1)

For example, for n-fold differention,

S= (−1)nT= (−1)n d (n)

d x(n)
, (7.2)

and for the Fourier transformation,

S= T=F . (7.3)

For some (smooth) functional multiplier g (x) ∈C∞ ,

S= T= g (x). (7.4)

One more issue is the problem of the meaning and existence of weak

solutions (also called generalized solutions) of differential equations for

which, if interpreted in terms of regular functions, the derivatives may

not all exist.

Take, for example, the wave equation in one spatial dimension
∂2

∂t 2 u(x, t ) = c2 ∂2

∂x2 u(x, t ). It has a solution of the form 4 u(x, t ) = 4 Asim O. Barut. e = —hω. Physics Letters
A, 143(8):349–352, 1990. ISSN 0375-9601.
D O I : 10.1016/0375-9601(90)90369-Y.
URL http://dx.doi.org/10.1016/

0375-9601(90)90369-Y

f (x − ct )+ g (x + ct ), where f and g characterize a travelling “shape”

of inert, unchanged form. There is no obvious physical reason why the

pulse shape function f or g should be differentiable, alas if it is not, then

u is not differentiable either. What if we, for instance, set g = 0, and

identify f (x − ct ) with the Heaviside infinite pulse function H(x − ct )?

7.2 General distribution
A nice video on “Setting Up the
Fourier Transform of a Distri-
bution” by Professor Dr. Brad G.
Osgood - Stanford is availalable via URLs
http://www.academicearth.org/lectures/setting-
up-fourier-transform-of-distribution

Suppose we have some “function” F (x); that is, F (x) could be either a

regular analytical function, such as F (x) = x, or some other, “weirder

http://dx.doi.org/10.1016/0375-9601(90)90369-Y
http://dx.doi.org/10.1016/0375-9601(90)90369-Y
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function,” such as the Dirac delta function, or the derivative of the Heav-

iside (unit step) function, which might be “highly discontinuous.” As an

Ansatz, we may associate with this “function” F (x) a distribution, or, used

synonymously, a generalized function F [ϕ] or 〈F ,ϕ〉 which in the “weak

sense” is defined as a continuous linear functional by integrating F (x)

together with some “good” test function ϕ as follows 5: 5 Laurent Schwartz. Introduction to the
Theory of Distributions. University of
Toronto Press, Toronto, 1952. collected
and written by Israel Halperin

F (x) ←→〈F ,ϕ〉 ≡ F [ϕ] =
∫ ∞

−∞
F (x)ϕ(x)d x. (7.5)

We say that F [ϕ] or 〈F ,ϕ〉 is the distribution associated with or induced by

F (x).

One interpretation of F [ϕ] ≡ 〈F ,ϕ〉 is that F stands for a sort of “mea-

surement device,” and ϕ represents some “system to be measured;” then

F [ϕ] ≡ 〈F ,ϕ〉 is the “outcome” or “measurement result.”

Thereby, it completely suffices to say what F “does to” some test func-

tion ϕ; there is nothing more to it.

For example, the Dirac Delta function δ(x) is completely characterised

by

δ(x) ←→ δ[ϕ] ≡ 〈δ,ϕ〉 =ϕ(0);

likewise, the shifted Dirac Delta function δy (x) ≡ δ(x − y) is completely

characterised by

δy (x) ≡ δ(x − y) ←→ δy [ϕ] ≡ 〈δy ,ϕ〉 =ϕ(y).

Many other (regular) functions which are usually not integrable in the

interval (−∞,+∞) will, through the pairing with a “suitable” or “good”

test function ϕ, induce a distribution.

For example, take

1 ←→ 1[ϕ] ≡ 〈1,ϕ〉 =
∫ ∞

−∞
ϕ(x)d x,

or

x ←→ x[ϕ] ≡ 〈x,ϕ〉 =
∫ ∞

−∞
xϕ(x)d x,

or

e2πi ax ←→ e2πi ax [ϕ] ≡ 〈e2πi ax ,ϕ〉 =
∫ ∞

−∞
e2πi axϕ(x)d x.

7.2.1 Duality

Sometimes, F [ϕ] ≡ 〈F ,ϕ〉 is also written in a scalar product notation; that

is, F [ϕ] = 〈F | ϕ〉. This emphasizes the pairing aspect of F [ϕ] ≡ 〈F ,ϕ〉. In

this view the set of all distributions F is the dual space of the set of test

functions ϕ.

7.2.2 Linearity

Recall that a linear functional is some mathematical entity which maps a

function or another mathematical object into scalars in a linear manner;

that is, as the integral is linear, we obtain

F [c1ϕ1 + c2ϕ2] = c1F [ϕ1]+ c2F [ϕ2]; (7.6)
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or, in the bracket notation,

〈F ,c1ϕ1 + c2ϕ2〉 = c1〈F ,ϕ1〉+ c2〈F ,ϕ2〉. (7.7)

This linearity is guaranteed by integration.

7.2.3 Continuity

One way of expressing continuity is the following:

if ϕn
n→∞−→ ϕ, then F [ϕn]

n→∞−→ F [ϕ], (7.8)

or, in the bracket notation,

if ϕn
n→∞−→ ϕ, then 〈F ,ϕn〉 n→∞−→ 〈F ,ϕ〉. (7.9)

7.3 Test functions

7.3.1 Desiderata on test functions

By invoking test functions, we would like to be able to differentiate distri-

butions very much like ordinary functions. We would also like to transfer

differentiations to the functional context. How can this be implemented

in terms of possible “good” properties we require from the behaviour of

test functions, in accord with our wishes?

Consider the partial integration obtained from (uv)′ = u′v +uv ′;
thus

∫
(uv)′ = ∫

u′v + ∫
uv ′, and finally

∫
u′v = ∫

(uv)′− ∫
uv ′, thereby

effectively allowing us to “shift” or “transfer” the differentiation of the

original function to the test function. By identifying u with the general-

ized function g (such as, for instance δ), and v with the test function ϕ,

respectively, we obtain

〈g ′,ϕ〉 ≡ g ′[ϕ] =
∫ ∞

−∞
g ′(x)ϕ(x)d x

= g (x)ϕ(x)
∣∣∞−∞−

∫ ∞

−∞
g (x)ϕ′(x)d x

= g (∞)ϕ(∞)︸ ︷︷ ︸
should vanish

−g (−∞)ϕ(−∞)︸ ︷︷ ︸
should vanish

−
∫ ∞

−∞
g (x)ϕ′(x)d x

=−g [ϕ′] ≡−〈g ,ϕ′〉.

(7.10)

We can justify the two main requirements of “good” test functions, at

least for a wide variety of purposes:

1. that they “sufficiently” vanish at infinity – that can, for instance, be

achieved by requiring that their support (the set of arguments x where

g (x) 6= 0) is finite; and

2. that they are continuosly differentiable – indeed, by induction, that

they are arbitrarily often differentiable.

In what follows we shall enumerate three types of suitable test func-

tions satisfying these desiderata. One should, however, bear in mind that

the class of “good” test functions depends on the distribution. Take, for

example, the Dirac delta function δ(x). It is so “concentrated” that any
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(infinitely often) differentiable – even constant – function f (x) defind

“around x = 0” can serve as a “good” test function (with respect to δ), as

f (x) is only evaluated at x = 0; that is, δ[ f ] = f (0). This is again an indica-

tion of the duality between distributions on the one hand, and their test

functions on the other hand.

7.3.2 Test function class I

Recall that we require 6 our tests functions ϕ to be infinitely often dif- 6 Laurent Schwartz. Introduction to the
Theory of Distributions. University of
Toronto Press, Toronto, 1952. collected
and written by Israel Halperin

ferentiable. Furthermore, in order to get rid of terms at infinity “in a

straightforward, simple way,” suppose that their support is compact.

Compact support means that ϕ(x) does not vanish only at a finite,

bounded region of x. Such a “good” test function is, for instance,

ϕσ,a(x) =
e

− 1
1−((x−a)/σ)2 for | x−a

σ | < 1,

0 else.
(7.11)

In order to show that ϕσ,a is a suitable test function, we have to prove

its infinite differetiability, as well as the compactness of its support Mϕσ,a .

Let

ϕσ,a(x) :=ϕ
( x −a

σ

)
and thus

ϕ(x) =
{

e−
1

1−x2 for |x| < 1

0 for |x| ≥ 1

This function is drawn in Fig. 7.1.

0.37

−1 1

ϕ(x)

Figure 7.1: Plot of a test function ϕ(x).

First, note, by definition, the support Mϕ = (−1,1), because ϕ(x)

vanishes outside (−1,1)).

Second, consider the differentiability of ϕ(x); that is ϕ ∈ C∞(R)? Note

that ϕ(0) =ϕ is continuous; and that ϕ(n) is of the form

ϕ(n)(x) =
{

Pn (x)
(x2−1)2n e

1
x2−1 for |x| < 1

0 for |x| ≥ 1,

where Pn(x) is a finite polynomial in x (ϕ(u) = eu =⇒ϕ′(u) = dϕ
du

du
d x2

d x2

d x =
ϕ(u)

(
− 1

(x2−1)2

)
2x etc.) and [x = 1−ε] =⇒ x2 = 1−2ε+ε2 =⇒ x2−1 = ε(ε−2)

lim
x↑1

ϕ(n)(x) = lim
ε↓0

Pn(1−ε)

ε2n(ε−2)2n e
1

ε(ε−2) =

= lim
ε↓0

Pn(1)

ε2n22n e−
1

2ε =
[
ε= 1

R

]
= lim

R→∞
Pn(1)

22n R2ne−
R
2 = 0,

because the power e−x of e decreases stronger than any polynomial xn .

Note that the complex continuation ϕ(z) is not an analytic function

and cannot be expanded as a Taylor series on the entire complex plane

C although it is infinitely often differentiable on the real axis; that is,

although ϕ ∈ C∞(R). This can be seen from a uniqueness theorem of

complex analysis. Let B ⊆ C be a domain, and let z0 ∈ B the limit of a

sequence {zn} ∈ B , zn 6= z0. Then it can be shown that, if two analytic

functions f und g on B coincide in the points zn , then they coincide on

the entire domain B .
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Now, take B =R and the vanishing analytic function f ; that is, f (x) = 0.

f (x) coincides with ϕ(x) only in R−Mϕ. As a result, ϕ cannot be analytic.

Indeed, ϕσ,~a(x) diverges at x = a ±σ. Hence ϕ(x) cannot be Taylor

expanded, and

C∞(Rk )
6=⇒
⇐=analytic function

7.3.3 Test function class II

Other “good” test functions are 7 7 Laurent Schwartz. Introduction to the
Theory of Distributions. University of
Toronto Press, Toronto, 1952. collected
and written by Israel Halperin

{
φc,d (x)

} 1
n (7.12)

obtained by choosing n ∈N−0 and −∞≤ c < d ≤∞ and by defining

φc,d (x) =
e−

( 1
x−c + 1

d−x

)
for c < x < d ,

0 else.
(7.13)

If ϕ(x) is a “good” test function, then

xαPn(x)ϕ(x) (7.14)

with any Polynomial Pn(x), and, in particular, xnϕ(x) also is a “good” test

function.

7.3.4 Test function class III: Tempered distributions and Fourier

transforms

A particular class of “good” test functions – having the property that

they vanish “sufficiently fast” for large arguments, but are nonzero at

any finite argument – are capable of rendering Fourier transforms of

generalized functions. Such generalized functions are called tempered

distributions.

One example of a test function yielding tempered distribution is the

Gaussian function

ϕ(x) = e−πx2
. (7.15)

We can multiply the Gaussian function with polynomials (or take its

derivatives) and thereby obtain a particular class of test functions induc-

ing tempered distributions.

The Gaussian function is normalized such that∫ ∞

−∞
ϕ(x)d x =

∫ ∞

−∞
e−πx2

d x

[variable substitution x = tp
π

, d x = d tp
π

]

=
∫ ∞

−∞
e
−π

(
tp
π

)2

d

(
tp
π

)
= 1p

π

∫ ∞

−∞
e−t 2

d t

= 1p
π

p
π= 1.

(7.16)
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In this evaluation, we have used the Gaussian integral

I =
∫ ∞

−∞
e−x2

d x =p
π, (7.17)

which can be obtained by considering its square and transforming into

polar coordinates r ,θ; that is,

I 2 =
(∫ ∞

−∞
e−x2

d x

)(∫ ∞

−∞
e−y2

d y

)
=

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)d x d y

=
∫ 2π

0

∫ ∞

0
e−r 2

r dθdr

=
∫ 2π

0
dθ

∫ ∞

0
e−r 2

r dr

= 2π
∫ ∞

0
e−r 2

r dr[
u = r 2,

du

dr
= 2r ,dr = du

2r

]
=π

∫ ∞

0
e−u du

=π(−e−u∣∣∞
0

)
=π(−e−∞+e0)

=π.

(7.18)

The Gaussian test function (7.15) has the advantage that, as has been

shown in (6.27), with a certain kind of definition for the Fourier trans-

form, namely A = 2π and B = 1 in Eq. (6.19), its functional form does

not change under Fourier transforms. More explicitly, as derived in Eqs.

(6.27) and (6.28),

F [ϕ(x)](k) = ϕ̃(k) =
∫ ∞

−∞
e−πx2

e−2πi kx d x = e−πk2
. (7.19)

Just as for differentiation discussed later it is possible to “shift” or

“transfer” the Fourier transformation from the distribution to the test

function as follows. Suppose we are interested in the Fourier transform

F [F ] of some distribution F . Then, with the convention A = 2π and B = 1

adopted in Eq. (6.19), we must consider

〈F [F ],ϕ〉 ≡F [F ][ϕ] =
∫ ∞

−∞
F [F ](x)ϕ(x)d x

=
∫ ∞

−∞

[∫ ∞

−∞
F (y)e−2πi x y d y

]
ϕ(x)d x

=
∫ ∞

−∞
F (y)

[∫ ∞

−∞
ϕ(x)e−2πi x y d x

]
d y

=
∫ ∞

−∞
F (y)F [ϕ](y)d y

= 〈F ,F [ϕ]〉 ≡ F [F [ϕ]].

(7.20)

in the same way we obtain the Fourier inversion for distributions

〈F−1[F [F ]],ϕ〉 = 〈F [F−1[F ]],ϕ〉 = 〈F ,ϕ〉. (7.21)

Note that, in the case of test functions with compact support – say,

ϕ̂(x) = 0 for |x| > a > 0 and finite a – if the order of integrals is exchanged,
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the “new test function”

F [ϕ̂](y) =
∫ ∞

−∞
ϕ̂(x)e−2πi x y d x =

∫ a

−a
ϕ̂(x)e−2πi x y d x (7.22)

obtained through a Fourier transform of ϕ̂(x), does not necessarily in-

herit a compact support from ϕ̂(x); in particular, F [ϕ̂](y) may not neces-

sarily vanish [i.e. F [ϕ̂](y) = 0] for |y | > a > 0.

Let us, with these conventions, compute the Fourier transform of the

tempered Dirac delta distribution. Note that, by the very definition of the

Dirac delta distribution,

〈F [δ],ϕ〉 = 〈δ,F [ϕ]〉 =F [ϕ](0) =
∫ ∞

−∞
e−2πi x0ϕ(x)d x =

∫ ∞

−∞
1ϕ(x)d x = 〈1,ϕ〉.

(7.23)

Thus we may identify F [δ] with 1; that is,

F [δ] = 1. (7.24)

This is an extreme example of an infinitely concentrated object whose

Fourier transform is infinitely spread out.

A very similar calculation renders the tempered distribution associ-

ated with the Fourier transform of the shifted Dirac delta distribution

F [δy ] = e−2πi x y . (7.25)

Alas we shall pursue a different, more conventional, approach,

sketched in Section 7.5.

7.3.5 Test function class IV: C∞

If the generalized functions are “sufficiently concentrated” so that they

themselves guarantee that the terms g (∞)ϕ(∞) as well as g (−∞)ϕ(−∞)

in Eq. (7.10) to vanish, we may just require the test functions to be in-

finitely differentiable – and thus in C∞ – for the sake of making possible a

transfer of differentiation. (Indeed, if we are willing to sacrifice even infi-

nite differentiability, we can widen this class of test functions even more.)

We may, for instance, employ constant functions such as ϕ(x) = 1 as test

functions, thus giving meaning to, for instance, 〈δ,1〉 = ∫ ∞
−∞δ(x)d x, or

〈 f (x)δ,1〉 = 〈 f (0)δ,1〉 = f (0)
∫ ∞
−∞δ(x)d x.

7.4 Derivative of distributions

Equipped with “good” test functions which have a finite support and are

infinitely often (or at least sufficiently often) differentiable, we can now

give meaning to the transferral of differential quotients from the objects

entering the integral towards the test function by partial integration. First

note again that (uv)′ = u′v +uv ′ and thus
∫

(uv)′ = ∫
u′v + ∫

uv ′ and

finally
∫

u′v = ∫
(uv)′− ∫

uv ′. Hence, by identifying u with g , and v with
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the test function ϕ, we obtain

〈F ′,ϕ〉 ≡ F ′ [ϕ]= ∫ ∞

−∞

(
d

d x
q(x)

)
ϕ(x)d x

= q(x)ϕ(x)
∣∣∞

x=−∞−
∫ ∞

−∞
q(x)

(
d

d x
ϕ(x)

)
d x

=−
∫ ∞

−∞
q(x)

(
d

d x
ϕ(x)

)
d x

=−F
[
ϕ′]≡−〈F ,ϕ′〉.

(7.26)

By induction we obtain〈
d n

d xn F ,ϕ

〉
〈F (n),ϕ〉 ≡ F (n) [ϕ]= (−1)nF

[
ϕ(n)]= (−1)n〈F ,ϕ(n)〉. (7.27)

For the sake of a further example using adjoint identities , swapping

products and differentiations forth and back in the F –ϕ pairing, let us

compute g (x)δ′(x) where g ∈C∞; that is

〈gδ′,ϕ〉 = 〈δ′, gϕ〉
=−〈δ, (gϕ)′〉

=−〈δ, gϕ′+ g ′ϕ〉
=−g (0)ϕ′(0)− g ′(0)ϕ(0)

= 〈g (0)δ′− g ′(0)δ,ϕ〉.

(7.28)

Therefore,

g (x)δ′(x) = g (0)δ′(x)− g ′(0)δ(x). (7.29)

7.5 Fourier transform of distributions

We mention without proof that, if { fx (x)} is a sequence of functions

converging, for n →∞ toward a function f in the functional sense (i.e.

via integration of fn and f with “good” test functions), then the Fourier

transform f̃ of f can be defined by 8 8 M. J. Lighthill. Introduction to Fourier
Analysis and Generalized Functions.
Cambridge University Press, Cambridge,
1958; Kenneth B. Howell. Principles of
Fourier analysis. Chapman & Hall/CRC,
Boca Raton, London, New York, Wash-
ington, D.C., 2001; and B.L. Burrows and
D.J. Colwell. The Fourier transform of
the unit step function. International
Journal of Mathematical Education in
Science and Technology, 21(4):629–635,
1990. D O I : 10.1080/0020739900210418.
URL http://dx.doi.org/10.1080/

0020739900210418

F [ f (x)] = f̃ (k) = lim
n→∞

∫ ∞

−∞
fn(x)e−i kx d x. (7.30)

While this represents a method to calculate Fourier transforms of

distributions, there are other, more direct ways of obtaining them. These

were mentioned earlier. In what follows, we shall enumerate the Fourier

transform of some species, mostly by complex analysis.

7.6 Dirac delta function

Historically, the Heaviside step function, which will be discussed later

– was first used for the description of electromagnetic pulses. In the

days when Dirac developed quantum mechanics there was a need to See §15 of

Paul A. M. Dirac. The Principles of
Quantum Mechanics. Oxford University
Press, Oxford, 1930

define “singular scalar products” such as “〈x | y〉 = δ(x − y),” with some

generalization of the Kronecker delta function δi j , depicted in Fig. 7.2,

which is zero whenever x 6= y and “large enough” needle shaped (see Fig.

7.2) to yield unity when integrated over the entire reals; that is, “
∫ ∞
−∞〈x |

y〉d y = ∫ ∞
−∞δ(x − y)d y = 1.”

6

δ(x)

x
Figure 7.2: Dirac’s δ-function as a “needle
shaped” generalized function.

http://dx.doi.org/10.1080/0020739900210418
http://dx.doi.org/10.1080/0020739900210418
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Naturally, such “needle shaped functions” were viewed suspiciouly

by many mathematicians at first, but later they embraced these types of

functions 9 by developing a theory of functional analysis , generalized 9 I. M. Gel’fand and G. E. Shilov. Gener-
alized Functions. Vol. 1: Properties and
Operations. Academic Press, New York,
1964. Translated from the Russian by
Eugene Saletan

functions or, by another naming, distributions.

7.6.1 Delta sequence

One of the first attempts to formalize these objects with “large discon-

tinuities” was in terms of functional limits. Take, for instance, the delta

sequence which is a sequence of strongly peaked functions for which in

some limit the sequences { fn(x − y)} with, for instance,

δn(x − y) =
{

n for y − 1
2n < x < y + 1

2n

0 else
(7.31)

become the delta function δ(x − y). That is, in the functional sense

lim
n→∞δn(x − y) = δ(x − y). (7.32)

Note that the area of this particular δn(x− y) above the x-axes is indepen-

dent of n, since its width is 1/n and the height is n.

In an ad hoc sense, other delta sequences can be enumerated as fol-

lows. They all converge towards the delta function in the sense of linear

functionals (i.e. when integrated over a test function).

δn(x) = np
π

e−n2x2
, (7.33)

= 1

π

sin(nx)

x
, (7.34)

= = (1∓ i )
( n

2π

) 1
2

e±i nx2
(7.35)

= 1

πx

e i nx −e−i nx

2i
, (7.36)

= 1

π

ne−x2

1+n2x2 , (7.37)

= 1

2π

∫ n

−n
e i xt d t = 1

2πi x
e i xt

∣∣∣n

−n
, (7.38)

= 1

2π

sin
[(

n + 1
2

)
x
]

sin
( 1

2 x
) , (7.39)

= 1

π

n

1+n2x2 , (7.40)

= n

π

(
sin(nx)

nx

)2

. (7.41)

Other commonly used limit forms of the δ-function are the Gaussian,

Lorentzian, and Dirichlet forms

δε(x) = 1p
πε

e−
x2

ε2 , (7.42)

= 1

π

ε

x2 +ε2 = 1

2πi

(
1

x − iε
− 1

x + iε

)
, (7.43)

= 1

π

sin
( x
ε

)
x

, (7.44)
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respectively. Note that (7.42) corresponds to (7.33), (7.43) corresponds to

(7.40) with ε= n−1, and (7.44) corresponds to (7.34). Again, the limit

δ(x) = lim
ε→0

δε(x) (7.45)

has to be understood in the functional sense; that is, by integration over a

test function.

6
δ(x)

xrrrr r r r r

b

b
bb

b

b
b b δ1(x)

δ2(x)

δ3(x)

δ4(x)

Figure 7.3: Delta sequence approximating
Dirac’s δ-function as a more and more
“needle shaped” generalized function.

Let us proof that the sequence {δn} with

δn(x − y) =
{

n for y − 1
2n < x < y + 1

2n

0 else

defined in Eq. (7.31) and depicted in Fig. 7.3 is a delta sequence; that is,

if, for large n, it converges to δ in a functional sense. In order to verify

this claim, we have to integrate δn(x) with “good” test functions ϕ(x)

and take the limit n →∞; if the result is ϕ(0), then we can identify δn(x)

in this limit with δ(x) (in the functional sense). Since δn(x) is uniform

convergent, we can exchange the limit with the integration; thus

lim
n→∞

∫ ∞

−∞
δn(x − y)ϕ(x)d x

[variable transformation:

x ′ = x − y , x = x ′+ y

d x ′ = d x,−∞≤ x ′ ≤∞]

= lim
n→∞

∫ ∞

−∞
δn(x ′)ϕ(x ′+ y)d x ′

= lim
n→∞

∫ 1
2n

− 1
2n

nϕ(x ′+ y)d x ′

[variable transformation:

u = 2nx ′, x ′ = u

2n
,

du = 2nd x ′,−1 ≤ u ≤ 1]

= lim
n→∞

∫ 1

−1
nϕ(

u

2n
+ y)

du

2n

= lim
n→∞

1

2

∫ 1

−1
ϕ(

u

2n
+ y)du

= 1

2

∫ 1

−1
lim

n→∞ϕ(
u

2n
+ y)du

= 1

2
ϕ(y)

∫ 1

−1
du

=ϕ(y).

(7.46)

Hence, in the functional sense, this limit yields the shifted δ-function δy .

Thus we obtain

lim
n→∞δn[ϕ] = δy [ϕ] =ϕ(y).

7.6.2 δ
[
ϕ

]
distribution

The distribution (linear functional) associated with the δ function can be

defined by mapping any test function into a scalar as follows:∫ ∞

−∞
δ(x − y)ϕ(x)d x =ϕ(y). (7.47)
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A common way of expressing this delta function distribution is by writing

δ(x − y) ←→〈δy ,ϕ〉 ≡ 〈δy |ϕ〉 ≡ δy [ϕ]
def= ϕ(y). (7.48)

For y = 0, we just obtain

δ(x) ←→〈δ,ϕ〉 ≡ 〈δ|ϕ〉 ≡ δ[ϕ]
def= δ0[ϕ] =ϕ(0). (7.49)

7.6.3 Useful formulæ involving δ

The following formulae are sometimes enumerated without proofs.

δ(x) = δ(−x) (7.50)

For a proof, note that ϕ(x)δ(−x) =ϕ(0)δ(−x), and that, in particular, with

the substitution x →−x,∫ ∞

−∞
δ(−x)ϕ(x)d x =ϕ(0)

∫ −∞

∞
δ(−(−x))d(−x)

=−ϕ(0)
∫ −∞

∞
δ(x)d x =ϕ(0)

∫ ∞

−∞
δ(x)d x.

(7.51)

δ(x) = lim
ε→0

H(x +ε)−H(x)

ε
= d

d x
H(x) (7.52)

f (x)δ(x −x0) = f (x0)δ(x −x0) (7.53)

This results from a direct application of Eq. (7.4); that is,

f (x)δ[ϕ] = δ[
f ϕ

]= f (0)ϕ(0) = f (0)δ[ϕ], (7.54)

and

f (x)δx0 [ϕ] = δx0

[
f ϕ

]= f (x0)ϕ(x0) = f (x0)δx0 [ϕ]. (7.55)

For a more explicit direct proof, note that∫ ∞

−∞
f (x)δ(x −x0)ϕ(x)d x =

∫ ∞

−∞
δ(x −x0)( f (x)ϕ(x))d x = f (x0)ϕ(x0),

(7.56)

and hence f δx0 [ϕ] = f (x0)δx0 [ϕ].

For the δ distribution with its “extreme concentration” at the origin,

a “nonconcentrated test function” suffices; in particular, a constant test

function such as ϕ(x) = 1 is fine. This is the reason why test functions

need not show up explicitly in expressions, and, in particular, integrals,

containing δ. Because, say, for suitable functions g (x) “well behaved” at

the origin,

g (x)δ(x − y)[1] = g (x)δ(x − y)[ϕ= 1]

=
∫ ∞

−∞
g (x)δ(x − y)[ϕ= 1]d x =

∫ ∞

−∞
g (x)δ(x − y)1d x = g (y).

(7.57)

xδ(x) = 0 (7.58)

For a proof consider

xδ[ϕ] = δ[
xϕ

]= 0ϕ(0) = 0. (7.59)
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For a 6= 0,

δ(ax) = 1

|a|δ(x), (7.60)

and, more generally,

δ(a(x −x0)) = 1

|a|δ(x −x0) (7.61)

For the sake of a proof, consider the case a > 0 as well as x0 = 0 first:∫ ∞

−∞
δ(ax)ϕ(x)d x

[variable substitution y = ax, x = y

a
,d x = 1

a
d y]

= 1

a

∫ ∞

−∞
δ(y)ϕ

( y

a

)
d y

= 1

a
ϕ(0);

(7.62)

and, second, the case a < 0: ∫ ∞

−∞
δ(ax)ϕ(x)d x

[variable substitution y = ax, x = y

a
,d x = 1

a
d y]

= 1

a

∫ −∞

∞
δ(y)ϕ

( y

a

)
d y

=− 1

a

∫ ∞

−∞
δ(y)ϕ

( y

a

)
d y

=− 1

a
ϕ(0).

(7.63)

In the case of x0 6= 0 and ±a > 0, we obtain∫ ∞

−∞
δ(a(x −x0))ϕ(x)d x

[variable substitution y = a(x −x0), x = y

a
+x0,d x = 1

a
d y]

=± 1

a

∫ ∞

−∞
δ(y)ϕ

( y

a
+x0

)
d y

= 1

|a|ϕ(x0).

(7.64)

If there exists a simple singularity x0 of f (x) in the integration interval,

then

δ( f (x)) = 1

| f ′(x0)|δ(x −x0). (7.65)

More generally, if f has only simple roots and f ′ is nonzero there,

δ( f (x)) =∑
xi

δ(x −xi )

| f ′(xi )| (7.66)

where the sum extends over all simple roots xi in the integration interval.

In particular,

δ(x2 −x2
0) = 1

2|x0|
[δ(x −x0)+δ(x +x0)] (7.67)

For a proof, note that, since f has only simple roots , it can be expanded An example is a polynomial of degree k of
the form f = A

∏k
i=1(x−xi ); with mutually

distinct xi , 1 ≤ i ≤ k.
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around these roots by

f (x) ≈ f (x0)︸ ︷︷ ︸
=0

+(x −x0) f ′(x0) = (x −x0) f ′(x0)

with nonzero f ′(x0) ∈ R. By identifying f ′(x0) with a in Eq. (7.60) we The simplest nontrivial case is f (x) =
a +bx = b

(
a
b +x

)
, for which x0 =− a

b and

f ′
(
x0 = a

b

)
= b.

obtain Eq. (7.66).

δ′( f (x)) =
N∑

i=0

f ′′(xi )

| f ′(xi )|3 δ(x −xi )+
N∑

i=0

f ′(xi )

| f ′(xi )|3 δ
′(x −xi ) (7.68)

|x|δ(x2) = δ(x) (7.69)

−xδ′(x) = δ(x), (7.70)

which is a direct consequence of Eq. (7.29). More explicitly, we can use

partial integration and obtain ∫ ∞

−∞
−xδ′(x)ϕ(x)d x

=− xδ(x)|∞−∞+
∫ ∞

−∞
δ(x)

d

d x

(
xϕ(x)

)
d x

=
∫ ∞

−∞
δ(x)xϕ′(x)d x +

∫ ∞

−∞
δ(x)ϕ(x)d x

= 0ϕ′(0)+ϕ(0) =ϕ(0).

(7.71)

δ(n)(−x) = (−1)nδ(n)(x), (7.72)

where the index (n) denotes n-fold differentiation, can be proven by

[recall that, by the chain rule of differentiation, d
d xϕ(−x) =−ϕ′(−x)]∫ ∞

−∞
δ(n)(−x)ϕ(x)d x

[variable substitution x →−x]

=−
∫ −∞

∞
δ(n)(x)ϕ(−x)d x

=
∫ ∞

−∞
δ(n)(x)ϕ(−x)d x

= (−1)n
∫ ∞

−∞
δ(x)

[
d n

d xn ϕ(−x)

]
d x

= (−1)n
∫ ∞

−∞
δ(x)

[
(−1)nϕ(n)(−x)

]
d x

=
∫ −∞

∞
δ(x)ϕ(n)(−x)d x

[variable substitution x →−x]

=−
∫ −∞

∞
δ(−x)ϕ(n)(x)d x

=
∫ ∞

−∞
δ(x)ϕ(n)(x)d x

= (−1)n
∫ −∞

∞
δ(n)(x)ϕ(x)d x.

(7.73)
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Because of an additional factor (−1)n from the chain rule, in particu-

lar, from the n-fold “inner” differentiation of −x, follows that

d n

d xn δ(−x) = (−1)nδ(n)(−x) = δ(n)(x). (7.74)

xm+1δ(m)(x) = 0, (7.75)

where the index (m) denotes m-fold differentiation;

x2δ′(x) = 0, (7.76)

which is a consequence of Eq. (7.29).

More generally,

xnδ(m)(x)[ϕ= 1] =
∫ ∞

−∞
xnδ(m)(x)d x = (−1)nn!δnm , (7.77)

which can be demonstrated by considering

〈xnδ(m)|1〉 = 〈δ(m)|xn〉

= (−1)n〈δ| d m

d xm xn〉
= (−1)nn!δnm 〈δ|1〉︸ ︷︷ ︸

1

= (−1)nn!δnm .

(7.78)

d 2

d x2 [xH(x)] = d

d x
[H(x)+xδ(x)︸ ︷︷ ︸

0

] = d

d x
H(x) = δ(x) (7.79)

If δ3(~r ) = δ(x)δ(y)δ(r ) with~r = (x, y , z), then

δ3(~r ) = δ(x)δ(y)δ(z) =− 1

4π
∆

1

r
(7.80)

δ3(~r ) =− 1

4π
(∆+k2)

e i kr

r
(7.81)

δ3(~r ) =− 1

4π
(∆+k2)

coskr

r
(7.82)

In quantum field theory, phase space integrals of the form

1

2E
=

∫
d p0 H(p0)δ(p2 −m2) (7.83)

if E = (~p2 +m2)(1/2) are exploited.
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7.6.4 Fourier transform of δ

The Fourier transform of the δ-function can be obtained straightfor-

wardly by insertion into Eq. (6.19); that is, with A = B = 1

F [δ(x)] = δ̃(k) =
∫ ∞

−∞
δ(x)e−i kx d x

= e−i 0k
∫ ∞

−∞
δ(x)d x

= 1, and thus

F−1[δ̃(k)] =F−1[1] = δ(x)

= 1

2π

∫ ∞

−∞
e i kx dk

= 1

2π

∫ ∞

−∞
[cos(kx)+ i sin(kx)]dk

= 1

π

∫ ∞

0
cos(kx)dk + i

2π

∫ ∞

−∞
sin(kx)dk

= 1

π

∫ ∞

0
cos(kx)dk.

(7.84)

That is, the Fourier transform of the δ-function is just a constant. δ-

spiked signals carry all frequencies in them. Note also that F [δ(x − y)] =
e i k yF [δ(x)].

From Eq. (7.84 ) we can compute

F [1] = 1̃(k) =
∫ ∞

−∞
e−i kx d x

[variable substitution x →−x]

=
∫ −∞

+∞
e−i k(−x)d(−x)

=−
∫ −∞

+∞
e i kx d x

=
∫ +∞

−∞
e i kx d x

= 2πδ(k).

(7.85)

7.6.5 Eigenfunction expansion of δ

The δ-function can be expressed in terms of, or “decomposed” into,

various eigenfunction expansions. We mention without proof 10 that, for 10 Dean G. Duffy. Green’s Functions with
Applications. Chapman and Hall/CRC,
Boca Raton, 2001

0 < x, x0 < L, two such expansions in terms of trigonometric functions are

δ(x −x0) = 2

L

∞∑
k=1

sin

(
πkx0

L

)
sin

(
πkx

L

)
= 1

L
+ 2

L

∞∑
k=1

cos

(
πkx0

L

)
cos

(
πkx

L

)
.

(7.86)

This “decomposition of unity” is analoguous to the expansion of

the identity in terms of orthogonal projectors Ei (for one-dimensional

projectors, Ei = |i 〉〈i |) encountered in the spectral theorem 1.28.1.

Other decomposions are in terms of orthonormal (Legendre) poly-

nomials (cf. Sect. 11.6 on page 205), or other functions of mathematical

physics discussed later.
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7.6.6 Delta function expansion

Just like “slowly varying” functions can be expanded into a Taylor series

in terms of the power functions xn , highly localized functions can be

expanded in terms of derivatives of the δ-function in the form 11 11 Ismo V. Lindell. Delta function ex-
pansions, complex delta functions and
the steepest descent method. Ameri-
can Journal of Physics, 61(5):438–442,
1993. D O I : 10.1119/1.17238. URL
http://dx.doi.org/10.1119/1.17238

f (x) ∼ f0δ(x)+ f1δ
′(x)+ f2δ

′′(x)+·· ·+ fnδ
(n)(x)+·· · =

∞∑
k=1

fkδ
(k)(x),

with fk = (−1)k

k!

∫ ∞

−∞
f (y)yk d y .

(7.87)

The sign “∼” denotes the functional character of this “equation” (7.87).

The delta expansion (7.87) can be proven by considering a smooth

function g (x), and integrating over its expansion; that is,∫ ∞

−∞
f (x)ϕ(x)d x

=
∫ ∞

−∞
[

f0δ(x)+ f1δ
′(x)+ f2δ

′′(x)+·· ·+ (−1)n fnδ
(n)(x)+·· ·]ϕ(x)d x

= f0ϕ(0)− f1ϕ
′(0)+ f2ϕ

′′(0)+·· ·+ (−1)n fnϕ
(n)(0)+·· · ,

(7.88)

and comparing the coefficients in (7.88) with the coefficients of the

Taylor series expansion of ϕ at x = 0∫ ∞

−∞
ϕ(x) f (x) =

∫ ∞

−∞

[
ϕ(0)+xϕ′(0)+·· ·+ xn

n!
ϕ(n)(0)+·· ·

]
f (x)d x

=ϕ(0)
∫ ∞

−∞
f (x)d x +ϕ′(0)

∫ ∞

−∞
x f (x)d x +·· ·+ϕ(n)(0)

∫ ∞

−∞
xn

n!
f (x)d x +·· · .

(7.89)

7.7 Cauchy principal value

7.7.1 Definition

The (Cauchy) principal value P (sometimes also denoted by p.v.) is a

value associated with a (divergent) integral as follows:

P

∫ b

a
f (x)d x = lim

ε→0+

[∫ c−ε

a
f (x)d x +

∫ b

c+ε
f (x)d x

]
= lim
ε→0+

∫
[a,c−ε]∪[c+ε,b]

f (x)d x,
(7.90)

if c is the “location” of a singularity of f (x).

For example, the integral
∫ 1
−1

d x
x diverges, but

P

∫ 1

−1

d x

x
= lim
ε→0+

[∫ −ε

−1

d x

x
+

∫ 1

+ε
d x

x

]
[variable substitution x →−x in the first integral]

= lim
ε→0+

[∫ +ε

+1

d x

x
+

∫ 1

+ε
d x

x

]
= lim
ε→0+

[
logε− log1+ log1− logε

]= 0.

(7.91)

http://dx.doi.org/10.1119/1.17238
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7.7.2 Principle value and pole function 1
x distribution

The “standalone function” 1
x does not define a distribution since it is

not integrable in the vicinity of x = 0. This issue can be “alleviated”

or “circumvented” by considering the principle value P 1
x . In this way

the principle value can be transferred to the context of distributions by

defining a principal value distribution in a functional sense by

P

(
1

x

)[
ϕ

]= lim
ε→0+

∫
|x|>ε

1

x
ϕ(x)d x

= lim
ε→0+

[∫ −ε

−∞
1

x
ϕ(x)d x +

∫ ∞

+ε
1

x
ϕ(x)d x

]
[variable substitution x →−x in the first integral]

= lim
ε→0+

[∫ +ε

+∞
1

x
ϕ(−x)d x +

∫ ∞

+ε
1

x
ϕ(x)d x

]
= lim
ε→0+

[
−

∫ ∞

+ε
1

x
ϕ(−x)d x +

∫ ∞

+ε
1

x
ϕ(x)d x

]
= lim
ε→0+

∫ +∞

ε

ϕ(x)−ϕ(−x)

x
d x

=
∫ +∞

0

ϕ(x)−ϕ(−x)

x
d x.

(7.92)

In the functional sense, 1
x

[
ϕ

]
can be interpreted as a principal value.

That is,

1

x

[
ϕ

]= ∫ ∞

−∞
1

x
ϕ(x)d x

=
∫ 0

−∞
1

x
ϕ(x)d x +

∫ ∞

0

1

x
ϕ(x)d x

[variable substitution x →−x,d x →−d x in the first integral]

=
∫ 0

+∞
1

(−x)
ϕ(−x)d(−x)+

∫ ∞

0

1

x
ϕ(x)d x

=
∫ 0

+∞
1

x
ϕ(−x)d x +

∫ ∞

0

1

x
ϕ(x)d x

=−
∫ ∞

0

1

x
ϕ(−x)d x +

∫ ∞

0

1

x
ϕ(x)d x

=
∫ ∞

0

ϕ(x)−ϕ(−x)

x
d x

=P

(
1

x

)[
ϕ

]
,

(7.93)

where in the last step the principle value distribution (7.92) has been

used.

7.8 Absolute value distribution

The distribution associated with the absolute value |x| is defined by

|x|[ϕ]= ∫ ∞

−∞
|x|ϕ(x)d x. (7.94)
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|x|[ϕ]
can be evaluated and represented as follows:

|x|[ϕ]= ∫ ∞

−∞
|x|ϕ(x)d x

=
∫ 0

−∞
(−x)ϕ(x)d x +

∫ ∞

0
xϕ(x)d x

=−
∫ 0

−∞
xϕ(x)d x +

∫ ∞

0
xϕ(x)d x

[variable substitution x →−x,d x →−d x in the first integral]

=−
∫ 0

+∞
xϕ(−x)d x +

∫ ∞

0
xϕ(x)d x

=
∫ ∞

0
xϕ(−x)d x +

∫ ∞

0
xϕ(x)d x

=
∫ ∞

0
x

[
ϕ(x)+ϕ(−x)

]
d x.

(7.95)

7.9 Logarithm distribution

7.9.1 Definition

Let, for x 6= 0,

log |x|[ϕ]= ∫ ∞

−∞
log |x|ϕ(x)d x

=
∫ 0

−∞
log(−x)ϕ(x)d x +

∫ ∞

0
log xϕ(x)d x

[variable substitution x →−x,d x →−d x in the first integral]

=
∫ 0

+∞
log(−(−x))ϕ(−x)d(−x)+

∫ ∞

0
log xϕ(x)d x

=−
∫ 0

+∞
log xϕ(−x)d x +

∫ ∞

0
log xϕ(x)d x

=
∫ ∞

0
log xϕ(−x)d x +

∫ ∞

0
log xϕ(x)d x

=
∫ ∞

0
log x

[
ϕ(x)+ϕ(−x)

]
d x.

(7.96)

7.9.2 Connection with pole function

Note that

P

(
1

x

)[
ϕ

]= d

d x
log |x|[ϕ]

, (7.97)

and thus for the principal value of a pole of degree n

P

(
1

xn

)[
ϕ

]= (−1)n−1

(n −1)!
d n

d xn log |x|[ϕ]
. (7.98)

For a proof of Eq. (7.97) consider the functional derivative log′ |x|[ϕ] of
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log |x|[ϕ] by insertion into Eq. (7.96); that is

log′ |x|[ϕ] =
∫ 0

−∞
d log(−x)

d x
ϕ(x)d x +

∫ ∞

0

d log x

d x
ϕ(x)d x

=
∫ 0

−∞

(
− 1

(−x)

)
ϕ(x)d x +

∫ ∞

0

1

x
ϕ(x)d x

=
∫ 0

−∞
1

x
ϕ(x)d x +

∫ ∞

0

1

x
ϕ(x)d x

[variable substitution x →−x,d x →−d x in the first integral]

=
∫ 0

+∞
1

(−x)
ϕ(−x)d(−x)+

∫ ∞

0

1

x
ϕ(x)d x

=
∫ 0

+∞
1

x
ϕ(−x)d x +

∫ ∞

0

1

x
ϕ(x)d x

=−
∫ ∞

0

1

x
ϕ(−x)d x +

∫ ∞

0

1

x
ϕ(x)d x

=
∫ ∞

0

ϕ(x)−ϕ(−x)

x
d x

=P

(
1

x

)[
ϕ

]
.

(7.99)

The more general Eq. (7.98) follows by direct differentiation.

7.10 Pole function 1
xn distribution

For n ≥ 2, the integral over 1
xn is undefined even if we take the principal

value. Hence the direct route to an evaluation is blocked, and we have to

take an indirect approch via derivatives of 1
x

12. Thus, let 12 Thomas Sommer. Verallgemeinerte
Funktionen. unpublished manuscript,
2012

1

x2

[
ϕ

]=− d

d x

1

x

[
ϕ

]
= 1

x

[
ϕ′]= ∫ ∞

0

1

x

[
ϕ′(x)−ϕ′(−x)

]
d x

=P

(
1

x

)[
ϕ′] .

(7.100)

Also,

1

x3

[
ϕ

]=−1

2

d

d x

1

x2

[
ϕ

]= 1

2

1

x2

[
ϕ′]= 1

2x

[
ϕ′′]

= 1

2

∫ ∞

0

1

x

[
ϕ′′(x)−ϕ′′(−x)

]
d x

= 1

2
P

(
1

x

)[
ϕ′′] .

(7.101)

More generally, for n > 1, by induction, using (7.100) as induction
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basis,

1

xn

[
ϕ

]
=− 1

n −1

d

d x

1

xn−1

[
ϕ

]= 1

n −1

1

xn−1

[
ϕ′]

=−
(

1

n −1

)(
1

n −2

)
d

d x

1

xn−2

[
ϕ′]= 1

(n −1)(n −2)

1

xn−2

[
ϕ′′]

= ·· · = 1

(n −1)!
1

x

[
ϕ(n−1)]

= 1

(n −1)!

∫ ∞

0

1

x

[
ϕ(n−1)(x)−ϕ(n−1)(−x)

]
d x

= 1

(n −1)!
P

(
1

x

)[
ϕ(n−1)] .

(7.102)

7.11 Pole function 1
x±iα distribution

We are interested in the limit α→ 0 of 1
x+iα . Let α> 0. Then,

1

x + iα

[
ϕ

]= ∫ ∞

−∞
1

x + iα
ϕ(x)d x

=
∫ ∞

−∞
x − iα

(x + iα)(x − iα)
ϕ(x)d x

=
∫ ∞

−∞
x − iα

x2 +α2ϕ(x)d x

=
∫ ∞

−∞
x

x2 +α2ϕ(x)d x − iα
∫ ∞

−∞
1

x2 +α2ϕ(x)d x.

(7.103)

Let us treat the two summands of (7.103) separately. (i) Upon variable

substitution x =αy , d x =αd y in the second integral in (7.103) we obtain

α

∫ ∞

−∞
1

x2 +α2ϕ(x)d x =α
∫ ∞

−∞
1

α2 y2 +α2ϕ(αy)αd y

=α2
∫ ∞

−∞
1

α2(y2 +1)
ϕ(αy)d y

=
∫ ∞

−∞
1

y2 +1
ϕ(αy)d y

(7.104)

In the limit α→ 0, this is

lim
α→0

∫ ∞

−∞
1

y2 +1
ϕ(αy)d y =ϕ(0)

∫ ∞

−∞
1

y2 +1
d y

=ϕ(0)
(
arctan y

)∣∣y=∞
y=−∞

=πϕ(0) =πδ[ϕ].

(7.105)

(ii) The first integral in (7.103) is ∫ ∞

−∞
x

x2 +α2ϕ(x)d x

=
∫ 0

−∞
x

x2 +α2ϕ(x)d x +
∫ ∞

0

x

x2 +α2ϕ(x)d x

=
∫ 0

+∞
−x

(−x)2 +α2ϕ(−x)d(−x)+
∫ ∞

0

x

x2 +α2ϕ(x)d x

=−
∫ ∞

0

x

x2 +α2ϕ(−x)d x +
∫ ∞

0

x

x2 +α2ϕ(x)d x

=
∫ ∞

0

x

x2 +α2

[
ϕ(x)−ϕ(−x)

]
d x.

(7.106)
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In the limit α→ 0, this becomes

lim
α→0

∫ ∞

0

x

x2 +α2

[
ϕ(x)−ϕ(−x)

]
d x =

∫ ∞

0

ϕ(x)−ϕ(−x)

x
d x

=P

(
1

x

)[
ϕ

]
,

(7.107)

where in the last step the principle value distribution (7.92) has been

used.

Putting all parts together, we obtain

1

x + i 0+
[
ϕ

]= lim
α→0

1

x + iα

[
ϕ

]=P

(
1

x

)[
ϕ

]− iπδ[ϕ] =
{
P

(
1

x

)
− iπδ

}
[ϕ].

(7.108)

A very similar calculation yields

1

x − i 0+
[
ϕ

]= lim
α→0

1

x − iα

[
ϕ

]=P

(
1

x

)[
ϕ

]+ iπδ[ϕ] =
{
P

(
1

x

)
+ iπδ

}
[ϕ].

(7.109)

These equations (7.108) and (7.109) are often called the Sokhotsky for-

mula, also known as the Plemelj formula, or the Plemelj-Sokhotsky for-

mula.

7.12 Heaviside step function

7.12.1 Ambiguities in definition

Let us now turn to some very common generalized functions; in partic-

ular to Heaviside’s electromagnetic infinite pulse function. One of the

possible definitions of the Heaviside step function H(x), and maybe the

most common one – they differ by the difference of the value(s) of H(0) at

the origin x = 0, a difference which is irrelevant measure theoretically for

“good” functions since it is only about an isolated point – is

H(x −x0) =
{

1 for x ≥ x0

0 for x < x0
(7.110)

The function is plotted in Fig. 7.4.

xb

rH(x)

Figure 7.4: Plot of the Heaviside step
function H(x).

In the spirit of the above definition, it might have been more appropri-

ate to define H(0) = 1
2 ; that is,

H(x −x0) =


1 for x > x0
1
2 for x = x0

0 for x < x0

(7.111)

and, since this affects only an isolated point at x = 0, we may happily do

so if we prefer.

It is also very common to define the Heaviside step function as the an-

tiderivative of the δ function; likewise the delta function is the derivative

of the Heaviside step function; that is,

H(x −x0) =
∫ x−x0

−∞
δ(t )d t ,

d

d x
H(x −x0) = δ(x −x0).

(7.112)
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The latter equation can, in the functional sense; that is, by integration

over a test function, be proven by

〈H ′,ϕ〉 =−〈H ,ϕ′〉

=−
∫ ∞

−∞
H(x)ϕ′(x)d x

=−
∫ ∞

0
ϕ′(x)d x

=− ϕ(x)
∣∣x=∞

x=0

=−ϕ(∞)︸ ︷︷ ︸
=0

+ϕ(0)

= 〈δ,ϕ〉

(7.113)

for all test functions ϕ(x). Hence we can – in the functional sense – iden-

tify δ with H ′. More explicitly, through integration by parts, we obtain

∫ ∞

−∞

[
d

d x
H(x −x0)

]
ϕ(x)d x

= H(x −x0)ϕ(x)
∣∣∞−∞−

∫ ∞

−∞
H(x −x0)

[
d

d x
ϕ(x)

]
d x

= H(∞)ϕ(∞)︸ ︷︷ ︸
ϕ(∞)=0

−H(−∞)ϕ(−∞)︸ ︷︷ ︸
02=0

−
∫ ∞

x0

[
d

d x
ϕ(x)

]
d x

=−
∫ ∞

x0

[
d

d x
ϕ(x)

]
d x

=− ϕ(x)
∣∣x=∞

x=x0

=−[ϕ(∞)−ϕ(x0)]

=ϕ(x0).

(7.114)

7.12.2 Useful formulæ involving H

Some other formulæ involving the Heaviside step function are

H(±x) = lim
ε→0+

∓i

2π

∫ +∞

−∞
e i kx

k ∓ iε
dk, (7.115)

and

H(x) = 1

2
+

∞∑
l=0

(−1)l (2l )!(4l +3)

22l+2l !(l +1)!
P2l+1(x), (7.116)

where P2l+1(x) is a Legendre polynomial. Furthermore,

δ(x) = lim
ε→0

1

ε
H

( ε
2
−|x|

)
. (7.117)

An integral representation of H(x) is

H(x) = lim
ε↓0+

∓ 1

2πi

∫ ∞

−∞
1

t ± iε
e∓i xt d t . (7.118)

One commonly used limit form of the Heaviside step function is

H(x) = lim
ε→0

Hε(x) = lim
ε→0

[
1

2
+ 1

π
tan−1 x

ε

]
. (7.119)

respectively.
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Another limit representation of the Heaviside function is in terms of

the Dirichlet’s discontinuity factor as follows:

H(x) = lim
t→∞Ht (x)

= 1

2
+ 1

π
lim

t→∞

∫ t

0

sin(kx)

k
dk

= 1

2
+ 1

π

∫ ∞

0

sin(kx)

k
dk.

(7.120)

A proof 13 uses a variant of the sine integral function 13 Eli Maor. Trigonometric Delights.
Princeton University Press, Princeton,
1998. URL http://press.princeton.

edu/books/maor/Si(y) =
∫ y

0

sin t

t
d t (7.121)

which in the limit of large argument y converges towards the Dirichlet

integral (no proof is given here)

Si(∞) =
∫ ∞

0

sin t

t
d t = π

2
. (7.122)

Suppose we replace t with t = kx in the Dirichlet integral (7.122),

whereby x 6= 0 is a nonzero constant; that is,

∫ ∞

0

sin(kx)

kx
d(kx) =

∫ ±∞

0

sin(kx)

k
dk. (7.123)

Note that the integration border ±∞ changes, depending on whether x is

positive or negative, respectively.

If x is positive, we leave the integral (7.123) as is, and we recover the

original Dirichlet integral (7.122), which is π
2 . If x is negative, in order to

recover the original Dirichlet integral form with the upper limit ∞, we

have to perform yet another substitution k →−k on (7.123), resulting in

=
∫ −∞

0

sin(−kx)

−k
d(−k) =−

∫ ∞

0

sin(kx)

k
dk =−Si(∞) =−π

2
, (7.124)

since the sine function is an odd function; that is, sin(−ϕ) =−sinϕ.

The Dirichlet’s discontinuity factor (7.120) is obtained by normalizing

the absolute value of (7.123) [and thus also (7.124)] to 1
2 by multiplying it

with 1/π, and by adding 1
2 .

7.12.3 H
[
ϕ

]
distribution

The distribution associated with the Heaviside functiom H(x) is defined

by

H
[
ϕ

]= ∫ ∞

−∞
H(x)ϕ(x)d x. (7.125)

H
[
ϕ

]
can be evaluated and represented as follows:

H
[
ϕ

]= ∫ ∞

−∞
H(x)ϕ(x)d x

=
∫ ∞

0
ϕ(x)d x.

(7.126)

http://press.princeton.edu/books/maor/
http://press.princeton.edu/books/maor/
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7.12.4 Regularized Heaviside function

In order to be able to define the distribution associated with the Heav-

iside function (and its Fourier transform), we sometimes consider the

distribution of the regularized Heaviside function

Hε(x) = H(x)e−εx , (7.127)

with ε> 0, such that limε→0+ Hε(x) = H(x).

7.12.5 Fourier transform of Heaviside (unit step) function

The Fourier transform of the Heaviside (unit step) function cannot be

directly obtained by insertion into Eq. (6.19), because the associated

integrals do not exist. For a derivation of the Fourier transform of the

Heaviside (unit step) function we shall thus use the regularized Heaviside

function (7.127), and arrive at Sokhotsky’s formula (also known as the

Plemelj’s formula, or the Plemelj-Sokhotsky formula)

F [H(x)] = H̃(k) =
∫ ∞

−∞
H(x)e−i kx d x

=πδ(k)− iP
1

k

=−i

(
iπδ(k)+P

1

k

)
= lim
ε→0+

− i

k − iε

(7.128)

We shall compute the Fourier transform of the regularized Heaviside

function Hε(x) = H(x)e−εx , with ε> 0, of Eq. (7.127); that is 14, 14 Thomas Sommer. Verallgemeinerte
Funktionen. unpublished manuscript,
2012F [Hε(x)] =F [H(x)e−εx ] = H̃ε(k)

=
∫ ∞

−∞
Hε(x)e−i kx d x

=
∫ ∞

−∞
H(x)e−εx e−i kx d x

=
∫ ∞

−∞
H(x)e−i kx+(−i )2εx d x

=
∫ ∞

−∞
H(x)e−i (k−iε)x d x

=
∫ ∞

0
e−i (k−iε)x d x

=
[
−e−i (k−iε)x

i (k − iε)

]∣∣∣∣∣
x=∞

x=0

=
[
−e−i k e−ε)x

i (k − iε)

]∣∣∣∣∣
x=∞

x=0

=
[
−e−i k∞e−ε∞

i (k − iε)

]
−

[
−e−i k0e−ε0

i (k − iε)

]

= 0− (−1)

i (k − iε)
=− i

(k − iε)
.

(7.129)

By using Sokhotsky’s formula (7.109) we conclude that

F [H(x)] =F [H0+ (x)] = lim
ε→0+

F [Hε(x)] =πδ(k)− iP

(
1

k

)
. (7.130)
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7.13 The sign function

7.13.1 Definition

The sign function is defined by

sgn(x −x0) =


−1 for x < x0

0 for x = x0

+1 for x > x0

. (7.131)

It is plotted in Fig. 7.5.

x

b

r

bsgn(x)

Figure 7.5: Plot of the sign function
sgn(x).

7.13.2 Connection to the Heaviside function

In terms of the Heaviside step function, in particular, with H(0) = 1
2 as in

Eq. (7.111), the sign function can be written by “stretching” the former

(the Heaviside step function) by a factor of two, and shifting it by one

negative unit as follows

sgn(x −x0) = 2H(x −x0)−1,

H(x −x0) = 1

2

[
sgn(x −x0)+1

]
;

and also

sgn(x −x0) = H(x −x0)−H(x0 −x).

(7.132)

7.13.3 Sign sequence

The sequence of functions

sgnn(x −x0) =
{

−e−
x
n for x < x0

+e
−x
n for x > x0

(7.133)

is a limiting sequence of sgn(x −x0)
x 6=x0= limn→∞ sgnn(x −x0).

We can also use the Dirichlet integral to express a limiting sequence

for the singn function, in a similar way as the derivation of Eqs. (7.120);

that is,

sgn(x) = lim
t→∞sgnt (x)

= 2

π
lim

t→∞

∫ t

0

sin(kx)

k
dk

= 2

π

∫ ∞

0

sin(kx)

k
dk.

(7.134)

Note (without proof) that

sgn(x) = 4

π

∞∑
n=0

sin[(2n +1)x]

(2n +1)
(7.135)

= 4

π

∞∑
n=0

(−1)n cos[(2n +1)(x −π/2)]

(2n +1)
, −π< x <π. (7.136)

7.13.4 Fourier transform of sgn

Since the Fourier transform is linear, we may use the connection between

the sign and the Heaviside functions sgn(x) = 2H(x)− 1, Eq. (7.132),
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together with the Fourier transform of the Heaviside function F [H(x)] =
πδ(k)− iP

( 1
k

)
, Eq. (7.130) and the Dirac delta function F [1] = 2πδ(k),

Eq. (7.85), to compose and compute the Fourier transform of sgn:

F [sgn(x)] =F [2H(x)−1] = 2F [H(x)]−F [1]

= 2

[
πδ(k)− iP

(
1

k

)]
−2πδ(k)

=−2iP

(
1

k

)
.

(7.137)

7.14 Absolute value function (or modulus)

7.14.1 Definition

The absolute value (or modulus) of x is defined by

|x −x0| =


x −x0 for x > x0

0 for x = x0

x0 −x for x < x0

(7.138)

It is plotted in Fig. 7.6.

x�
�
�
�
�
�

@
@

@
@

@
@

|x|

Figure 7.6: Plot of the absolute value |x|.7.14.2 Connection of absolute value with sign and Heaviside func-

tions

Its relationship to the sign function is twofold: on the one hand, there is

|x| = x sgn(x), (7.139)

and thus, for x 6= 0,

sgn(x) = |x|
x

= x

|x| . (7.140)

On the other hand, the derivative of the absolute value function is

the sign function, at least up to a singular point at x = 0, and thus the

absolute value function can be interpreted as the integral of the sign

function (in the distributional sense); that is,

d

d x
|x| =


1 for x > 0

0 for x = 0

−1 for x < 0

= sgn(x),

|x| =
∫

sgn(x)d x.

(7.141)

This can be proven by inserting |x| = x sgn(x); that is,

d

d x
|x| = d

d x
x sgn(x) = sgn(x)+x

d

d x
sgn(x)

= sgn(x)+x
d

d x
[2H(x)−1] = sgn(x)−2 xδ(x)︸ ︷︷ ︸

=0

.
(7.142)

7.15 Some examples

Let us compute some concrete examples related to distributions.
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1. For a start, let us prove that

lim
ε→0

εsin2 x
ε

πx2 = δ(x). (7.143)

As a hint, take
∫ +∞
−∞

sin2 x
x2 d x =π.

Let us prove this conjecture by integrating over a good test function ϕ

1

π
lim
ε→0

+∞∫
−∞

εsin2
( x
ε

)
x2 ϕ(x)d x

[variable substitution y = x

ε
,

d y

d x
= 1

ε
,d x = εd y]

= 1

π
lim
ε→0

+∞∫
−∞

ϕ(εy)
ε2 sin2(y)

ε2 y2 d y

= 1

π
ϕ(0)

+∞∫
−∞

sin2(y)

y2 d y

=ϕ(0).

(7.144)

Hence we can identify

lim
ε→0

εsin2
( x
ε

)
πx2 = δ(x). (7.145)

2. In order to prove that 1
π

ne−x2

1+n2x2 is a δ-sequence we proceed again

by integrating over a good test function ϕ, and with the hint that
+∞∫
−∞

d x/(1+x2) =π we obtain

lim
n→∞

1

π

+∞∫
−∞

ne−x2

1+n2x2ϕ(x)d x

[variable substitution y = xn, x = y

n
,

d y

d x
= n,d x = d y

n
]

= lim
n→∞

1

π

+∞∫
−∞

ne−
( y

n

)2

1+ y2 ϕ
( y

n

) d y

n

= 1

π

+∞∫
−∞

lim
n→∞

[
e−

( y
n

)2

ϕ
( y

n

)] 1

1+ y2 d y

= 1

π

+∞∫
−∞

[
e0ϕ (0)

] 1

1+ y2 d y

= ϕ (0)

π

+∞∫
−∞

1

1+ y2 d y

= ϕ (0)

π
π

=ϕ (0) .

(7.146)

Hence we can identify

lim
n→∞

1

π

ne−x2

1+n2x2 = δ(x). (7.147)
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3. Let us prove that xnδ(n)(x) =Cδ(x) and determine the constant C . We

proceed again by integrating over a good test function ϕ. First note

that if ϕ(x) is a good test function, then so is xnϕ(x).∫
d xxnδ(n)(x)ϕ(x) =

∫
d xδ(n)(x)

[
xnϕ(x)

]=
= (−1)n

∫
d xδ(x)

[
xnϕ(x)

](n) =

= (−1)n
∫

d xδ(x)
[
nxn−1ϕ(x)+xnϕ′(x)

](n−1) =
·· ·

= (−1)n
∫

d xδ(x)

[
n∑

k=0

(
n

k

)
(xn)(k)ϕ(n−k)(x)

]
=

= (−1)n
∫

d xδ(x)
[
n!ϕ(x)+n ·n!xϕ′(x)+·· ·+xnϕ(n)(x)

]=
= (−1)nn!

∫
d xδ(x)ϕ(x);

hence, C = (−1)nn!. Note that ϕ(x) is a good test function then so is

xnϕ(x).

4. Let us simplify
∫ ∞
−∞δ(x2−a2)g (x) d x. First recall Eq. (7.66) stating that

δ( f (x)) =∑
i

δ(x −xi )

| f ′(xi )| ,

whenever xi are simple roots of f (x), and f ′(xi ) 6= 0. In our case,

f (x) = x2 −a2 = (x −a)(x +a), and the roots are x =±a. Furthermore,

f ′(x) = (x −a)+ (x +a);

hence

| f ′(a)| = 2|a|, | f ′(−a)| = |−2a| = 2|a|.
As a result,

δ(x2 −a2) = δ(
(x −a)(x +a)

)= 1

|2a|
(
δ(x −a)+δ(x +a)

)
.

Taking this into account we finally obtain

+∞∫
−∞

δ(x2 −a2)g (x)d x

=
+∞∫

−∞

δ(x −a)+δ(x +a)

2|a| g (x)d x

= g (a)+ g (−a)

2|a| .

(7.148)

5. Let us evaluate

I =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ(x2

1 +x2
2 +x2

3 −R2)d 3x (7.149)

for R ∈ R,R > 0. We may, of course, remain tn the standard Cartesian

coordinate system and evaluate the integral by “brute force.” Alter-

natively, a more elegant way is to use the spherical symmetry of the

problem and use spherical coordinates r ,Ω(θ,ϕ) by rewriting I into

I =
∫

r ,Ω
r 2δ(r 2 −R2)dΩdr . (7.150)
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As the integral kernel δ(r 2 −R2) just depends on the radial coordinate

r the angular coordinates just integrate to 4π. Next we make use of Eq.

(7.66), eliminate the solution for r =−R, and obtain

I = 4π
∫ ∞

0
r 2δ(r 2 −R2)dr

= 4π
∫ ∞

0
r 2 δ(r +R)+δ(r −R)

2R
dr

= 4π
∫ ∞

0
r 2 δ(r −R)

2R
dr

= 2πR.

(7.151)

6. Let us compute∫ ∞

−∞

∫ ∞

−∞
δ(x3 − y2 +2y)δ(x + y)H(y −x −6) f (x, y)d x d y . (7.152)

First, in dealing with δ(x + y), we evaluate the y integration at x = −y

or y =−x:
∞∫

−∞
δ(x3 −x2 −2x)H(−2x −6) f (x,−x)d x

Use of Eq. (7.66)

δ( f (x)) =∑
i

1

| f ′(xi )|δ(x −xi ),

at the roots

x1 = 0

x2,3 = 1±p
1+8

2
= 1±3

2
=

{
2

−1

of the argument f (x) = x3 − x2 −2x = x(x2 − x −2) = x(x −2)(x +1) of

the remaining δ-function, together with

f ′(x) = d

d x
(x3 −x2 −2x) = 3x2 −2x −2;

yields

∞∫
−∞

d x
δ(x)+δ(x −2)+δ(x +1)

|3x2 −2x −2| H(−2x −6) f (x,−x) =

= 1

|−2| H(−6)︸ ︷︷ ︸
= 0

f (0,−0)+ 1

|12−4−2| H(−4−6)︸ ︷︷ ︸
= 0

f (2,−2)+

+ 1

|3+2−2| H(2−6)︸ ︷︷ ︸
= 0

f (−1,1)

= 0

7. When simplifying derivatives of generalized functions it is always

useful to evaluate their properties – such as xδ(x) = 0, f (x)δ(x − x0) =
f (x0)δ(x − x0), or δ(−x) = δ(x) – first and before proceeding with the

next differentiation or evaluation. We shall present some applications

of this “rule” next.

First, simplify (
d

d x
−ω

)
H(x)eωx (7.153)
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as follows

d

d x

[
H(x)eωx]−ωH(x)eωx

= δ(x)eωx +ωH(x)eωx −ωH(x)eωx

= δ(x)e0

= δ(x)

(7.154)

8. Next, simplify (
d 2

d x2 +ω2
)

1

ω
H(x)sin(ωx) (7.155)

as follows

d 2

d x2

[
1

ω
H(x)sin(ωx)

]
+ωH(x)sin(ωx)

= 1

ω

d

d x

[
δ(x)sin(ωx)︸ ︷︷ ︸

= 0

+ωH(x)cos(ωx)
]
+ωH(x)sin(ωx)

= 1

ω

[
ωδ(x)cos(ωx)︸ ︷︷ ︸

δ(x)

−ω2H(x)sin(ωx)
]
+ωH(x)sin(ωx) = δ(x)

(7.156)

9. Let us compute the nth derivative of

f (x) =


0 for x < 0,

x for 0 ≤ x ≤ 1,

0 for x > 1.

(7.157)

`p
p

10
x

f (x)

�
�
�

``
p p

10
x

f1(x)

f1(x) = H(x)−H(x −1)
= H(x)H(1−x)

f2(x)

x

�
�
�
�
�
�
��f2(x) = x

Figure 7.7: Composition of f (x)

As depicted in Fig. 7.7, f can be composed from two functions f (x) =
f2(x) · f1(x); and this composition can be done in at least two ways.

Decomposition (i)

f (x) = x
[
H(x)−H(x −1)

]= xH(x)−xH(x −1)

f ′(x) = H(x)+xδ(x)−H(x −1)−xδ(x −1)

Because of xδ(x −a) = aδ(x −a),

f ′(x) = H(x)−H(x −1)−δ(x −1)

f ′′(x) = δ(x)−δ(x −1)−δ′(x −1)

and hence by induction

f (n)(x) = δ(n−2)(x)−δ(n−2)(x −1)−δ(n−1)(x −1)

for n > 1.

Decomposition (ii)

f (x) = xH(x)H(1−x)

f ′(x) = H(x)H(1−x)+xδ(x)︸ ︷︷ ︸
= 0

H(1−x)+xH(x)(−1)δ(1−x)︸ ︷︷ ︸
−H(x)δ(1−x)

=

= H(x)H(1−x)−δ(1−x) = [δ(x) = δ(−x)] = H(x)H(1−x)−δ(x −1)

f ′′(x) = δ(x)H(1−x)︸ ︷︷ ︸
= δ(x)

+ (−1)H(x)δ(1−x)︸ ︷︷ ︸
−δ(1−x)

−δ′(x −1) =

= δ(x)−δ(x −1)−δ′(x −1)
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and hence by induction

f (n)(x) = δ(n−2)(x)−δ(n−2)(x −1)−δ(n−1)(x −1)

for n > 1.

10. Let us compute the nth derivative of

f (x) =
|sin x| for −π≤ x ≤π,

0 for |x| >π.
(7.158)

f (x) = |sin x|H(π+x)H(π−x)

|sin x| = sin x sgn(sin x) = sin x sgn x für −π< x <π;

hence we start from

f (x) = sin x sgn xH(π+x)H(π−x),

Note that

sgn x = H(x)−H(−x),

( sgn x)′ = H ′(x)−H ′(−x)(−1) = δ(x)+δ(−x) = δ(x)+δ(x) = 2δ(x).

f ′(x) = cos x sgn xH(π+x)H(π−x)+ sin x2δ(x)H(π+x)H(π−x)+
+sin x sgn xδ(π+x)H(π−x)+ sin x sgn xH(π+x)δ(π−x)(−1) =

= cos x sgn xH(π+x)H(π−x)

f ′′(x) = −sin x sgn xH(π+x)H(π−x)+cos x2δ(x)H(π+x)H(π−x)+
+cos x sgn xδ(π+x)H(π−x)+cos x sgn xH(π+x)δ(π−x)(−1) =

= −sin x sgn xH(π+x)H(π−x)+2δ(x)+δ(π+x)+δ(π−x)

f ′′′(x) = −cos x sgn xH(π+x)H(π−x)− sin x2δ(x)H(π+x)H(π−x)−
−sin x sgn xδ(π+x)H(π−x)− sin x sgn xH(π+x)δ(π−x)(−1)+
+2δ′(x)+δ′(π+x)−δ′(π−x) =

= −cos x sgn xH(π+x)H(π−x)+2δ′(x)+δ′(π+x)−δ′(π−x)

f (4)(x) = sin x sgn xH(π+x)H(π−x)−cos x2δ(x)H(π+x)H(π−x)−
−cos x sgn xδ(π+x)H(π−x)−cos x sgn xH(π+x)δ(π−x)(−1)+
+2δ′′(x)+δ′′(π+x)+δ′′(π−x) =

= sin x sgn xH(π+x)H(π−x)−2δ(x)−δ(π+x)−δ(π−x)+
+2δ′′(x)+δ′′(π+x)+δ′′(π−x);

hence

f (4) = f (x)−2δ(x)+2δ′′(x)−δ(π+x)+δ′′(π+x)−δ(π−x)+δ′′(π−x),

f (5) = f ′(x)−2δ′(x)+2δ′′′(x)−δ′(π+x)+δ′′′(π+x)+δ′(π−x)−δ′′′(π−x);

and thus by induction

f (n) = f (n−4)(x)−2δ(n−4)(x)+2δ(n−2)(x)−δ(n−4)(π+x)+
+δ(n−2)(π+x)+ (−1)n−1δ(n−4)(π−x)+ (−1)nδ(n−2)(π−x)

(n = 4,5,6, . . . )

b



8
Green’s function

This chapter is the beginning of a series of chapters dealing with the

solution to differential equations of theoretical physics. These differential

equations are linear; that is, the “sought after” functionΨ(x), y(x),φ(t ) et

cetera occur only as a polynomial of degree zero and one, and not of any

higher degree, such as, for instance, [y(x)]2.

8.1 Elegant way to solve linear differential equations

Green’s functions present a very elegant way of solving linear differential

equations of the form

Lx y(x) = f (x), with the differential operator

Lx = an(x)
d n

d xn +an−1(x)
d n−1

d xn−1 + . . .+a1(x)
d

d x
+a0(x)

=
n∑

j=0
a j (x)

d j

d x j
,

(8.1)

where ai (x), 0 ≤ i ≤ n are functions of x. The idea is quite straightfor-

ward: if we are able to obtain the “inverse” G of the differential operator

L defined by

LxG(x, x ′) = δ(x −x ′), (8.2)

with δ representing Dirac’s delta function, then the solution to the in-

homogenuous differential equation (8.1) can be obtained by integrating

G(x, x ′) alongside with the inhomogenuous term f (x ′); that is,

y(x) =
∫ ∞

−∞
G(x, x ′) f (x ′)d x ′. (8.3)

This claim, as posted in Eq. (8.3), can be verified by explicitly applying

the differential operator Lx to the solution y(x),

Lx y(x)

=Lx

∫ ∞

−∞
G(x, x ′) f (x ′)d x ′

=
∫ ∞

−∞
LxG(x, x ′) f (x ′)d x ′

=
∫ ∞

−∞
δ(x −x ′) f (x ′)d x ′

= f (x).

(8.4)
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Let us check whether G(x, x ′) = H(x − x ′)sinh(x − x ′) is a Green’s

function of the differential operator Lx = d 2

d x2 −1. In this case, all we have

to do is to verify that Lx , applied to G(x, x ′), actually renders δ(x − x ′), as

required by Eq. (8.2).

LxG(x, x ′) = δ(x −x ′)(
d 2

d x2 −1

)
H(x −x ′)sinh(x −x ′) ?= δ(x −x ′)

(8.5)

Note that
d

d x
sinh x = cosh x,

d

d x
cosh x = sinh x; and hence

d

d x

δ(x −x ′)sinh(x −x ′)︸ ︷︷ ︸
= 0

+H(x −x ′)cosh(x −x ′)

−H(x−x ′)sinh(x−x ′) =

δ(x−x ′)cosh(x−x ′)+H(x−x ′)sinh(x−x ′)−H(x−x ′)sinh(x−x ′) = δ(x−x ′).

The solution (8.4) so obtained is not unique, as it is only a special solu-

tion to the inhomogenuous equation (8.1). The general solution to (8.1)

can be found by adding the general solution y0(x) of the corresponding

homogenuous differential equation

Lx y(x) = 0 (8.6)

to one special solution – say, the one obtained in Eq. (8.4) through

Green’s function techniques.

Indeed, the most general solution

Y (x) = y(x)+ y0(x) (8.7)

clearly is a solution of the inhomogenuous differential equation (8.4), as

Lx Y (x) =Lx y(x)+Lx y0(x) = f (x)+0 = f (x). (8.8)

Conversely, any two distinct special solutions y1(x) and y2(x) of the

inhomogenuous differential equation (8.4) differ only by a function

which is a solution of the homogenuous differential equation (8.6), be-

cause due to linearity of Lx , their difference yd (x) = y1(x)− y2(x) can be

parameterized by some function in y0

Lx [y1(x)− y2(x)] =Lx y1(x)+Lx y2(x) = f (x)− f (x) = 0. (8.9)

From now on, we assume that the coefficients a j (x) = a j in Eq. (8.1)

are constants, and thus are translational invariant. Then the differential

operator Lx , as well as the entire Ansatz (8.2) for G(x, x ′), is translation

invariant, because derivatives are defined only by relative distances, and

δ(x −x ′) is translation invariant for the same reason. Hence,

G(x, x ′) =G(x −x ′). (8.10)

For such translation invariant systems, the Fourier analysis presents an

excellent way of analyzing the situation.
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Let us see why translanslation invariance of the coefficients a j (x) =
a j (x + ξ) = a j under the translation x → x + ξ with arbitrary ξ – that is,

independence of the coefficients a j on the “coordinate” or “parameter”

x – and thus of the Green’s function, implies a simple form of the latter.

Translanslation invariance of the Green’s function really means

G(x +ξ, x ′+ξ) =G(x, x ′). (8.11)

Now set ξ = −x ′; then we can define a new Green’s function that just

depends on one argument (instead of previously two), which is the differ-

ence of the old arguments

G(x −x ′, x ′−x ′) =G(x −x ′,0) →G(x −x ′). (8.12)

What is important for applications is the possibility to adapt the so-

lutions of some inhomogenuous differential equation to boundary and

initial value problems. In particular, a properly chosen G(x − x ′), in its

dependence on the parameter x, “inherits” some behaviour of the so-

lution y(x). Suppose, for instance, we would like to find solutions with

y(xi ) = 0 for some parameter values xi , i = 1, . . . ,k. Then, the Green’s

function G must vanish there also

G(xi −x ′) = 0 for i = 1, . . . ,k. (8.13)

8.2 Finding Green’s functions by spectral decompositions

It has been mentioned earlier (cf. Section 7.6.5 on page 140) that the δ-

function can be expressed in terms of various eigenfunction expansions.

We shall make use of these expansions here 1. 1 Dean G. Duffy. Green’s Functions with
Applications. Chapman and Hall/CRC,
Boca Raton, 2001

Suppose ψi (x) are eigenfunctions of the differential operator Lx , and

λi are the associated eigenvalues; that is,

Lxψi (x) =λiψi (x). (8.14)

Suppose further that Lx is of degree n, and therefore (we assume with-

out proof) that we know all (a complete set of) the n eigenfunctions

ψ1(x),ψ2(x), . . . ,ψn(x) of Lx . In this case, orthogonality of the system of

eigenfunctions holds, such that∫ ∞

−∞
ψi (x)ψ j (x)d x = δi j , (8.15)

as well as completeness, such that

n∑
i=1

ψi (x)ψi (x ′) = δ(x −x ′). (8.16)

ψi (x ′) stands for the complex conjugate of ψi (x ′). The sum in Eq. (8.16)

stands for an integral in the case of continuous spectrum of Lx . In this

case, the Kronecker δi j in (8.15) is replaced by the Dirac delta function

δ(k − k ′). It has been mentioned earlier that the δ-function can be ex-

pressed in terms of various eigenfunction expansions.
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The Green’s function of Lx can be written as the spectral sum of the

absolute squares of the eigenfunctions, divided by the eigenvalues λ j ;

that is,

G(x −x ′) =
n∑

j=1

ψ j (x)ψ j (x ′)
λ j

. (8.17)

For the sake of proof, apply the differential operator Lx to the Green’s

function Ansatz G of Eq. (8.17) and verify that it satisfies Eq. (8.2):

LxG(x −x ′)

=Lx

n∑
j=1

ψ j (x)ψ j (x ′)
λ j

=
n∑

j=1

[Lxψ j (x)]ψ j (x ′)
λ j

=
n∑

j=1

[λ jψ j (x)]ψ j (x ′)
λ j

=
n∑

j=1
ψ j (x)ψ j (x ′)

= δ(x −x ′).

(8.18)

For a demonstration of completeness of systems of eigenfunctions,

consider, for instance, the differential equation corresponding to the har-

monic vibration [please do not confuse this with the harmonic oscillator

(6.29)]

Ltφ(t ) = d 2

d t 2φ(t ) = k2, (8.19)

with k ∈R.

Without any boundary conditions the associated eigenfunctions are

ψω(t ) = e±iωt , (8.20)

with 0 ≤ω≤∞, and with eigenvalue −ω2. Taking the complex conjugate

and integrating over ω yields [modulo a constant factor which depends

on the choice of Fourier transform parameters; see also Eq. (7.85)]∫ ∞

−∞
ψω(t )ψω(t ′)dω

=
∫ ∞

−∞
e−iωt e iωt ′dω

=
∫ ∞

−∞
e−iω(t−t ′)dω

= δ(t − t ′).

(8.21)

The associated Green’s function is

G(t − t ′) =
∫ ∞

−∞
e±iω(t−t ′)

(−ω2)
dω. (8.22)

The solution is obtained by integrating over the constant k2; that is,

φ(t ) =
∫ ∞

−∞
G(t − t ′)k2d t ′ =−

∫ ∞

−∞

(
k

ω

)2

e±iω(t−t ′)dωd t ′. (8.23)
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Suppose that, additionally, we impose boundary conditions; e.g.,

φ(0) = φ(L) = 0, representing a string “fastened” at positions 0 and L. In

this case the eigenfunctions change to

ψn(t ) = sin(ωn t ) = sin
(nπ

L
t
)

, (8.24)

with ωn = nπ
L and n ∈Z. We can deduce orthogonality and completeness

by listening to the orthogonality relations for sines (6.11).

For the sake of another example suppose, from the Euler-Bernoulli

bending theory, we know (no proof is given here) that the equation for

the quasistatic bending of slender, isotropic, homogeneous beams of

constant cross-section under an applied transverse load q(x) is given by

Lx y(x) = d 4

d x4 y(x) = q(x) ≈ c, (8.25)

with constant c ∈R. Let us further assume the boundary conditions

y(0) = y(L) = d 2

d x2 y(0) = d 2

d x2 y(L) = 0. (8.26)

Also, we require that y(x) vanishes everywhere except inbetween 0 and

L; that is, y(x) = 0 for x = (−∞,0) and for x = (l ,∞). Then in accordance

with these boundary conditions, the system of eigenfunctions {ψ j (x)} of

Lx can be written as

ψ j (x) =
√

2

L
sin

(
π j x

L

)
(8.27)

for j = 1,2, . . .. The associated eigenvalues

λ j =
(
π j

L

)4

can be verified through explicit differentiation

Lxψ j (x) =Lx

√
2

L
sin

(
π j x

L

)
=Lx

√
2

L
sin

(
π j x

L

)
=

(
π j

L

)4
√

2

L
sin

(
π j x

L

)
=

(
π j

L

)4

ψ j (x).

(8.28)

The cosine functions which are also solutions of the Euler-Bernoulli

equations (8.25) do not vanish at the origin x = 0.

Hence,

G(x −x ′)(x) = 2

L

∞∑
j=1

sin
(
π j x

L

)
sin

(
π j x′

L

)
(
π j
L

)4

= 2L3

π4

∞∑
j=1

1

j 4 sin

(
π j x

L

)
sin

(
π j x ′

L

) (8.29)
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Finally we are in a good shape to calculate the solution explicitly by

y(x) =
∫ L

0
G(x −x ′)g (x ′)d x ′

≈
∫ L

0
c

[
2L3

π4

∞∑
j=1

1

j 4 sin

(
π j x

L

)
sin

(
π j x ′

L

)]
d x ′

≈ 2cL3

π4

∞∑
j=1

1

j 4 sin

(
π j x

L

)[∫ L

0
sin

(
π j x ′

L

)
d x ′

]

≈ 4cL4

π5

∞∑
j=1

1

j 5 sin

(
π j x

L

)
sin2

(
π j

2

)
(8.30)

8.3 Finding Green’s functions by Fourier analysis

If one is dealing with translation invariant systems of the form

Lx y(x) = f (x), with the differential operator

Lx = an
d n

d xn +an−1
d n−1

d xn−1 + . . .+a1
d

d x
+a0

=
n∑

j=0
a j

d j

d x j
,

(8.31)

with constant coefficients a j , then we can apply the following strategy

using Fourier analysis to obtain the Green’s function.

First, recall that, by Eq. (7.84) on page 140 the Fourier transform of the

delta function δ̃(k) = 1 is just a constant. Therefore, δ can be written as

δ(x −x ′) = 1

2π

∫ ∞

−∞
e i k(x−x′)dk (8.32)

Next, consider the Fourier transform of the Green’s function

G̃(k) =
∫ ∞

−∞
G(x)e−i kx d x (8.33)

and its back transform

G(x) = 1

2π

∫ ∞

−∞
G̃(k)e i kx dk. (8.34)

Insertion of Eq. (8.34) into the Ansatz LxG(x −x ′) = δ(x −x ′) yields

LxG(x) =Lx
1

2π

∫ ∞

−∞
G̃(k)e i kx dk = 1

2π

∫ ∞

−∞
G̃(k)

(
Lx e i kx

)
dk

= δ(x) = 1

2π

∫ ∞

−∞
e i kx dk.

(8.35)

and thus
1

2π

∫ ∞

−∞
[
G̃(k)Lx −1

]
e i kx dk = 0. (8.36)

Therefore, the bracketed part of the integral kernel needs to vanish; and Note that
∫ ∞
−∞ f (x)cos(kx)dk =

−i
∫ ∞
−∞ f (x)sin(kx)dk cannot be sat-

isfied for arbitrary x unless f (x) = 0.
we obtain

G̃(k)Lk −1 ≡ 0, or G̃(k) ≡ (Lk )−1 , (8.37)

where Lk is obtained from Lx by substituting every derivative d
d x in

the latter by i k in the former. As a result, the Fourier transform G̃(k) is
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obtained as a polynomial of degree n, the same degree as the highest

order of derivative in Lx .

In order to obtain the Green’s function G(x), and to be able to integrate

over it with the inhomogenuous term f (x), we have to Fourier transform

G̃(k) back to G(x).

Then we have to make sure that the solution obeys the initial con-

ditions, and, if necessary, we have to add solutions of the homogenuos

equation LxG(x −x ′) = 0. That is all.

Let us consider a few examples for this procedure.

1. First, let us solve the differential operator y ′− y = t on the intervall

[0,∞) with the boundary conditions y(0) = 0.

We observe that the associated differential operator is given by

Lt = d

d t
−1,

and the inhomogenuous term can be identified with f (t ) = t .

We use the Ansatz G1(t , t ′) = 1
2π

+∞∫
−∞

G̃1(k)e i k(t−t ′)dk; hence

Lt G1(t , t ′) = 1

2π

+∞∫
−∞

G̃1(k)

(
d

d t
−1

)
e i k(t−t ′)︸ ︷︷ ︸

= (i k −1)e i k(t−t ′)

dk

= δ(t − t ′) = 1

2π

+∞∫
−∞

e i k(t−t ′)dk

(8.38)

Now compare the kernels of the Fourier integrals of Lt G1 and δ:

G̃1(k)(i k −1) = 1 =⇒ G̃1(k) = 1

i k −1
= 1

i (k + i )

G1(t , t ′) = 1

2π

+∞∫
−∞

e i k(t−t ′)

i (k + i )
dk

(8.39)

The paths in the upper and lower integration plain are drawn in Frig.

8.1.

Re k

Im k

× −i

t − t ′ > 0

t − t ′ < 0

∨∧ > > -

6

Figure 8.1: Plot of the two paths reqired
for solving the Fourier integral.

The “closures” throught the respective half-circle paths vanish. The

residuum theorem yields

G1(t , t ′) =
0 for t > t ′

−2πi Res
(

1
2πi

ei k(t−t ′)
k+i ;−i

)
=−e t−t ′ for t < t ′.

(8.40)

Hence we obtain a Green’s function for the inhomogenuous differen-

tial equation

G1(t , t ′) =−H(t ′− t )e t−t ′

However, this Green’s function and its associated (special) solution

does not obey the boundary conditions G1(0, t ′) = −H(t ′)e−t ′ 6= 0 for

t ′ ∈ [0,∞).

Therefore, we have to fit the Green’s function by adding an appropri-

ately weighted solution to the homogenuos differential equation. The
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homogenuous Green’s function is found by Lt G0(t , t ′) = 0, and thus,

in particular, d
d t G0 =G0 =⇒G0 = ae t−t ′ . with the Ansatz

G(0, t ′) =G1(0, t ′)+G0(0, t ′; a) =−H(t ′)e−t ′ +ae−t ′

for the general solution we can choose the constant coefficient a so

that

G(0, t ′) =G1(0, t ′)+G0(0, t ′; a) =−H(t ′)e−t ′ +ae−t ′ = 0

For a = 1, the Green’s function and thus the solution obeys the bound-

ary value conditions; that is,

G(t , t ′) = [
1−H(t ′− t )

]
e t−t ′ .

Since H(−x) = 1−H(x), G(t , t ′) can be rewritten as

G(t , t ′) = H(t − t ′)e t−t ′ .

In the final step we obtain the solution through integration of G over

the inhomogenuous term t :

y(t ) =
∞∫

0

H(t − t ′)︸ ︷︷ ︸
= 1 for t ′ < t

e t−t ′ t ′d t ′ =
t∫

0

e t−t ′ t ′d t ′

= e t

t∫
0

t ′e−t ′d t ′ == e t

−t ′e−t ′
∣∣∣t

0
−

t∫
0

(−e−t ′ )d t ′


= e t
[

(−te−t )−e−t ′
∣∣∣t

0

]
= e t (−te−t −e−t +1

)= e t −1− t .

(8.41)

It is prudent to check whether this is indeed a solution of the differen-

tial equation satisfying the boundary conditions:

Lt y(t ) =
(

d

d t
−1

)(
e t −1− t

)= e t −1− (
e t −1− t

)= t ,

and y(0) = e0 −1−0 = 0.

(8.42)

2. Next, let us solve the differential equation d 2 y
d t 2 + y = cos t on the

intervall t ∈ [0,∞) with the boundary conditions y(0) = y ′(0) = 0.

First, observe that L = d 2

d t 2 + 1. The Fourier Ansatz for the Green’s

function is

G1(t , t ′) = 1

2π

+∞∫
−∞

G̃(k)e i k(t−t ′)dk

L G1 = 1

2π

+∞∫
−∞

G̃(k)

(
d 2

d t 2 +1

)
e i k(t−t ′)dk

= 1

2π

+∞∫
−∞

G̃(k)((i k)2 +1)e i k(t−t ′)dk

= δ(t − t ′) = 1

2π

+∞∫
−∞

e i k(t−t ′)dk

(8.43)
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Hence G̃(k)(1−k2) = 1 and thus G̃(k) = 1
(1−k2)

= −1
(k+1)(k−1) . The Fourier

transformation is

G1(t , t ′) =− 1

2π

+∞∫
−∞

e i k(t−t ′)

(k +1)(k −1)
dk

=− 1

2π
2πi

[
Res

(
e i k(t−t ′)

(k +1)(k −1)
;k = 1

)

+Res

(
e i k(t−t ′)

(k +1)(k −1)
;k =−1

)]
H(t − t ′)

(8.44)

The path in the upper integration plain is drawn in Fig. 8.2.
Re k

Im k

× ×
> >

-
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Figure 8.2: Plot of the path reqired for
solving the Fourier integral.G1(t , t ′) =− i

2

(
e i (t−t ′) −e−i (t−t ′)

)
H(t − t ′)

= e i (t−t ′) −e−i (t−t ′)

2i
H(t − t ′) = sin(t − t ′)H(t − t ′)

G1(0, t ′) = sin(−t ′)H(−t ′) = 0 since t ′ > 0

G ′
1(t , t ′) = cos(t − t ′)H(t − t ′)+ sin(t − t ′)δ(t − t ′)︸ ︷︷ ︸

= 0

G ′
1(0, t ′) = cos(−t ′)H(−t ′) = 0.

(8.45)

G1 already satisfies the boundary conditions; hence we do not need to

find the Green’s function G0 of the homogenuous equation.

y(t ) =
∞∫

0

G(t , t ′) f (t ′)d t ′ =
∞∫

0

sin(t − t ′) H(t − t ′)︸ ︷︷ ︸
= 1 for t > t ′

cos t ′d t ′

=
t∫

0

sin(t − t ′)cos t ′d t ′ =
t∫

0

(sin t cos t ′−cos t sin t ′)cos t ′d t ′

=
t∫

0

[
sin t (cos t ′)2 −cos t sin t ′ cos t ′

]
d t ′ =

= sin t

t∫
0

(cos t ′)2d t ′−cos t

t∫
0

si nt ′ cos t ′d t ′

= sin t

[
1

2
(t ′+ sin t ′ cos t ′)

]∣∣∣∣t

0
−cos t

[
sin2 t ′

2

]∣∣∣∣t

0

= t sin t

2
+ sin2 t cos t

2
− cos t sin2 t

2
= t sin t

2
.

(8.46)

c
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Differential equations





9
Sturm-Liouville theory

This is only a very brief “dive into Sturm-Liouville theory,” which has

many fascinating aspects and connections to Fourier analysis, the special

functions of mathematical physics, operator theory, and linear algebra 1. 1 Garrett Birkhoff and Gian-Carlo Rota.
Ordinary Differential Equations. John
Wiley & Sons, New York, Chichester,
Brisbane, Toronto, fourth edition, 1959,
1960, 1962, 1969, 1978, and 1989; M. A.
Al-Gwaiz. Sturm-Liouville Theory and
its Applications. Springer, London, 2008;
and William Norrie Everitt. A catalogue
of Sturm-Liouville differential equations.
In Werner O. Amrein, Andreas M. Hinz,
and David B. Pearson, editors, Sturm-
Liouville Theory, Past and Present, pages
271–331. Birkhäuser Verlag, Basel, 2005.
URL http://www.math.niu.edu/SL2/

papers/birk0.pdf

In physics, many formalizations involve second order linear differential

equations, which, in their most general form, can be written as 2

2 Russell Herman. A Second Course
in Ordinary Differential Equations:
Dynamical Systems and Boundary Value
Problems. University of North Carolina
Wilmington, Wilmington, NC, 2008. URL
http://people.uncw.edu/hermanr/

mat463/ODEBook/Book/ODE_LargeFont.

pdf. Creative Commons Attribution-
NoncommercialShare Alike 3.0 United
States License

Lx y(x) = a0(x)y(x)+a1(x)
d

d x
y(x)+a2(x)

d 2

d x2 y(x) = f (x). (9.1)

The differential operator associated with this differential equation is

defined by

Lx = a0(x)+a1(x)
d

d x
+a2(x)

d 2

d x2 . (9.2)

The solutions y(x) are often subject to boundary conditions of various

forms:

• Dirichlet boundary conditions are of the form y(a) = y(b) = 0 for some

a,b.

• Neumann boundary conditions are of the form y ′(a) = y ′(b) = 0 for

some a,b.

• Periodic boundary conditions are of the form y(a) = y(b) and y ′(a) =
y ′(b) for some a,b.

9.1 Sturm-Liouville form

Any second order differential equation of the general form (9.1) can be

rewritten into a differential equation of the Sturm-Liouville form

Sx y(x) = d

d x

[
p(x)

d

d x

]
y(x)+q(x)y(x) = F (x),

with p(x) = e
∫ a1(x)

a2(x) d x
,

q(x) = p(x)
a0(x)

a2(x)
= a0(x)

a2(x)
e

∫ a1(x)
a2(x) d x

,

F (x) = p(x)
f (x)

a2(x)
= f (x)

a2(x)
e

∫ a1(x)
a2(x) d x

(9.3)

http://www.math.niu.edu/SL2/papers/birk0.pdf
http://www.math.niu.edu/SL2/papers/birk0.pdf
http://people.uncw.edu/hermanr/mat463/ODEBook/Book/ODE_LargeFont.pdf
http://people.uncw.edu/hermanr/mat463/ODEBook/Book/ODE_LargeFont.pdf
http://people.uncw.edu/hermanr/mat463/ODEBook/Book/ODE_LargeFont.pdf
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The associated differential operator

Sx = d

d x

[
p(x)

d

d x

]
+q(x)

= p(x)
d 2

d x2 +p ′(x)
d

d x
+q(x)

(9.4)

is called Sturm-Liouville differential operator.

For a proof, we insert p(x), q(x) and F (x) into the Sturm-Liouville

form of Eq. (9.3) and compare it with Eq. (9.1).

{
d

d x

[
e

∫ a1(x)
a2(x) d x d

d x

]
+ a0(x)

a2(x)
e

∫ a1(x)
a2(x) d x

}
y(x) = f (x)

a2(x)
e

∫ a1(x)
a2(x) d x

e
∫ a1(x)

a2(x) d x
{

d 2

d x2 + a1(x)

a2(x)

d

d x
+ a0(x)

a2(x)

}
y(x) = f (x)

a2(x)
e

∫ a1(x)
a2(x) d x

{
a2(x)

d 2

d x2 +a1(x)
d

d x
+a0(x)

}
y(x) = f (x).

(9.5)

9.2 Sturm-Liouville eigenvalue problem

The Sturm-Liouville eigenvalue problem is given by the differential

equation

Sxφ(x) =−λρ(x)φ(x), or

d

d x

[
p(x)

d

d x

]
φ(x)+ [q(x)+λρ(x)]φ(x) = 0

(9.6)

for x ∈ (a,b) and continuous p ′(x), q(x) and p(x) > 0, ρ(x) > 0.

We mention without proof (for proofs, see, for instance, Ref. 3) that we 3 M. A. Al-Gwaiz. Sturm-Liouville Theory
and its Applications. Springer, London,
2008

can formulate a spectral theorem as follows

• the eigenvalues λ turn out to be real, countable, and ordered, and that

there is a smallest eigenvalue λ1 such that λ1 <λ2 <λ3 < ·· · ;
• for each eigenvalue λ j there exists an eigenfunction φ j (x) with j −1

zeroes on (a,b);

• eigenfunctions corresponding to different eigenvalues are orthogonal,

and can be normalized, with respect to the weight function ρ(x); that

is,

〈φ j |φk〉 =
∫ b

a
φ j (x)φk (x)ρ(x)d x = δ j k (9.7)

• the set of eigenfunctions is complete; that is, any piecewise smooth

function can be represented by

f (x) =
∞∑

k=1
ckφk (x),

with

ck = 〈 f |φk〉
〈φk |φk〉

= 〈 f |φk〉.

(9.8)

• the orthonormal (with respect to the weight ρ) set {φ j (x) | j ∈ N} is a

basis of a Hilbert space with the inner product

〈 f | g 〉 =
∫ b

a
f (x)g (x)ρ(x)d x. (9.9)
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9.3 Adjoint and self-adjoint operators

In operator theory, just as in matrix theory, we can define an adjoint

operator (for finite dimensional Hilbert space, see Sec. 1.19 on page 39)

via the scalar product defined in Eq. (9.9). In this formalization, the

Sturm-Liouville differential operator S is self-adjoint.

Let us first define the domain of a differential operator L as the set

of all square integrable (with respect to the weight ρ(x)) functions ϕ

satisfying boundary conditions.∫ b

a
|ϕ(x)|2ρ(x)d x <∞. (9.10)

Then, the adjoint operator L † is defined by satisfying

〈ψ |Lϕ〉 =
∫ b

a
ψ(x)[Lϕ(x)]ρ(x)d x

= 〈L †ψ |ϕ〉 =
∫ b

a
[L †ψ(x)]ϕ(x)ρ(x)d x

(9.11)

for all ψ(x) in the domain of L † and ϕ(x) in the domain of L .

Note that in the case of second order differential operators in the

standard form (9.2) and with ρ(x) = 1, we can move the differential

quotients and the entire differential operator in

〈ψ |Lϕ〉 =
∫ b

a
ψ(x)[Lxϕ(x)]ρ(x)d x

=
∫ b

a
ψ(x)[a2(x)ϕ′′(x)+a1(x)ϕ′(x)+a0(x)ϕ(x)]d x

(9.12)

from ϕ to ψ by one and two partial integrations.

Integrating the kernel a1(x)ϕ′(x) by parts yields∫ b

a
ψ(x)a1(x)ϕ′(x)d x = ψ(x)a1(x)ϕ(x)

∣∣b
a −

∫ b

a
(ψ(x)a1(x))′ϕ(x)d x. (9.13)

Integrating the kernel a2(x)ϕ′′(x) by parts twice yields∫ b

a
ψ(x)a2(x)ϕ′′(x)d x = ψ(x)a2(x)ϕ′(x)

∣∣b
a −

∫ b

a
(ψ(x)a2(x))′ϕ′(x)d x

= ψ(x)a2(x)ϕ′(x)
∣∣b

a − (ψ(x)a2(x))′ϕ(x)
∣∣b

a +
∫ b

a
(ψ(x)a2(x))′′ϕ(x)d x

= ψ(x)a2(x)ϕ′(x)− (ψ(x)a2(x))′ϕ(x)
∣∣b

a +
∫ b

a
(ψ(x)a2(x))′′ϕ(x)d x.

(9.14)

Combining these two calculations yields

〈ψ |Lϕ〉 =
∫ b

a
ψ(x)[Lxϕ(x)]ρ(x)d x

=
∫ b

a
ψ(x)[a2(x)ϕ′′(x)+a1(x)ϕ′(x)+a0(x)ϕ(x)]d x

= ψ(x)a1(x)ϕ(x)+ψ(x)a2(x)ϕ′(x)− (ψ(x)a2(x))′ϕ(x)
∣∣b

a

+
∫ b

a
[(a2(x)ψ(x))′′− (a1(x)ψ(x))′+a0(x)ψ(x)]ϕ(x)d x.

(9.15)
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If the terms with no integral vanish because of boundary conditions or

other reasons, such as ϕ(x) = ψ(x) and a1(x) = a′
2(x) in the case of the

Sturm-Liouville operator Sx ; that is, if

ψ(x)a1(x)ϕ(x)+ψ(x)a2(x)ϕ′(x)− (ψ(x)a2(x))′ϕ(x)
∣∣b

a = 0,

then Eq. (9.15) reduces to

〈ψ |Lϕ〉 =
∫ b

a
[(a2(x)ψ(x))′′− (a1(x)ψ(x))′+a0(x)ψ(x)]ϕ(x)d x, (9.16)

and we can identify the adjoint differential operator of Lx with

L †
x = d 2

d x2 a2(x)− d

d x
a1(x)+a0(x)

= d

d x

[
a2(x)

d

d x
+a′

2(x)

]
−a′

1(x)−a1(x)
d

d x
+a0(x)

= a′
2(x)

d

d x
+a2(x)

d 2

d x2 +a′′
2 (x)+a′

2(x)
d

d x
−a′

1(x)−a1(x)
d

d x
+a0(x)

= a2(x)
d 2

d x2 + [2a′
2(x)−a1(x)]

d

d x
+a′′

2 (x)−a′
1(x)+a0(x).

(9.17)

The operator Lx is called self-adjoint if

L †
x =Lx . (9.18)

In order to prove that the Sturm-Liouville differential operator

S = d

d x

[
p(x)

d

d x

]
+q(x) = p(x)

d 2

d x2 +p ′(x)
d

d x
+q(x) (9.19)

from Eq. (9.4) is self-adjoint, we verify Eq. (9.17) with S † taken from Eq.

(9.16). Thereby, we identify a2(x) = p(x), a1(x) = p ′(x), and a0(x) = q(x);

hence

S †
x = a2(x)

d 2

d x2 + [2a′
2(x)−a1(x)]

d

d x
+a′′

2 (x)−a′
1(x)+a0(x)

= p(x)
d 2

d x2 + [2p ′(x)−p ′(x)]
d

d x
+p ′′(x)−p ′′(x)+q(x)

= p(x)
d 2

d x2 +p ′(x)
d

d x
q(x)

=Sx .

(9.20)

Alternatively we could argue from Eqs. (9.17) and (9.18), noting that a

differential operator is self-adjoint if and only if

Lx = a2(x)
d 2

d x2 +a1(x)
d

d x
+a0(x)

=L †
x = a2(x)

d 2

d x2 + [2a′
2(x)−a1(x)]

d

d x
+a′′

2 (x)−a′
1(x)+a0(x).

(9.21)

By comparison of the coefficients,

a2(x) = a2(x),

a1(x) = 2a′
2(x)−a1(x),

a0(x) =+a′′
2 (x)−a′

1(x)+a0(x),

(9.22)

and hence,

a′
2(x) = a1(x), (9.23)

which is exactly the form of the Sturm-Liouville differential operator.
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9.4 Sturm-Liouville transformation into Liouville normal

form

Let, for x ∈ [a,b],

[Sx +λρ(x)]y(x) = 0,

d

d x

[
p(x)

d

d x

]
y(x)+ [q(x)+λρ(x)]y(x) = 0,[

p(x)
d 2

d x2 +p ′(x)
d

d x
+q(x)+λρ(x)

]
y(x) = 0,[

d 2

d x2 + p ′(x)

p(x)

d

d x
+ q(x)+λρ(x)

p(x)

]
y(x) = 0

(9.24)

be a second order differential equation of the Sturm-Liouville form 4. 4 Garrett Birkhoff and Gian-Carlo Rota.
Ordinary Differential Equations. John
Wiley & Sons, New York, Chichester,
Brisbane, Toronto, fourth edition, 1959,
1960, 1962, 1969, 1978, and 1989

This equation (9.24) can be written in the Liouville normal form con-

taining no first order differentiation term

− d 2

d t 2 w(t )+ [q̂(t )−λ]w(t ) = 0, with t ∈ [t (a), t (b)]. (9.25)

It is obtained via the Sturm-Liouville transformation

ξ= t (x) =
∫ x

a

√
ρ(s)

p(s)
d s,

w(t ) = 4
√

p(x(t ))ρ(x(t ))y(x(t )),

(9.26)

where

q̂(t ) = 1

ρ

[
−q − 4

p
pρ

(
p

(
1

4
p

pρ

)′)′]
. (9.27)

The apostrophe represents derivation with respect to x.

For the sake of an example, suppose we want to know the normalized

eigenfunctions of

x2 y ′′+3x y ′+ y =−λy , with x ∈ [1,2] (9.28)

with the boundary conditions y(1) = y(2) = 0.

The first thing we have to do is to transform this differential equation

into its Sturm-Liouville form by identifying a2(x) = x2, a1(x) = 3x, a0 = 1,

ρ = 1 such that f (x) =−λy(x); and hence

p(x) = e
∫ 3x

x2 d x = e
∫ 3

x d x = e3log x = x3,

q(x) = p(x)
1

x2 = x,

F (x) = p(x)
λy

(−x2)
=−λx y , and hence ρ(x) = x.

(9.29)

As a result we obtain the Sturm-Liouville form

1

x
((x3 y ′)′+x y) =−λy . (9.30)

In the next step we apply the Sturm-Liouville transformation

ξ= t (x) =
∫ √

ρ(x)

p(x)
d x =

∫
d x

x
= log x,

w(t (x)) = 4
√

p(x(t ))ρ(x(t ))y(x(t )) = 4
√

x4 y(x(t )) = x y ,

q̂(t ) = 1

x

[
−x − 4

√
x4

(
x3

(
1

4p
x4

)′)′]
= 0.

(9.31)
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We now take the Ansatz y = 1
x w(t (x)) = 1

x w(log x) and finally obtain the

Liouville normal form

−w ′′ =λw . (9.32)

As an Ansatz for solving the Liouville normal form we use

w(ξ) = a sin(
p
λξ)+b cos(

p
λξ) (9.33)

The boundary conditions translate into x = 1 → ξ= 0, and x = 2 → ξ=
log2. From w(0) = 0 we obtain b = 0. From w(log2) = a sin(

p
λ log2) = 0

we obtain
√
λn log2 = nπ.

Thus the eigenvalues are

λn =
(

nπ

log2

)2

. (9.34)

The associated eigenfunctions are

wn(ξ) = a sin

[
nπ

log2
ξ

]
, (9.35)

and thus

yn = 1

x
a sin

[
nπ

log2
log x

]
. (9.36)

We can check that they are orthonormal by inserting into Eq. (9.7) and

verifying it; that is,

2∫
1

ρ(x)yn(x)ym(x)d x = δnm ; (9.37)

more explicitly,

2∫
1

d xx

(
1

x2

)
a2 sin

(
nπ

log x

log2

)
sin

(
mπ

log x

log2

)

[variable substitution u = log x

log2

du

d x
= 1

log2

1

x
, u = d x

x log2
]

=
u=1∫

u=0

du log2a2 sin(nπu)sin(mπu)

= a2
(

log2

2

)
︸ ︷︷ ︸

= 1

2
∫ 1

0
du sin(nπu)sin(mπu)︸ ︷︷ ︸

= δnm

= δnm .

(9.38)

Finally, with a =
√

2
log2 we obtain the solution

yn =
√

2

log2

1

x
sin

(
nπ

log x

log2

)
. (9.39)
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9.5 Varieties of Sturm-Liouville differential equations

A catalogue of Sturm-Liouville differential equations comprises the fol-

lowing species, among many others 5. Some of these cases are tabellated 5 George B. Arfken and Hans J. Weber.
Mathematical Methods for Physicists.
Elsevier, Oxford, 6th edition, 2005. ISBN
0-12-059876-0;0-12-088584-0; M. A. Al-
Gwaiz. Sturm-Liouville Theory and its
Applications. Springer, London, 2008;
and William Norrie Everitt. A catalogue
of Sturm-Liouville differential equations.
In Werner O. Amrein, Andreas M. Hinz,
and David B. Pearson, editors, Sturm-
Liouville Theory, Past and Present, pages
271–331. Birkhäuser Verlag, Basel, 2005.
URL http://www.math.niu.edu/SL2/

papers/birk0.pdf

as functions p, q , λ and ρ appearing in the general form of the Sturm-

Liouville eigenvalue problem (9.6)

Sxφ(x) =−λρ(x)φ(x), or

d

d x

[
p(x)

d

d x

]
φ(x)+ [q(x)+λρ(x)]φ(x) = 0

(9.40)

in Table 9.1.

Equation p(x) q(x) −λ ρ(x)

Hypergeometric xα+1(1−x)β+1 0 µ xα(1−x)β

Legendre 1−x2 0 l (l +1) 1
Shifted Legendre x(1−x) 0 l (l +1) 1

Associated Legendre 1−x2 − m2

1−x2 l (l +1) 1

Chebyshev I
√

1−x2 0 n2 1p
1−x2

Shifted Chebyshev I
p

x(1−x) 0 n2 1p
x(1−x)

Chebyshev II (1−x2)
3
2 0 n(n +2)

√
1−x2

Ultraspherical (Gegenbauer) (1−x2)α+
1
2 0 n(n +2α) (1−x2)α−

1
2

Bessel x − n2

x a2 x
Laguerre xe−x 0 α e−x

Associated Laguerre xk+1e−x 0 α−k xk e−x

Hermite xe−x2
0 2α e−x

Fourier 1 0 k2 1
(harmonic oscillator)
Schrödinger 1 l (l +1)x−2 µ 1
(hydrogen atom)

Table 9.1: Some varieties of differential
equations expressible as Sturm-Liouville
differential equations

X

http://www.math.niu.edu/SL2/papers/birk0.pdf
http://www.math.niu.edu/SL2/papers/birk0.pdf




10
Separation of variables

This chapter deals with the ancient alchemic suspicion of “solve et co-

agula” that it is possible to solve a problem by splitting it up into partial

problems, solving these issues separately; and consecutively joining to-

gether the partial solutions, thereby yielding the full answer to the prob-

lem – translated into the context of partial differential equations; that is, For a counterexample see the Kochen-
Specker theorem on page 65.equations with derivatives of more than one variable. Thereby, solving

the separate partial problems is not dissimilar to applying subprograms

from some program library.

Already Descartes mentioned this sort of method in his Discours de

la méthode pour bien conduire sa raison et chercher la verité dans les sci-

ences (English translation: Discourse on the Method of Rightly Conducting

One’s Reason and of Seeking Truth) 1 stating that (in a newer translation 2) 1 Rene Descartes. Discours de la méthode
pour bien conduire sa raison et chercher
la verité dans les sciences (Discourse on
the Method of Rightly Conducting One’s
Reason and of Seeking Truth). 1637. URL
http://www.gutenberg.org/etext/59
2 Rene Descartes. The Philosophical
Writings of Descartes. Volume 1. Cam-
bridge University Press, Cambridge, 1985.
translated by John Cottingham, Robert
Stoothoff and Dugald Murdoch

[Rule Five:] The whole method consists entirely in the ordering and arrang-

ing of the objects on which we must concentrate our mind’s eye if we are to

discover some truth . We shall be following this method exactly if we first

reduce complicated and obscure propositions step by step to simpler ones,

and then, starting with the intuition of the simplest ones of all, try to ascend

through the same steps to a knowledge of all the rest. [Rule Thirteen:] If we

perfectly understand a problem we must abstract it from every superfluous

conception, reduce it to its simplest terms and, by means of an enumeration,

divide it up into the smallest possible parts.

The method of separation of variables is one among a couple of strate-

gies to solve differential equations 3, and it is a very important one in 3 Lawrence C. Evans. Partial differ-
ential equations. Graduate Studies in
Mathematics, volume 19. American
Mathematical Society, Providence, Rhode
Island, 1998; and Klaus Jänich. Analysis
für Physiker und Ingenieure. Funktionen-
theorie, Differentialgleichungen, Spezielle
Funktionen. Springer, Berlin, Heidel-
berg, fourth edition, 2001. URL http:

//www.springer.com/mathematics/

analysis/book/978-3-540-41985-3

physics.

Separation of variables can be applied whenever we have no “mixtures

of derivatives and functional dependencies;” more specifically, whenever

the partial differential equation can be written as a sum

Lx,yψ(x, y) = (Lx +Ly )ψ(x, y) = 0, or

Lxψ(x, y) =−Lyψ(x, y).
(10.1)

Because in this case we may make a multiplicative Ansatz

ψ(x, y) = v(x)u(y). (10.2)

http://www.gutenberg.org/etext/59
http://www.springer.com/mathematics/analysis/book/978-3-540-41985-3
http://www.springer.com/mathematics/analysis/book/978-3-540-41985-3
http://www.springer.com/mathematics/analysis/book/978-3-540-41985-3
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Inserting (10.2) into (10) effectively separates the variable dependencies

Lx v(x)u(y) =−Ly v(x)u(y),

u(y) [Lx v(x)] =−v(x)
[
Ly u(y)

]
,

1
v(x) Lx v(x) =− 1

u(y) Ly u(y) = a,

(10.3)

with constant a, because Lx v(x)
v(x) does not depend on x, and

Ly u(y)
u(y) does

not depend on y . Therefore, neither side depends on x or y ; hence both

sides are constants.

As a result, we can treat and integrate both sides separately; that is,

1
v(x) Lx v(x) = a,

1
u(y) Ly u(y) =−a,

(10.4)

or
Lx v(x)−av(x) = 0,

Ly u(y)+au(y) = 0.
(10.5)

This separation of variable Ansatz can be often used when the Laplace

operator ∆ = ∇ ·∇ is involved, since there the partial derivatives with

respect to different variables occur in different summands.

The general solution is a linear combination (superposition) of the If we would just consider a single product
of all general one parameter solutions we
would run into the same problem as in
the entangled case on page 22 – we could
not cover all the solutions of the original
equation.

products of all the linear independent solutions – that is, the sum of the

products of all separate (linear independent) solutions, weighted by an

arbitrary scalar factor.

For the sake of demonstration, let us consider a few examples.

1. Let us separate the homogenuous Laplace differential equation

∆Φ= 1

u2 + v2

(
∂2Φ

∂u2 + ∂2Φ

∂v2

)
+ ∂2Φ

∂z2 = 0 (10.6)

in parabolic cylinder coordinates (u, v , z) with x = ( 1
2 (u2 − v2),uv , z

)
.

The separation of variables Ansatz is

Φ(u, v , z) =Φ1(u)Φ2(v)Φ3(z).

Then,
1

u2 + v2

(
Φ2Φ3

∂2Φ1

∂u2 +Φ1Φ3
∂2Φ2

∂v2

)
+Φ1Φ2

∂2Φ

∂z2 = 0

1

u2 + v2

(
Φ′′

1

Φ1
+ Φ

′′
2

Φ2

)
=−Φ

′′
3

Φ3
=λ= const.

λ is constant because it does neither depend on u, v [because of the

right hand sideΦ′′
3 (z)/Φ3(z)], nor on z (because of the left hand side).

Furthermore,

Φ′′
1

Φ1
−λu2 =−Φ

′′
2

Φ2
+λv2 = l 2 = const.

with constant l for analoguous reasons. The three resulting differential

equations are

Φ′′
1 − (λu2 + l 2)Φ1 = 0,

Φ′′
2 − (λv2 − l 2)Φ2 = 0,

Φ′′
3 +λΦ3 = 0.
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2. Let us separate the homogenuous (i) Laplace, (ii) wave, and (iii)

diffusion equations, in elliptic cylinder coordinates (u, v , z) with

~x = (a coshu cos v , a sinhu sin v , z) and

∆ = 1

a2(sinh2 u + sin2 v)

[
∂2

∂u2 + ∂2

∂v2

]
+ ∂2

∂z2 .

ad (i):

Again the separation of variables Ansatz isΦ(u, v , z) =Φ1(u)Φ2(v)Φ3(z).

Hence,

1

a2(sinh2 u + sin2 v)

(
Φ2Φ3

∂2Φ1

∂u2 +Φ1Φ3
∂2Φ2

∂v2

)
=−Φ1Φ2

∂2Φ

∂z2 ,

1

a2(sinh2 u + sin2 v)

(
Φ′′

1

Φ1
+ Φ

′′
2

Φ2

)
=−Φ

′′
3

Φ3
= k2 = const. =⇒Φ′′

3 +k2Φ3 = 0

Φ′′
1

Φ1
+ Φ

′′
2

Φ2
= k2a2(sinh2 u + sin2 v),

Φ′′
1

Φ1
−k2a2 sinh2 u =−Φ

′′
2

Φ2
+k2a2 sin2 v = l 2,

(10.7)

and finally,
Φ′′

1 − (k2a2 sinh2 u + l 2)Φ1 = 0,

Φ′′
2 − (k2a2 sin2 v − l 2)Φ2 = 0.

ad (ii):

the wave equation is given by

∆Φ= 1

c2

∂2Φ

∂t 2 .

Hence,

1

a2(sinh2 u + sin2 v)

(
∂2

∂u2 + ∂2

∂v2 +
)
Φ+ ∂2Φ

∂z2 = 1

c2

∂2Φ

∂t 2 .

The separation of variables Ansatz isΦ(u, v , z, t ) =Φ1(u)Φ2(v)Φ3(z)T (t )

=⇒ 1

a2(sinh2 u + sin2 v)

(
Φ′′

1

Φ1
+ Φ

′′
2

Φ2

)
+ Φ

′′
3

Φ3
= 1

c2

T ′′

T
=−ω2 = const.,

1

c2

T ′′

T
=−ω2 =⇒ T ′′+ c2ω2T = 0,

1

a2(sinh2 u + sin2 v)

(
Φ′′

1

Φ1
+ Φ

′′
2

Φ2

)
=−Φ

′′
3

Φ3
−ω2 = k2,

Φ′′
3 + (ω2 +k2)Φ3 = 0

Φ′′
1

Φ1
+ Φ

′′
2

Φ2
= k2a2(sinh2 u + sin2 v)

Φ′′
1

Φ1
−a2k2 sinh2 u =−Φ

′′
2

Φ2
+a2k2 sin2 v = l 2,

(10.8)

and finally,

Φ′′
1 − (k2a2 sinh2 u + l 2)Φ1 = 0,

Φ′′
2 − (k2a2 sin2 v − l 2)Φ2 = 0.

(10.9)
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ad (iii):

The diffusion equation is ∆Φ= 1
D
∂Φ
∂t .

The separation of variables Ansatz isΦ(u, v , z, t ) =
Φ1(u)Φ2(v)Φ3(z)T (t ). Let us take the result of (i), then

1

a2(sinh2 u + sin2 v)

(
Φ′′

1

Φ1
+ Φ

′′
2

Φ2

)
+ Φ

′′
3

Φ3
= 1

D

T ′

T
=−α2 = const.

T = Ae−α
2Dt

Φ′′
3 + (α2 +k2)Φ3 = 0 =⇒Φ′′

3 =−(α2 +k2)Φ3 =⇒Φ3 = Be i
p
α2+k2 z

(10.10)

and finally,

Φ′′
1 − (α2k2 sinh2 u + l 2)Φ1 = 0

Φ′′
2 − (α2k2 sin2 v − l 2)Φ2 = 0.

(10.11)

g
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Special functions of mathematical physics

This chapter follows several approaches:
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A. Silverman, translator and editor;
reprinted by Dover, New York, 1972;
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URL http://www.math.upenn.edu/

~wilf/website/Mathematics_for_

the_Physical_Sciences.html; W. W.
Bell. Special Functions for Scientists and
Engineers. D. Van Nostrand Company Ltd,
London, 1968; Nico M. Temme. Special
functions: an introduction to the classical
functions of mathematical physics. John
Wiley & Sons, Inc., New York, 1996. ISBN
0-471-11313-1; Nico M. Temme. Numer-
ical aspects of special functions. Acta
Numerica, 16:379–478, 2007. ISSN 0962-
4929. D O I : 10.1017/S0962492904000077.
URL http://dx.doi.org/10.1017/

S0962492904000077; George E. Andrews,
Richard Askey, and Ranjan Roy. Special
Functions, volume 71 of Encyclopedia
of Mathematics and its Applications.
Cambridge University Press, Cambridge,
1999. ISBN 0-521-62321-9; Vadim
Kuznetsov. Special functions and their
symmetries. Part I: Algebraic and an-
alytic methods. Postgraduate Course
in Applied Analysis, May 2003. URL
http://www1.maths.leeds.ac.uk/

~kisilv/courses/sp-funct.pdf; and
Vladimir Kisil. Special functions and
their symmetries. Part II: Algebraic and
symmetry methods. Postgraduate Course
in Applied Analysis, May 2003. URL
http://www1.maths.leeds.ac.uk/

~kisilv/courses/sp-repr.pdf

For reference, consider

Milton Abramowitz and Irene A. Stegun,
editors. Handbook of Mathematical Func-
tions with Formulas, Graphs, and Math-
ematical Tables. Number 55 in National
Bureau of Standards Applied Mathematics
Series. U.S. Government Printing Office,
Washington, D.C., 1964. URL http:

//www.math.sfu.ca/~cbm/aands/;
Yuri Alexandrovich Brychkov and Ana-
tolii Platonovich Prudnikov. Handbook
of special functions: derivatives, integrals,
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York, 2008; and I. S. Gradshteyn and I. M.
Ryzhik. Tables of Integrals, Series, and
Products, 6th ed. Academic Press, San
Diego, CA, 2000

Special functions often arise as solutions of differential equations; for in-

stance as eigenfunctions of differential operators in quantum mechanics.

Sometimes they occur after several separation of variables and substi-

tution steps have transformed the physical problem into something

manageable. For instance, we might start out with some linear partial dif-

ferential equation like the wave equation, then separate the space from

time coordinates, then separate the radial from the angular components,

and finally separate the two angular parameters. After we have done that,

we end up with several separate differential equations of the Liouville

form; among them the Legendre differential equation leading us to the

Legendre polynomials.

In what follows, a particular class of special functions will be consid-

ered. These functions are all special cases of the hypergeometric function,

which is the solution of the hypergeometric equation. The hypergeomet-

ric function exhibis a high degree of “plasticity,” as many elementary

analytic functions can be expressed by them.

First, as a prerequisite, let us define the gamma function. Then we

proceed to second order Fuchsian differential equations; followed by

rewriting a Fuchsian differential equation into a hypergeometric equa-

tion. Then we study the hypergeometric function as a solution to the

hypergeometric equation. Finally, we mention some particular hyper-

geometric functions, such as the Legendre orthogonal polynomials, and

others.

Again, if not mentioned otherwise, we shall restrict our attention to

second order differential equations. Sometimes – such as for the Fuch-

sian class – a generalization is possible but not very relevant for physics.

11.1 Gamma function

The gamma function Γ(x) is an extension of the factorial function n!, be-

cause it generalizes the factorial to real or complex arguments (different

from the negative integers and from zero); that is,

Γ(n +1) = n! for n ∈N, or Γ(n) = (n −1)! for n ∈N−0. (11.1)

Let us first define the shifted factorial or, by another naming, the

http://www.math.upenn.edu/~wilf/website/Mathematics_for_the_Physical_Sciences.html
http://www.math.upenn.edu/~wilf/website/Mathematics_for_the_Physical_Sciences.html
http://www.math.upenn.edu/~wilf/website/Mathematics_for_the_Physical_Sciences.html
http://dx.doi.org/10.1017/S0962492904000077
http://dx.doi.org/10.1017/S0962492904000077
http://www1.maths.leeds.ac.uk/~kisilv/courses/sp-funct.pdf
http://www1.maths.leeds.ac.uk/~kisilv/courses/sp-funct.pdf
http://www1.maths.leeds.ac.uk/~kisilv/courses/sp-repr.pdf
http://www1.maths.leeds.ac.uk/~kisilv/courses/sp-repr.pdf
http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/
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Pochhammer symbol

(a)0
def= 1,

(a)n
def= a(a +1) · · · (a +n −1) = Γ(a +n)

Γ(a)
,

(11.2)

where n > 0 and a can be any real or complex number.

With this definition,

z!(z +1)n = 1 ·2 · · ·z · (z +1)((z +1)+1) · · · ((z +1)+n −1)

= 1 ·2 · · ·z · (z +1)(z +2) · · · (z +n)

= (z +n)!,

or z! = (z +n)!
(z +1)n

.

(11.3)

Since

(z +n)! = (n + z)!

= 1 ·2 · · ·n · (n +1)(n +2) · · · (n + z)

= n! · (n +1)(n +2) · · · (n + z)

= n!(n +1)z ,

(11.4)

we can rewrite Eq. (11.3) into

z! = n!(n +1)z

(z +1)n
= n!nz

(z +1)n

(n +1)z

nz . (11.5)

Since the latter factor, for large n, converges as [“O(x)” means “of the

order of x”]

(n +1)z

nz = (n +1)((n +1)+1) · · · ((n +1)+ z −1)

nz

= nz +O(nz−1)

nz

= nz

nz + O(nz−1)

nz

= 1+O(n−1)
n→∞−→ 1,

(11.6)

in this limit, Eq. (11.5) can be written as

z! = lim
n→∞z! = lim

n→∞
n!nz

(z +1)n
. (11.7)

Hence, for all z ∈ Cwhich are not equal to a negative integer – that is,

z 6∈ {−1,−2, . . .} – we can, in analogy to the “classical factorial,” define a

“factorial function shifted by one” as

Γ(z +1)
def= lim

n→∞
n!nz

(z +1)n
, (11.8)
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and thus, because for very large n and constant z (i.e., z ¿ n), (z +n) ≈ n,

Γ(z) = lim
n→∞

n!nz−1

(z)n

= lim
n→∞

n!nz−1

z(z +1) · · · (z +n −1)

= lim
n→∞

n!nz−1

z(z +1) · · · (z +n −1)

( z +n

z +n

)
︸ ︷︷ ︸

1

= lim
n→∞

n!nz−1(z +n)

z(z +1) · · · (z +n)

= 1

z
lim

n→∞
n!nz

(z +1)n
.

(11.9)

Γ(z + 1) has thus been redefined in terms of z! in Eq. (11.3), which, by

comparing Eqs. (11.8) and (11.9), also implies that

Γ(z +1) = zΓ(z). (11.10)

Note that, since

(1)n = 1(1+1)(1+2) · · · (1+n −1) = n!, (11.11)

Eq. (11.8) yields

Γ(1) = lim
n→∞

n!n0

(1)n
= lim

n→∞
n!
n!

= 1. (11.12)

By induction, Eqs. (11.12) and (11.10) yield Γ(n +1) = n! for n ∈N.

We state without proof that, for complex numbers z with positive real

parts ℜz > 0, Γ(z) can be defined by an integral representation as

Γ(z)
def=

∫ ∞

0
t z−1e−t d t . (11.13)

Note that Eq. (11.10) can be derived from this integral representation of

Γ(z) by partial integration; that is,

Γ(z +1) =
∫ ∞

0
t z e−t d t

= −t z e−t ∣∣∞
0︸ ︷︷ ︸

0

−
[
−

∫ ∞

0

(
d

d t
t z

)
e−t d t

]

=
∫ ∞

0
zt z−1e−t d t

= z
∫ ∞

0
t z−1e−t d t = zΓ(z).

(11.14)

We also mention without proof following the formulæ:

Γ

(
1

2

)
=p

π, (11.15)

or, more generally,

Γ
(n

2

)
=p

π
(n −2)!!
2(n−1)/2

, for n > 0; and (11.16)

Euler’s reflection formula Γ(x)Γ(1−x) = π

sin(πx)
. (11.17)
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Here, the double factorial is defined by

n!! =



1 for n =−1,0, and

2 ·4 · · · (n −2) ·n

= (2k)!! =
k∏

i=1
(2i )

= 2n/2
(
1 ·2 · · · (n −2)

2
· n

2

)
= k!2k for positive even n = 2k,k ≥ 1, and

1 ·3 · · · (n −2) ·n

= (2k −1)!! =
k∏

i=1
(2i −1)

= 1 ·2 · · · (2k −2) · (2k −1) · (2k)

(2k)!!

= (2k)!
k!2k

for odd positive n = 2k −1,k ≥ 1.

(11.18)

Stirling’s formula [again, O(x) means “of the order of x”]

logn! = n logn −n +O(log(n)), or

n! n→∞−→ p
2πn

(n

e

)n
, or, more generally,

Γ(x) =
√

2π

x

( x

e

)x
(
1+O

(
1

x

)) (11.19)

is stated without proof.

11.2 Beta function

The beta function, also called the Euler integral of the first kind, is a spe-

cial function defined by

B(x, y) =
∫ 1

0
t x−1(1− t )y−1d t = Γ(x)Γ(y)

Γ(x + y)
for ℜx,ℜy > 0 (11.20)

No proof of the identity of the two representations in terms of an integral,

and of Γ-functions is given.

11.3 Fuchsian differential equations

Many differential equations of theoretical physics are Fuchsian equa-

tions. We shall therefore study this class in some generality.

11.3.1 Regular, regular singular, and irregular singular point

Consider the homogenuous differential equation [Eq. (9.1) on page 169 is

inhomogenuos]

Lx y(x) = a2(x)
d 2

d x2 y(x)+a1(x)
d

d x
y(x)+a0(x)y(x) = 0. (11.21)

If a0(x), a1(x) and a2(x) are analytic at some point x0 and in its neigh-

borhood, and if a2(x0) 6= 0 at x0, then x0 is called an ordinary point,

or regular point. We state without proof that in this case the solutions
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around x0 can be expanded as power series. In this case we can divide

equation (11.21) by a2(x) and rewrite it

1

a2(x)
Lx y(x) = d 2

d x2 y(x)+p1(x)
d

d x
y(x)+p2(x)y(x) = 0, (11.22)

with p1(x) = a1(x)/a2(x) and p2(x) = a0(x)/a2(x).

If, however, a2(x0) = 0 and a1(x0) or a0(x0) are nonzero, then the x0 is

called singular point of (11.21). The simplest case is if a0(x) has a simple

zero at x0; then both p1(x) and p2(x) in (11.22) have at most simple poles.

Furthermore, for reasons disclosed later – mainly motivated by the

possibility to write the solutions as power series – a point x0 is called a

regular singular point of Eq. (11.21) if

lim
x→x0

(x −x0)
a1(x)

a2(x)
, as well as lim

x→x0
(x −x0)2 a0(x)

a2(x)
(11.23)

both exist. If any one of these limits does not exist, the singular point is

an irregular singular point.

A linear ordinary differential equation is called Fuchsian, or Fuchsian

differential equation generalizable to arbitrary order n of differentiation[
d n

d xn +p1(x)
d n−1

d xn−1 +·· ·+pn−1(x)
d

d x
+pn(x)

]
y(x) = 0, (11.24)

if every singular point, including infinity, is regular, meaning that pk (x)

has at most poles of order k.

A very important case is a Fuchsian of the second order (up to second

derivatives occur). In this case, we suppose that the coefficients in (11.22)

satisfy the following conditions:

• p1(x) has at most single poles, and

• p2(x) has at most double poles.

The simplest realization of this case is for a2(x) = a(x − x0)2, a1(x) =
b(x −x0), a0(x) = c for some constant a,b,c ∈C.

11.3.2 Behavior at infinity

In order to cope with infinity z =∞ let us transform the Fuchsian equa-

tion w ′′+p1(z)w ′+p2(z)w = 0 into the new variable t = 1
z .

t = 1

z
, z = 1

t
, u(t )

def= w

(
1

t

)
= w(z)

d z

d t
=− 1

t 2 , and thus
d

d z
=−t 2 d

d t
d 2

d z2 =−t 2 d

d t

(
−t 2 d

d t

)
=−t 2

(
−2t

d

d t
− t 2 d 2

d t 2

)
= 2t 3 d

d t
+ t 4 d 2

d t 2

w ′(z) = d

d z
w(z) =−t 2 d

d t
u(t ) =−t 2u′(t )

w ′′(z) = d 2

d z2 w(z) =
(
2t 3 d

d t
+ t 4 d 2

d t 2

)
u(t ) = 2t 3u′(t )+ t 4u′′(t )

(11.25)

Insertion into the Fuchsian equation w ′′+p1(z)w ′+p2(z)w = 0 yields

2t 3u′+ t 4u′′+p1

(
1

t

)
(−t 2u′)+p2

(
1

t

)
u = 0, (11.26)
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and hence,

u′′+
[

2

t
− p1

( 1
t

)
t 2

]
u′+ p2

( 1
t

)
t 4 u = 0. (11.27)

From

p̃1(t )
def=

[
2

t
− p1

( 1
t

)
t 2

]
(11.28)

and

p̃2(t )
def= p2

( 1
t

)
t 4 (11.29)

follows the form of the rewritten differential equation

u′′+ p̃1(t )u′+ p̃2(t )u = 0. (11.30)

This equation is Fuchsian if 0 is a ordinary point, or at least a regular

singular point.

Note that, for infinity to be a regular singular point, p̃1(t ) must have

at most a pole of the order of t−1, and p̃2(t ) must have at most a pole

of the order of t−2 at t = 0. Therefore, (1/t )p1(1/t ) = zp1(z) as well as

(1/t 2)p2(1/t ) = z2p2(z) must both be analytic functions as t → 0, or

z →∞. This will be an important finding for the following arguments.

11.3.3 Functional form of the coefficients in Fuchsian differential

equations

The functional form of the coefficients p1(x) and p2(x), resulting from

the assumption of merely regular singular poles, can be estimated as

follows.

First, let us start with poles at finite complex numbers. Suppose there

are k finite poles. (The behavior of p1(x) and p2(x) at infinity will be

treated later.) Therefore, in Eq. (11.22), the coefficients must be of the

form

p1(x) = P1(x)∏k
j=1(x −x j )

,

and p2(x) = P2(x)∏k
j=1(x −x j )2

,
(11.31)

where the x1, . . . , xk are k the (regular singular) points of the poles, and

P1(x) and P2(x) are entire functions; that is, they are analytic (or, by an-

other wording, holomorphic) over the whole complex plane formed by

{x | x ∈C}.

Second, consider possible poles at infinity. Note that the requirement

that infinity is regular singular will restrict the possible growth of p1(x) as

well as p2(x) and thus, to a lesser degree, of P1(x) as well as P2(x).

As has been shown earlier, because of the requirement that infinity is

regular singular, as x approaches infinity, p1(x)x as well as p2(x)x2 must

both be analytic. Therefore, p1(x) cannot grow faster than |x|−1, and

p2(x) cannot grow faster than |x|−2.

Consequently, by (11.31), as x approaches infinity, P1(x) =
p1(x)

∏k
j=1(x − x j ) does not grow faster than |x|k−1 (meaning that it is

bounded by some constant times |x|k−1), and P2(x) = p2(x)
∏k

j=1(x − x j )2
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does not grow faster than |x|2k−2 (meaning that it is bounded by some

constant times |x|k−2).

Recall that both P1(x) and P2(x) are entire functions. Therefore, be-

cause of the generalized Liouville theorem 1 (mentioned on page 116), 1 Robert E. Greene and Stephen G. Krantz.
Function theory of one complex variable,
volume 40 of Graduate Studies in Mathe-
matics. American Mathematical Society,
Providence, Rhode Island, third edition,
2006

both P1(x) and P2(x) must be polynomials of degree of at most k −1 and

2k −2, respectively.

Moreover, by using partial fraction decomposition 2 of the rational

2 Gerhard Kristensson. Equations
of Fuchsian type. In Second Order
Differential Equations, pages 29–42.
Springer, New York, 2010. ISBN 978-1-
4419-7019-0. D O I : 10.1007/978-1-4419-
7020-6. URL http://dx.doi.org/10.

1007/978-1-4419-7020-6

functions (that is, the quotient of polynomials of the form R(x)
Q(x) , where

Q(x) is not identically zero) in terms of their pole factors (x − x j ), we

obtain the general form of the coefficients

p1(x) =
k∑

j=1

A j

x −x j
,

and p2(x) =
k∑

j=1

[
B j

(x −x j )2 + C j

x −x j

]
,

(11.32)

with constant A j ,B j ,C j ∈C. The resulting Fuchsian differential equation

is called Riemann differential equation.

Although we have considered an arbitrary finite number of poles, for

reasons that are unclear to this author, in physics we are mainly con-

cerned with two poles (i.e., k = 2) at finite points, and one at infinity.

The hypergeometric differential equation is a Fuchsian differential

equation which has at most three regular singularities, including infinity,

at 0, 1, and ∞ 3. 3 Vadim Kuznetsov. Special functions
and their symmetries. Part I: Algebraic
and analytic methods. Postgraduate
Course in Applied Analysis, May 2003.
URL http://www1.maths.leeds.ac.uk/

~kisilv/courses/sp-funct.pdf

11.3.4 Frobenius method by power series

Now let us get more concrete about the solution of Fuchsian equations

by power series.

In order to obtain a feeling for power series solutions of differential

equations, consider the “first order” Fuchsian equation 4 4 Ron Larson and Bruce H. Edwards.
Calculus. Brooks/Cole Cengage Learning,
Belmont, CA, 9th edition, 2010. ISBN
978-0-547-16702-2

y ′−λy = 0. (11.33)

Make the Ansatz, also known as known as Frobenius method 5, that the 5 George B. Arfken and Hans J. Weber.
Mathematical Methods for Physicists.
Elsevier, Oxford, 6th edition, 2005. ISBN
0-12-059876-0;0-12-088584-0

solution can be expanded into a power series of the form

y(x) =
∞∑

j=0
a j x j . (11.34)

Then, Eq. (11.33) can be written as(
d

d x

∞∑
j=0

a j x j

)
−λ

∞∑
j=0

a j x j = 0,

∞∑
j=0

j a j x j−1 −λ
∞∑

j=0
a j x j = 0,

∞∑
j=1

j a j x j−1 −λ
∞∑

j=0
a j x j = 0,

∞∑
m= j−1=0

(m +1)am+1xm −λ
∞∑

j=0
a j x j = 0,

∞∑
j=0

( j +1)a j+1x j −λ
∞∑

j=0
a j x j = 0,

(11.35)

http://dx.doi.org/10.1007/978-1-4419-7020-6
http://dx.doi.org/10.1007/978-1-4419-7020-6
http://www1.maths.leeds.ac.uk/~kisilv/courses/sp-funct.pdf
http://www1.maths.leeds.ac.uk/~kisilv/courses/sp-funct.pdf


188 Mathematical Methods of Theoretical Physics

and hence, by comparing the coefficients of x j , for n ≥ 0,

( j +1)a j+1 =λa j , or

a j+1 =
λa j

j +1
= a0

λ j+1

( j +1)!
, and

a j = a0
λ j

j !
.

(11.36)

Therefore,

y(x) =
∞∑

j=0
a0
λ j

j !
x j = a0

∞∑
j=0

(λx) j

j !
= a0eλx . (11.37)

In the Fuchsian case let us consider the following Frobenius Ansatz

to expand the solution as a generalized power series around a regular

singular point x0, which can be motivated by Eq. (11.31), and by the

Laurent series expansion (5.28)–(5.30) on page 111:

p1(x) = A1(x)

x −x0
=

∞∑
j=0

α j (x −x0) j−1 for 0 < |x −x0| < r1,

p2(x) = A2(x)

(x −x0)2 =
∞∑

j=0
β j (x −x0) j−2 for 0 < |x −x0| < r2,

y(x) = (x −x0)σ
∞∑

l=0
(x −x0)l wl =

∞∑
l=0

(x −x0)l+σwl , with w0 6= 0,

(11.38)

where A1(x) = [(x−x0)a1(x)]/a2(x) and A2(x) = [(x−x0)2a0(x)]/a2(x). Eq.

(11.22) then becomes

d 2

d x2 y(x)+p1(x)
d

d x
y(x)+p2(x)y(x) = 0,[

d 2

d x2 +
∞∑

j=0
α j (x −x0) j−1 d

d x
+

∞∑
j=0

β j (x −x0) j−2

] ∞∑
l=0

wl (x −x0)l+σ = 0,

∞∑
l=0

(l +σ)(l +σ−1)wl (x −x0)l+σ−2

+
[ ∞∑

l=0
(l +σ)wl (x −x0)l+σ−1

] ∞∑
j=0

α j (x −x0) j−1

+
[ ∞∑

l=0
wl (x −x0)l+σ

] ∞∑
j=0

β j (x −x0) j−2 = 0,

(x −x0)σ−2
∞∑

l=0
(x −x0)l [(l +σ)(l +σ−1)wl

+(l +σ)wl

∞∑
j=0

α j (x −x0) j +wl

∞∑
j=0

β j (x −x0) j

]
= 0,

(x −x0)σ−2

[ ∞∑
l=0

(l +σ)(l +σ−1)wl (x −x0)l

+
∞∑

l=0
(l +σ)wl

∞∑
j=0

α j (x −x0)l+ j +
∞∑

l=0
wl

∞∑
j=0

β j (x −x0)l+ j

]
= 0.

Next, in order to reach a common power of (x − x0), we perform an index

identification in the second and third summands (where the order of

the sums change): l = m in the first summand, as well as an index shift

l + j = m, and thus j = m − l . Since l ≥ 0 and j ≥ 0, also m = l + j cannot
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be negative. Furthermore, 0 ≤ j = m − l , so that l ≤ m.

(x −x0)σ−2

[ ∞∑
l=0

(l +σ)(l +σ−1)wl (x −x0)l

+
∞∑

j=0

∞∑
l=0

(l +σ)wlα j (x −x0)l+ j

+
∞∑

j=0

∞∑
l=0

wlβ j (x −x0)l+ j

]
= 0,

(x −x0)σ−2
[ ∞∑

m=0
(m +σ)(m +σ−1)wm(x −x0)m

+
∞∑

m=0

m∑
l=0

(l +σ)wlαm−l (x −x0)l+m−l

+
∞∑

m=0

m∑
l=0

wlβm−l (x −x0)l+m−l

]
= 0,

(x −x0)σ−2
{ ∞∑

m=0
(x −x0)m [(m +σ)(m +σ−1)wm

+
m∑

l=0
(l +σ)wlαm−l +

m∑
l=0

wlβm−l

]}
= 0,

(x −x0)σ−2
{ ∞∑

m=0
(x −x0)m [(m +σ)(m +σ−1)wm

+
m∑

l=0
wl

(
(l +σ)αm−l +βm−l

)]}
= 0.

(11.39)

If we can divide this equation through (x−x0)σ−2 and exploit the linear

independence of the polynomials (x−x0)m , we obtain an infinite number

of equations for the infinite number of coefficients wm by requiring

that all the terms “inbetween” the [· · · ]–brackets in Eq. (11.39) vanish

individually. In particular, for m = 0 and w0 6= 0,

(0+σ)(0+σ−1)w0 +w0
(
(0+σ)α0 +β0

)= 0

f0(σ)
def= σ(σ−1)+σα0 +β0 = 0.

(11.40)

The radius of convergence of the solution will, in accordance with the

Laurent series expansion, extend to the next singularity.

Note that in Eq. (11.40) we have defined f0(σ) which we will use now.

Furthermore, for successive m, and with the definition of

fk (σ)
def= αkσ+βk , (11.41)

we obtain the sequence of linear equations

w0 f0(σ) = 0

w1 f0(σ+1)+w0 f1(σ) = 0,

w2 f0(σ+2)+w1 f1(σ+1)+w0 f2(σ) = 0,

...

wn f0(σ+n)+wn−1 f1(σ+n −1)+·· ·+w0 fn(σ) = 0.

(11.42)

which can be used for an inductive determination of the coefficients wk .

Eq. (11.40) is a quadratic equation σ2 +σ(α0 − 1)+β0 = 0 for the

characteristic exponents

σ1,2 = 1

2

[
1−α0 ±

√
(1−α0)2 −4β0

]
(11.43)
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We state without proof that, if the difference of the characteristic expo-

nents

σ1 −σ2 =
√

(1−α0)2 −4β0 (11.44)

is nonzero and not an integer, then the two solutions found from σ1,2

through the generalized series Ansatz (11.38) are linear independent.

Intuitively speaking, the Frobenius method “is in obvious trouble” to

find the general solution of the Fuchsian equation if the two characteris-

tic exponents coincide (e.g., σ1 =σ2), but it “is also in trouble” to find the

general solution if σ1 −σ2 = m ∈ N; that is, if, for some positive integer

m, σ1 = σ2 +m > σ2. Because in this case, “eventually” at n = m in Eq.

(11.42), we obtain as iterative solution for the coefficient wm the term

wm =−wm−1 f1(σ2 +m −1)+·· ·+w0 fm(σ2)

f0(σ2 +m)

=−wm−1 f1(σ1 −1)+·· ·+w0 fm(σ2)

f0(σ1)︸ ︷︷ ︸
=0

,
(11.45)

as the greater critical exponent σ1 is a solution of Eq. (11.40) and thus

vanishes, leaving us with a vanishing denominator.

11.3.5 d’Alambert reduction of order

If σ1 = σ2 +n with n ∈ Z, then we find only a single solution of the Fuch-

sian equation. In order to obtain another linear independent solution we

have to employ a method based on the Wronskian 6, or the d’Alambert 6 George B. Arfken and Hans J. Weber.
Mathematical Methods for Physicists.
Elsevier, Oxford, 6th edition, 2005. ISBN
0-12-059876-0;0-12-088584-0

reduction 7, which is a general method to obtain another, linear inde-

7 Gerald Teschl. Ordinary Differential
Equations and Dynamical Systems.
Graduate Studies in Mathematics, volume
140. American Mathematical Society,
Providence, Rhode Island, 2012. ISBN
ISBN-10: 0-8218-8328-3 / ISBN-13: 978-
0-8218-8328-0. URL http://www.mat.

univie.ac.at/~gerald/ftp/book-ode/

ode.pdf

pendent solution y2(x) from an existing particular solution y1(x) by the

Ansatz (no proof is presented here)

y2(x) = y1(x)
∫

x
v(s)d s. (11.46)

http://www.mat.univie.ac.at/~gerald/ftp/book-ode/ode.pdf
http://www.mat.univie.ac.at/~gerald/ftp/book-ode/ode.pdf
http://www.mat.univie.ac.at/~gerald/ftp/book-ode/ode.pdf
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Inserting y2(x) from (11.46) into the Fuchsian equation (11.22), and using

the fact that by assumption y1(x) is a solution of it, yields

d 2

d x2 y2(x)+p1(x)
d

d x
y2(x)+p2(x)y2(x) = 0,

d 2

d x2 y1(x)
∫

x
v(s)d s +p1(x)

d

d x
y1(x)

∫
x

v(s)d s +p2(x)y1(x)
∫

x
v(s)d s = 0,

d

d x

{[
d

d x
y1(x)

]∫
x

v(s)d s + y1(x)v(x)

}
+p1(x)

[
d

d x
y1(x)

]∫
x

v(s)d s +p1(x)v(x)+p2(x)y1(x)
∫

x
v(s)d s = 0,[

d 2

d x2 y1(x)

]∫
x

v(s)d s +
[

d

d x
y1(x)

]
v(x)+

[
d

d x
y1(x)

]
v(x)+ y1(x)

[
d

d x
v(x)

]
+p1(x)

[
d

d x
y1(x)

]∫
x

v(s)d s +p1(x)y1(x)v(x)+p2(x)y1(x)
∫

x
v(s)d s = 0,[

d 2

d x2 y1(x)

]∫
x

v(s)d s +p1(x)

[
d

d x
y1(x)

]∫
x

v(s)d s +p2(x)y1(x)
∫

x
v(s)d s

+p1(x)y1(x)v(x)+
[

d

d x
y1(x)

]
v(x)+

[
d

d x
y1(x)

]
v(x)+ y1(x)

[
d

d x
v(x)

]
= 0,[

d 2

d x2 y1(x)

]∫
x

v(s)d s +p1(x)

[
d

d x
y1(x)

]∫
x

v(s)d s +p2(x)y1(x)
∫

x
v(s)d s

+y1(x)

[
d

d x
v(x)

]
+2

[
d

d x
y1(x)

]
v(x)+p1(x)y1(x)v(x) = 0,{[

d 2

d x2 y1(x)

]
+p1(x)

[
d

d x
y1(x)

]
+p2(x)y1(x)

}
︸ ︷︷ ︸

=0

∫
x

v(s)d s

+y1(x)

[
d

d x
v(x)

]
+

{
2

[
d

d x
y1(x)

]
+p1(x)y1(x)

}
v(x) = 0,

y1(x)

[
d

d x
v(x)

]
+

{
2

[
d

d x
y1(x)

]
+p1(x)y1(x)

}
v(x) = 0,

and finally,

v ′(x)+ v(x)

{
2

y ′
1(x)

y1(x)
+p1(x)

}
= 0. (11.47)

11.3.6 Computation of the characteristic exponent

Let w ′′+p1(z)w ′+p2(z)w = 0 be a Fuchsian equation. From the Laurent

series expansion of p1(z) and p2(z) with Cauchy’s integral formula we

can derive the following equations, which are helpful in determining the

characteristc exponent σ:

α0 = lim
z→z0

(z − z0)p1(z),

β0 = lim
z→z0

(z − z0)2p2(z),
(11.48)

where z0 is a regular singular point.

Let us consider α0 and the Laurent series for

p1(z) =
∞∑

k=−1
ãk (z − z0)k with ãk = 1

2πi

∮
p1(s)(s − z0)−(k+1)d s.

The summands vanish for k < −1, because p1(z) has at most a pole of

order one at z0. Let us change the index : n = k + 1 (=⇒ k = n − 1) and
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αn
def= ãn−1; then

p1(z) =
∞∑

n=0
αn(z − z0)n−1,

where

αn = ãn−1 = 1

2πi

∮
p1(s)(s − z0)−nd s;

in particular,

α0 = 1

2πi

∮
p1(s)d s.

Because the equation is Fuchsian, p1(z) has only a pole of order one at

z0; and p1(z) is of the form

p1(z) = a1(z)

(z − z0)a2(z)
= (z − z0)p1(z)

(z − z0)

and

α0 = 1

2πi

∮
p1(s)(s − z0)

(s − z0)
d s,

where (s − z0)p1(s) is analytic around z0; hence we can apply Cauchy’s

integral formula:

α0 = lim
s→z0

p1(s)(s − z0)

An easy way to see this is with the Ansatz: p1(z) = ∑∞
n=0αn(z − z0)n−1;

multiplication with (z − z0) yields

(z − z0)p1(z) =
∞∑

n=0
αn(z − z0)n .

In the limit z → z0,

lim
z→z0

(z − z0)p1(z) =αn

Let us consider β0 and the Laurent series for

p2(z) =
∞∑

k=−2
b̃k (z − z0)k with b̃k = 1

2πi

∮
p2(s)(s − z0)−(k+1)d s.

The summands vanish for k < −2, because p2(z) has at most a pole of

second order at z0. Let us change the index : n = k +2 (=⇒ k = n −2) and

βn
def= b̃n−2. Hence,

p2(z) =
∞∑

n=0
βn(z − z0)n−2,

where

βn = 1

2πi

∮
p2(s)(s − z0)−(n−1)d s,

in particular,

β0 = 1

2πi

∮
p2(s)(s − z0)d s.

Because the equation is Fuchsian, p2(z) has only a pole of the order of

two at z0; and p2(z) is of the form

p2(z) = a2(z)

(z − z0)2a2(z)
= (z − z0)2p2(z)

(z − z0)2

where a2(z) = p2(z)(z − z0)2 is analytic around z0

β0 = 1

2πi

∮
p2(s)(s − z0)2

(s − z0)
d s;
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hence we can apply Cauchy’s integral formula

β0 = lim
s→z0

p2(s)(s − z0)2.

An easy way to see this is with the Ansatz: p2(z) = ∑∞
n=0βn(z − z0)n−2.

multiplication with (z − z0)2, in the limit z → z0, yields

lim
z→z0

(z − z0)2p2(z) =βn

11.3.7 Examples

Let us consider some examples involving Fuchsian equations of the

second order.

1. Find out whether the following differential equations are Fuchsian,

and enumerate the regular singular points:

zw ′′+ (1− z)w ′ = 0,

z2w ′′+ zw ′−ν2w = 0,

z2(1+ z)2w ′′+2z(z +1)(z +2)w ′−4w = 0,

2z(z +2)w ′′+w ′− zw = 0.

(11.49)

ad 1: zw ′′+ (1− z)w ′ = 0 =⇒ w ′′+ (1− z)

z
w ′ = 0

z = 0:

α0 = lim
z→0

z
(1− z)

z
= 1, β0 = lim

z→0
z2 ·0 = 0.

The equation for the characteristic exponent is

σ(σ−1)+σα0 +β0 = 0 =⇒σ2 −σ+σ= 0 =⇒σ1,2 = 0.

z =∞: z = 1
t

p̃1(t ) = 2

t
−

(
1− 1

t

)
1
t

t 2 = 2

t
−

(
1− 1

t

)
t

= 1

t
+ 1

t 2 = t +1

t 2

=⇒ not Fuchsian.

ad 2: z2w ′′+ zw ′− v2w = 0 =⇒ w ′′+ 1

z
w ′− v2

z2 w = 0.

z = 0:

α0 = lim
z→0

z
1

z
= 1, β0 = lim

z→0
z2

(
−v2

z2

)
=−v2.

=⇒σ2 −σ+σ− v2 = 0 =⇒σ1,2 =±v

z =∞: z = 1
t

p̃1(t ) = 2

t
− 1

t 2 t = 1

t

p̃2(t ) = 1

t 4

(−t 2v2)=−v2

t 2
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=⇒ u′′+ 1

t
u′− v2

t 2 u = 0 =⇒σ1,2 =±v

=⇒ Fuchsian equation.

ad 3:

z2(1+z)2w ′′+2z(z+1)(z+2)w ′−4w = 0 =⇒ w ′′+2(z +2)

z(z +1)
w ′− 4

z2(1+ z)2 w = 0

z = 0:

α0 = lim
z→0

z
2(z +2)

z(z +1)
= 4, β0 = lim

z→0
z2

(
− 4

z2(1+ z)2

)
=−4.

=⇒σ(σ−1)+4σ−4 =σ2 +3σ−4 = 0 =⇒σ1,2 = −3±p
9+16

2
=

{−4

+1
z =−1:

α0 = lim
z→−1

(z +1)
2(z +2)

z(z +1)
=−2, β0 = lim

z→−1
(z +1)2

(
− 4

z2(1+ z)2

)
=−4.

=⇒σ(σ−1)−2σ−4 =σ2 −3σ−4 = 0 =⇒σ1,2 = 3±p
9+16

2
=

{+4

−1
z =∞:

p̃1(t ) = 2

t
− 1

t 2

2
( 1

t +2
)

1
t

( 1
t +1

) = 2

t
− 2

( 1
t +2

)
1+ t

= 2

t

(
1− 1+2t

1+ t

)

p̃2(t ) = 1

t 4

− 4
1
t 2

(
1+ 1

t

)2

=− 4

t 2

t 2

(t +1)2 =− 4

(t +1)2

=⇒ u′′+ 2

t

(
1− 1+2t

1+ t

)
u′− 4

(t +1)2 u = 0

α0 = lim
t→0

t
2

t

(
1− 1+2t

1+ t

)
= 0, β0 = lim

t→0
t 2

(
− 4

(t +1)2

)
= 0.

=⇒σ(σ−1) = 0 =⇒σ1,2 =
{

0

1

=⇒ Fuchsian equation.

ad 4:

2z(z +2)w ′′+w ′− zw = 0 =⇒ w ′′+ 1

2z(z +2)
w ′− 1

2(z +2)
w = 0

z = 0:

α0 = lim
z→0

z
1

2z(z +2)
= 1

4
, β0 = lim

z→0
z2 −1

2(z +2)
= 0.

=⇒σ2 −σ+ 1

4
σ= 0 =⇒σ2 − 3

4
σ= 0 =⇒σ1 = 0,σ2 = 3

4
.

z =−2:

α0 = lim
z→−2

(z +2)
1

2z(z +2)
=−1

4
, β0 = lim

z→−2
(z +2)2 −1

2(z +2)
= 0.

=⇒σ1 = 0, σ2 = 5

4
.

z =∞:

p̃1(t ) = 2

t
− 1

t 2

(
1

2 1
t

( 1
t +2

))
= 2

t
− 1

2(1+2t )

p̃2(t ) = 1

t 4

(−1)

2
( 1

t +2
) =− 1

2t 3(1+2t )

=⇒ not a Fuchsian.
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2. Determine the solutions of

z2w ′′+ (3z +1)w ′+w = 0

around the regular singular points.

The singularities are at z = 0 and z =∞.

Singularities at z = 0:

p1(z) = 3z +1

z2 = a1(z)

z
with a1(z) = 3+ 1

z
p1(z) has a pole of higher order than one; hence this is no Fuchsian

equation; and z = 0 is an irregular singular point.

Singularities at z =∞:

• Transformation z = 1

t
, w(z) → u(t ):

u′′(t )+
[

2

t
− 1

t 2 p1

(
1

t

)]
·u′(t )+ 1

t 4 p2

(
1

t

)
·u(t ) = 0.

The new coefficient functions are

p̃1(t ) = 2

t
− 1

t 2 p1

(
1

t

)
= 2

t
− 1

t 2 (3t + t 2) = 2

t
− 3

t
−1 =−1

t
−1

p̃2(t ) = 1

t 4 p2

(
1

t

)
= t 2

t 4 = 1

t 2

• check whether this is a regular singular point:

p̃1(t ) =−1+ t

t
= ã1(t )

t
with ã1(t ) =−(1+ t ) regular

p̃2(t ) = 1

t 2 = ã2(t )

t 2 with ã2(t ) = 1 regular

ã1 and ã2 are regular at t = 0, hence this is a regular singular point.

• Ansatz around t = 0: the transformed equation is

u′′(t )+ p̃1(t )u′(t )+ p̃2(t )u(t ) = 0

u′′(t )−
(

1

t
+1

)
u′(t )+ 1

t 2 u(t ) = 0

t 2u′′(t )− (t + t 2)u′(t )+u(t ) = 0

The generalized power series is

u(t ) =
∞∑

n=0
wn t n+σ

u′(t ) =
∞∑

n=0
wn(n +σ)t n+σ−1

u′′(t ) =
∞∑

n=0
wn(n +σ)(n +σ−1)t n+σ−2

If we insert this into the transformed differential equation we

obtain

t 2
∞∑

n=0
wn(n +σ)(n +σ−1)t n+σ−2−

− (t + t 2)
∞∑

n=0
wn(n +σ)t n+σ−1 +

∞∑
n=0

wn t n+σ = 0

∞∑
n=0

wn(n +σ)(n +σ−1)t n+σ−
∞∑

n=0
wn(n +σ)t n+σ−

−
∞∑

n=0
wn(n +σ)t n+σ+1 +

∞∑
n=0

wn t n+σ = 0
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Change of index: m = n +1, n = m −1 in the third sum yields

∞∑
n=0

wn

[
(n +σ)(n +σ−2)+1

]
t n+σ−

∞∑
m=1

wm−1(m −1+σ)t m+σ = 0.

In the second sum, substitute m for n

∞∑
n=0

wn

[
(n +σ)(n +σ−2)+1

]
t n+σ−

∞∑
n=1

wn−1(n +σ−1)t n+σ = 0.

We write out explicitly the n = 0 term of the first sum

w0

[
σ(σ−2)+1

]
tσ+

∞∑
n=1

wn

[
(n +σ)(n +σ−2)+1

]
t n+σ−

−
∞∑

n=1
wn−1(n +σ−1)t n+σ = 0.

Now we can combine the two sums

w0

[
σ(σ−2)+1

]
tσ+

+
∞∑

n=1

{
wn

[
(n +σ)(n +σ−2)+1

]
−wn−1(n +σ−1)

}
t n+σ = 0.

The left hand side can only vanish for all t if the coefficients vanish;

hence

w0

[
σ(σ−2)+1

]
= 0, (11.50)

wn

[
(n +σ)(n +σ−2)+1

]
−wn−1(n +σ−1) = 0. (11.51)

ad (11.50) for w0:

σ(σ−2)+1 = 0

σ2 −2σ+1 = 0

(σ−1)2 = 0 =⇒ σ(1,2)
∞ = 1

The charakteristic exponent is σ(1)∞ =σ(2)∞ = 1.

ad (11.51) for wn : For the coefficients wn we obtain the recursion

formula

wn

[
(n +σ)(n +σ−2)+1

]
= wn−1(n +σ−1)

=⇒ wn = n +σ−1

(n +σ)(n +σ−2)+1
wn−1.

Let us insert σ= 1:

wn = n

(n +1)(n −1)+1
wn−1 = n

n2 −1+1
wn−1 = n

n2 wn−1 = 1

n
wn−1.

We can fix w0 = 1, hence:

w0 = 1 = 1

1
= 1

0!

w1 = 1

1
= 1

1!

w2 = 1

1 ·2
= 1

2!

w3 = 1

1 ·2 ·3
= 1

3!
...

wn = 1

1 ·2 ·3 · · · · ·n
= 1

n!
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And finally,

u1(t ) = tσ
∞∑

n=0
wn t n = t

∞∑
n=0

t n

n!
= te t .

• Notice that both characteristic exponents are equal; hence we have

to employ the d’Alambert reduction

u2(t ) = u1(t )

t∫
0

v(s)d s

with

v ′(t )+ v(t )

[
2

u′
1(t )

u1(t )
+ p̃1(t )

]
= 0.

Insertion of u1 and p̃1,

u1(t ) = te t

u′
1(t ) = e t (1+ t )

p̃1(t ) = −
(

1

t
+1

)
,

yields

v ′(t )+ v(t )

(
2

e t (1+ t )

te t − 1

t
−1

)
= 0

v ′(t )+ v(t )

(
2

(1+ t )

t
− 1

t
−1

)
= 0

v ′(t )+ v(t )

(
2

t
+2− 1

t
−1

)
= 0

v ′(t )+ v(t )

(
1

t
+1

)
= 0

d v

d t
= −v

(
1+ 1

t

)
d v

v
= −

(
1+ 1

t

)
d t

Upon integration of both sides we obtain∫
d v

v
= −

∫ (
1+ 1

t

)
d t

log v = −(t + log t ) =−t − log t

v = exp(−t − log t ) = e−t e− log t = e−t

t
,

and hence an explicit form of v(t ):

v(t ) = 1

t
e−t .

If we insert this into the equation for u2 we obtain

u2(t ) = te t
∫ t

0

1

s
e−s d s.

• Therefore, with t = 1
z , u(t ) = w(z), the two linear independent

solutions around the regular singular point at z =∞ are

w1(z) = 1

z
exp

(
1

z

)
, and

w2(z) = 1

z
exp

(
1

z

) 1
z∫

0

1

t
e−t d t .

(11.52)
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11.4 Hypergeometric function

11.4.1 Definition

A hypergeometric series is a series

∞∑
j=0

c j , (11.53)

where the quotients
c j+1

c j
are rational functions (that is, the quotient of

two polynomials R(x)
Q(x) , where Q(x) is not identically zero) of j , so that they

can be factorized by

c j+1

c j
= ( j +a1)( j +a2) · · · ( j +ap )

( j +b1)( j +b2) · · · ( j +bq )

(
x

j +1

)
,

or c j+1 = c j
( j +a1)( j +a2) · · · ( j +ap )

( j +b1)( j +b2) · · · ( j +bq )

(
x

j +1

)
= c j−1

( j −1+a1)( j −1+a2) · · · ( j −1+ap )

( j −1+b1)( j −1+b2) · · · ( j −1+bq )
×

× ( j +a1)( j +a2) · · · ( j +ap )

( j +b1)( j +b2) · · · ( j +bq )

(
x

j

)(
x

j +1

)
= c0

a1a2 · · ·ap

b1b2 · · ·bq
· · · ( j −1+a1)( j −1+a2) · · · ( j −1+ap )

( j −1+b1)( j −1+b2) · · · ( j −1+bq )
×

× ( j +a1)( j +a2) · · · ( j +ap )

( j +b1)( j +b2) · · · ( j +bq )

( x

1

)
· · ·

(
x

j

)(
x

j +1

)
= c0

(a1) j+1(a2) j+1 · · · (ap ) j+1

(b1) j+1(b2) j+1 · · · (bq ) j+1

(
x j+1

( j +1)!

)
.

(11.54)

The factor j +1 in the denominator has been chosen to define the par-

ticular factor j ! in a definition given later and below; if it does not arise

“naturally” we may just obtain it by compensating it with a factor j +1 in

the numerator. With this ratio, the hypergeometric series (11.53) can be

written i terms of shifted factorials, or, by another naming, the Pochham-

mer symbol, as

∞∑
j=0

c j = c0

∞∑
j=0

(a1) j (a2) j · · · (ap ) j

(b1) j (b2) j · · · (bq ) j

x j

j !

= c0p Fq

(
a1, . . . , ap

b1, . . . ,bq
; x

)
, or

= c0p Fq
(
a1, . . . , ap ;b1, . . . ,bq ; x

)
.

(11.55)

Apart from this definition via hypergeometric series, the Gauss hyper-

geometric function, or, used synonymuously, the Gauss series

2F1

(
a,b

c
; x

)
= 2F1 (a,b;c; x) =

∞∑
j=0

(a) j (b) j

(c) j

x j

j !

= 1+ ab

c
x + 1

2!
a(a +1)b(b +1)

c(c +1)
x2 +·· ·

(11.56)

can be defined as a solution of a Fuchsian differential equation which has

at most three regular singularities at 0, 1, and ∞.

Indeed, any Fuchsian equation with finite regular singularities at x1

and x2 can be rewritten into the Riemann differential equation (11.32),
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which in turn can be rewritten into the Gaussian differential equation or

hypergeometric differential equation with regular singularities at 0, 1, and

∞ 8. This can be demonstrated by rewriting any such equation of the 8 Einar Hille. Lectures on ordinary
differential equations. Addison-Wesley,
Reading, Mass., 1969; Garrett Birkhoff and
Gian-Carlo Rota. Ordinary Differential
Equations. John Wiley & Sons, New York,
Chichester, Brisbane, Toronto, fourth
edition, 1959, 1960, 1962, 1969, 1978,
and 1989; and Gerhard Kristensson.
Equations of Fuchsian type. In Second
Order Differential Equations, pages
29–42. Springer, New York, 2010. ISBN
978-1-4419-7019-0. D O I : 10.1007/978-1-
4419-7020-6. URL http://dx.doi.org/

10.1007/978-1-4419-7020-6

The Bessel equation has a regular singular
point at 0, and an irregular singular point
at infinity.

form

w ′′(x)+
(

A1

x −x1
+ A2

x −x2

)
w ′(x)

+
(

B1

(x −x1)2 + B2

(x −x2)2 + C1

x −x1
+ C2

x −x2

)
w(x) = 0

(11.57)

through transforming Eq. (11.57) into the hypergeometric equation

[
d 2

d x2 + (a +b +1)x − c

x(x −1)

d

d x
+ ab

x(x −1)

]
2F1(a,b;c; x) = 0, (11.58)

where the solution is proportional to the Gauss hypergeometric function

w(x) −→ (x −x1)σ
(1)
1 (x −x2)σ

(2)
2 2F1(a,b;c; x), (11.59)

and the variable transform as

x −→ x = x −x1

x2 −x1
, with

a =σ(1)
1 +σ(1)

2 +σ(1)
∞ ,

b =σ(1)
1 +σ(1)

2 +σ(2)
∞ ,

c = 1+σ(1)
1 −σ(2)

1 .

(11.60)

where σ(i )
j stands for the i th characteristic exponent of the j th singular-

ity.

Whereas the full transformation from Eq. (11.57) to the hypergeomet-

ric equation (11.58) will not been given, we shall show that the Gauss

hypergeometric function 2F1 satisfies the hypergeometric equation

(11.58).

First, define the differential operator

ϑ= x
d

d x
, (11.61)

and observe that

ϑ(ϑ+ c −1)xn = x
d

d x

(
x

d

d x
+ c −1

)
xn

= x
d

d x

(
xnxn−1 + cxn −xn)

= x
d

d x

(
nxn + cxn −xn)

= x
d

d x
(n + c −1) xn

= n (n + c −1) xn .

(11.62)

http://dx.doi.org/10.1007/978-1-4419-7020-6
http://dx.doi.org/10.1007/978-1-4419-7020-6
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Thus, if we apply ϑ(ϑ+ c −1) to 2F1, then

ϑ(ϑ+ c −1) 2F1(a,b;c; x) =ϑ(ϑ+ c −1)
∞∑

j=0

(a) j (b) j

(c) j

x j

j !

=
∞∑

j=0

(a) j (b) j

(c) j

j ( j + c −1)x j

j !
=

∞∑
j=1

(a) j (b) j

(c) j

j ( j + c −1)x j

j !

=
∞∑

j=1

(a) j (b) j

(c) j

( j + c −1)x j

( j −1)!

[index shift: j → n +1,n = j −1,n ≥ 0]

=
∞∑

n=0

(a)n+1(b)n+1

(c)n+1

(n +1+ c −1)xn+1

n!

= x
∞∑

n=0

(a)n(a +n)(b)n(b +n)

(c)n(c +n)

(n + c)xn

n!

= x
∞∑

n=0

(a)n(b)n

(c)n

(a +n)(b +n)xn

n!

= x(ϑ+a)(ϑ+b)
∞∑

n=0

(a)n(b)n

(c)n

xn

n!
= x(ϑ+a)(ϑ+b) 2F1(a,b;c; x),

(11.63)

where we have used

(a +n)xn = (a +ϑ)xn , and

(a)n+1 = a(a +1) · · · (a +n −1)(a +n) = (a)n(a +n).
(11.64)

Writing out ϑ in Eq. (11.63) explicitly yields

{ϑ(ϑ+ c −1)−x(ϑ+a)(ϑ+b)} 2F1(a,b;c; x) = 0,{
x

d

d x

(
x

d

d x
+ c −1

)
−x

(
x

d

d x
+a

)(
x

d

d x
+b

)}
2F1(a,b;c; x) = 0,{

d

d x

(
x

d

d x
+ c −1

)
−

(
x

d

d x
+a

)(
x

d

d x
+b

)}
2F1(a,b;c; x) = 0,{

d

d x
+x

d 2

d x2 + (c −1)
d

d x
−

(
x2 d 2

d x2 +x
d

d x
+bx

d

d x

+ax
d

d x
+ab

)}
2F1(a,b;c; x) = 0,{(

x −x2) d 2

d x2 + (1+ c −1−x −x(a +b))
d

d x
+ab

}
2F1(a,b;c; x) = 0,{

−x(x −1)
d 2

d x2 − (c −x(1+a +b))
d

d x
−ab

}
2F1(a,b;c; x) = 0,{

d 2

d x2 + x(1+a +b)− c

x(x −1)

d

d x
+ ab

x(x −1)

}
2F1(a,b;c; x) = 0.

(11.65)

11.4.2 Properties

There exist many properties of the hypergeometric series. In the follow-

ing we shall mention a few.

d

d z
2F1(a,b;c; z) = ab

c
2F1(a +1,b +1;c +1; z). (11.66)
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d

d z
2F1(a,b;c; z) = d

d z

∞∑
n=0

(a)n(b)n

(c)n

zn

n!
=

=
∞∑

n=0

(a)n(b)n

(c)n
n

zn−1

n!

=
∞∑

n=1

(a)n(b)n

(c)n

zn−1

(n −1)!

An index shift n → m +1, m = n −1, and a subsequent renaming m → n,

yields

d

d z
2F1(a,b;c; z) =

∞∑
n=0

(a)n+1(b)n+1

(c)n+1

zn

n!
.

As

(x)n+1 = x(x +1)(x +2) · · · (x +n −1)(x +n)

(x +1)n = (x +1)(x +2) · · · (x +n −1)(x +n)

(x)n+1 = x(x +1)n

holds, we obtain

d

d z
2F1(a,b;c; z) =

∞∑
n=0

ab

c

(a +1)n(b +1)n

(c +1)n

zn

n!
= ab

c
2F1(a+1,b+1;c +1; z).

We state Euler’s integral representation for ℜc > 0 and ℜb > 0 without

proof:

2F1(a,b;c; x) = Γ(c)

Γ(b)Γ(c −b)

∫ 1

0
t b−1(1− t )c−b−1(1−xt )−ad t . (11.67)

For ℜ(c −a −b) > 0, we also state Gauss’ theorem

2F1(a,b;c;1) =
∞∑

j=0

(a) j (b) j

j !(c) j
= Γ(c)Γ(c −a −b)

Γ(c −a)Γ(c −b)
. (11.68)

For a proof, we can set x = 1 in Euler’s integral representation, and the

Beta function defined in Eq. (11.20).

11.4.3 Plasticity

Some of the most important elementary functions can be expressed as

hypergeometric series; most importantly the Gaussian one 2F1, which is
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sometimes denoted by just F . Let us enumerate a few.

ex = 0F0(−;−; x) (11.69)

cos x = 0F1(−;
1

2
;−x2

4
) (11.70)

sin x = x 0F1(−;
3

2
;−x2

4
) (11.71)

(1−x)−a = 1F0(a;−; x) (11.72)

sin−1 x = x 2F1(
1

2
,

1

2
;

3

2
; x2) (11.73)

tan−1 x = x 2F1(
1

2
,1;

3

2
;−x2) (11.74)

log(1+x) = x 2F1(1,1;2;−x) (11.75)

H2n(x) = (−1)n(2n)!
n! 1F1(−n;

1

2
; x2) (11.76)

H2n+1(x) = 2x
(−1)n(2n +1)!

n! 1F1(−n;
3

2
; x2) (11.77)

Lαn (x) =
(

n +α
n

)
1F1(−n;α+1; x) (11.78)

Pn(x) = P (0,0)
n (x) = 2F1(−n,n +1;1;

1−x

2
), (11.79)

Cγ
n (x) = (2γ)n(

γ+ 1
2

)
n

P
(γ− 1

2 ,γ− 1
2 )

n (x), (11.80)

Tn(x) = n!( 1
2

)
n

P
(− 1

2 ,− 1
2 )

n (x), (11.81)

Jα(x) =
( x

2

)α
Γ(α+1)

0F1(−;α+1;−1

4
x2), (11.82)

where H stands for Hermite polynomials, L for Laguerre polynomials,

P (α,β)
n (x) = (α+1)n

n! 2F1(−n,n +α+β+1;α+1;
1−x

2
) (11.83)

for Jacobi polynomials, C for Gegenbauer polynomials, T for Chebyshev

polynomials, P for Legendre polynomials, and J for the Bessel functions of

the first kind, respectively.

1. Let us prove that

log(1− z) =−z 2F1(1,1,2; z).

Consider

2F1(1,1,2; z) =
∞∑

m=0

[(1)m]2

(2)m

zm

m!
=

∞∑
m=0

[1 ·2 · · · · ·m]2

2 · (2+1) · · · · · (2+m −1)

zm

m!

With

(1)m = 1 ·2 · · · · ·m = m!, (2)m = 2 · (2+1) · · · · · (2+m −1) = (m +1)!

follows

2F1(1,1,2; z) =
∞∑

m=0

[m!]2

(m +1)!
zm

m!
=

∞∑
m=0

zm

m +1
.

Index shift k = m +1

2F1(1,1,2; z) =
∞∑

k=1

zk−1

k
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and hence

−z 2F1(1,1,2; z) =−
∞∑

k=1

zk

k
.

Compare with the series

log(1+x) =
∞∑

k=1
(−1)k+1 xk

k
for −1 < x ≤ 1

If one substitutes −x for x, then

log(1−x) =−
∞∑

k=1

xk

k
.

The identity follows from the analytic continuation of x to the com-

plex z plane.

2. Let us prove that, because of (a + z)n =∑n
k=0

(
n

k

)
zk an−k ,

(1− z)n = 2F1(−n,1,1; z).

2F1(−n,1,1; z) =
∞∑

i=0

(−n)i (1)i

(1)i

zi

i !
=

∞∑
i=0

(−n)i
zi

i !
.

Consider (−n)i

(−n)i = (−n)(−n +1) · · · (−n + i −1).

For evenn ≥ 0 the series stops after a finite number of terms, because

the factor −n + i − 1 = 0 for i = n + 1 vanishes; hence the sum of i

extends only from 0 to n. Hence, if we collect the factors (−1) which

yield (−1)i we obtain

(−n)i = (−1)i n(n −1) · · · [n − (i −1)] = (−1)i n!
(n − i )!

.

Hence, insertion into the Gauss hypergeometric function yields

2F1(−n,1,1; z) =
n∑

i=0
(−1)i zi n!

i !(n − i )!
=

n∑
i=0

(
n

i

)
(−z)i .

This is the binomial series

(1+x)n =
n∑

k=0

(
n

k

)
xk

with x =−z; and hence,

2F1(−n,1,1; z) = (1− z)n .

3. Let us prove that, because of arcsin x =∑∞
k=0

(2k)!x2k+1

22k (k!)2(2k+1)
,

2F1

(
1

2
,

1

2
,

3

2
;sin2 z

)
= z

sin z
.

Consider

2F1

(
1

2
,

1

2
,

3

2
;sin2 z

)
=

∞∑
m=0

[( 1
2

)
m

]2( 3
2

)
m

(sin z)2m

m!
.
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We take

(2n)!! = 2 ·4 · · · · · (2n) = n!2n

(2n −1)!! = 1 ·3 · · · · · (2n −1) = (2n)!
2nn!

Hence(
1

2

)
m

= 1

2
·
(

1

2
+1

)
· · ·

(
1

2
+m −1

)
= 1 ·3 ·5 · · · (2m −1)

2m = (2m −1)!!
2m(

3

2

)
m

= 3

2
·
(

3

2
+1

)
· · ·

(
3

2
+m −1

)
= 3 ·5 ·7 · · · (2m +1)

2m = (2m +1)!!
2m

Therefore, ( 1
2

)
m( 3

2

)
m

= 1

2m +1
.

On the other hand,

(2m)! = 1 ·2 ·3 · · · · · (2m −1)(2m) = (2m −1)!!(2m)!! =
= 1 ·3 ·5 · · · · · (2m −1) ·2 ·4 ·6 · · · · · (2m) =
=

(
1

2

)
m

2m ·2mm! = 22mm!
(

1

2

)
m
=⇒

(
1

2

)
m
= (2m)!

22mm!

Upon insertion one obtains

F

(
1

2
,

1

2
,

3

2
;sin2 z

)
=

∞∑
m=0

(2m)!(sin z)2m

22m(m!)2(2m +1)
.

Comparing with the series for arcsin one finally obtains

sin zF

(
1

2
,

1

2
,

3

2
;sin2 z

)
= arcsin(sin z) = z.

11.4.4 Four forms

We state without proof the four forms of the Gauss hypergeometric func-

tion 9. 9 T. M. MacRobert. Spherical Harmonics.
An Elementary Treatise on Harmonic
Functions with Applications, volume 98
of International Series of Monographs in
Pure and Applied Mathematics. Pergamon
Press, Oxford, 3rd edition, 1967

2F1(a,b;c; x) = (1−x)c−a−b
2F1(c −a,c −b;c; x) (11.84)

= (1−x)−a
2F1

(
a,c −b;c;

x

x −1

)
(11.85)

= (1−x)−b
2F1

(
b,c −a;c;

x

x −1

)
. (11.86)

11.5 Orthogonal polynomials

Many systems or sequences of functions may serve as a basis of linearly

independent functions which are capable to “cover” – that is, to approxi-

mate – certain functional classes 10. We have already encountered at least 10 Russell Herman. A Second Course in Or-
dinary Differential Equations: Dynamical
Systems and Boundary Value Problems.
University of North Carolina Wilming-
ton, Wilmington, NC, 2008. URL http:

//people.uncw.edu/hermanr/mat463/

ODEBook/Book/ODE_LargeFont.pdf.
Creative Commons Attribution-
NoncommercialShare Alike 3.0 United
States License; and Francisco Marcellán
and Walter Van Assche. Orthogonal Poly-
nomials and Special Functions, volume
1883 of Lecture Notes in Mathematics.
Springer, Berlin, 2006. ISBN 3-540-31062-
2

two such prospective bases [cf. Eq. (6.12)]:

{1, x, x2, . . . , xk , . . .} with f (x) =
∞∑

k=0
ck xk , (11.87)

and {
e i kx | k ∈Z

}
for f (x +2π) = f (x)

with f (x) =
∞∑

k=−∞
ck e i kx ,

where ck = 1

2π

∫ π

−π
f (x)e−i kx d x.

(11.88)

http://people.uncw.edu/hermanr/mat463/ODEBook/Book/ODE_LargeFont.pdf
http://people.uncw.edu/hermanr/mat463/ODEBook/Book/ODE_LargeFont.pdf
http://people.uncw.edu/hermanr/mat463/ODEBook/Book/ODE_LargeFont.pdf
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In order to claim existence of such functional basis systems, let us first

define what orthogonality means in the functional context. Just as for

linear vector spaces, we can define an inner product or scalar product [cf.

also Eq. (6.4)] of two real-valued functions f (x) and g (x) by the integral
11 11 Herbert S. Wilf. Mathematics for the

physical sciences. Dover, New York, 1962.
URL http://www.math.upenn.edu/

~wilf/website/Mathematics_for_the_

Physical_Sciences.html

〈 f | g 〉 =
∫ b

a
f (x)g (x)ρ(x)d x (11.89)

for some suitable weight function ρ(x) ≥ 0. Very often, the weight func-

tion is set to the identity; that is, ρ(x) = ρ = 1. We notice without proof

that 〈 f |g 〉 satisfies all requirements of a scalar product. A system of func-

tions {ψ0,ψ1,ψ2, . . . ,ψk , . . .} is orthogonal if, for j 6= k,

〈ψ j |ψk〉 =
∫ b

a
ψ j (x)ψk (x)ρ(x)d x = 0. (11.90)

Suppose, in some generality, that { f0, f1, f2, . . . , fk , . . .} is a sequence of

nonorthogonal functions. Then we can apply a Gram-Schmidt orthog-

onalization process to these functions and thereby obtain orthogonal

functions {φ0,φ1,φ2, . . . ,φk , . . .} by

φ0(x) = f0(x),

φk (x) = fk (x)−
k−1∑
j=0

〈 fk |φ j 〉
〈φ j |φ j 〉

φ j (x).
(11.91)

Note that the proof of the Gram-Schmidt process in the functional con-

text is analoguous to the one in the vector context.

11.6 Legendre polynomials

The polynomial functions in {1, x, x2, . . . , xk , . . .} are not mutually orthogo-

nal because, for instance, with ρ = 1 and b =−a = 1,

〈1 | x2〉 =
∫ b=1

a=−1
x2d x = x3

3

∣∣∣∣x=1

x=−1
= 2

3
. (11.92)

Hence, by the Gram-Schmidt process we obtain

φ0(x) = 1,

φ1(x) = x − 〈x | 1〉
〈1 | 1〉 1

= x −0 = x,

φ2(x) = x2 − 〈x2 | 1〉
〈1 | 1〉 1− 〈x2 | x〉

〈x | x〉 x

= x2 − 2/3

2
1−0x = x2 − 1

3
,

...

(11.93)

If, on top of orthogonality, we are “forcing” a type of “normalization” by

defining

Pl (x)
def= φl (x)

φl (1)
,

with Pl (1) = 1,

(11.94)

http://www.math.upenn.edu/~wilf/website/Mathematics_for_the_Physical_Sciences.html
http://www.math.upenn.edu/~wilf/website/Mathematics_for_the_Physical_Sciences.html
http://www.math.upenn.edu/~wilf/website/Mathematics_for_the_Physical_Sciences.html
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then the resulting orthogonal polynomials are the Legendre polynomials

Pl ; in particular,

P0(x) = 1,

P1(x) = x,

P2(x) =
(

x2 − 1

3

)/
2

3
= 1

2

(
3x2 −1

)
,

...

(11.95)

with Pl (1) = 1, l =N0.

Why should we be interested in orthonormal systems of functions?

Because, as pointed out earlier in the contect of hypergeometric func-

tions, they could be alternatively defined as the eigenfunctions and

solutions of certain differential equation, such as, for instance, the

Schrödinger equation, which may be subjected to a separation of vari-

ables. For Legendre polynomials the associated differential equation is

the Legendre equation{
(1−x2)

d 2

d x2 −2x
d

d x
+ l (l +1)

}
Pl (x) = 0,

or

{
d

d x

(
(1−x2)

d

d x

)
+ l (l +1)

}
Pl (x) = 0

(11.96)

for l ∈ N0, whose Sturm-Liouville form has been mentioned earlier in

Table 9.1 on page 175. For a proof, we refer to the literature.

11.6.1 Rodrigues formula

A third alternative definition of Legendre polynomials is by the Rodrigues

formula

Pl (x) = 1

2l l !
d l

d xl
(x2 −1)l , for l ∈N0. (11.97)

Again, no proof of equivalence will be given.

For even l , Pl (x) = Pl (−x) is an even function of x, whereas for odd l ,

Pl (x) =−Pl (−x) is an odd function of x; that is,

Pl (−x) = (−1)l Pl (x). (11.98)

Moreover,

Pl (−1) = (−1)l (11.99)

and

P2k+1(0) = 0. (11.100)

This can be shown by the substitution t =−x, d t =−d x, and insertion

into the Rodrigues formula:

Pl (−x) = 1

2l l !
d l

dul
(u2 −1)l

∣∣∣∣∣
u=−x

= [u →−u] =

= 1

(−1)l

1

2l l !
d l

dul
(u2 −1)l

∣∣∣∣∣
u=x

= (−1)l Pl (x).

Because of the “normalization” Pl (1) = 1 we obtain

Pl (−1) = (−1)l Pl (1) = (−1)l .

And as Pl (−0) = Pl (0) = (−1)l Pl (0), we obtain Pl (0) = 0 for odd l .
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11.6.2 Generating function

For |x| < 1 and |t | < 1 the Legendre polynomials Pl (x) are the coefficients

in the Taylor series expansion of the following generating function

g (x, t ) = 1p
1−2xt + t 2

=
∞∑

l=0
Pl (x) t l (11.101)

around t = 0. No proof is given here.

11.6.3 The three term and other recursion formulae

Among other things, generating functions are useful for the derivation of

certain recursion relations involving Legendre polynomials.

For instance, for l = 1,2, . . ., the three term recursion formula

(2l +1)xPl (x) = (l +1)Pl+1(x)+ lPl−1(x), (11.102)

or, by substituting l −1 for l , for l = 2,3. . .,

(2l −1)xPl−1(x) = l Pl (x)+ (l −1)Pl−2(x), (11.103)

can be proven as follows.

g (x, t ) = 1p
1−2t x + t 2

=
∞∑

n=0
t nPn(x)

∂

∂t
g (x, t ) =−1

2
(1−2t x + t 2)−

3
2 (−2x +2t ) = 1p

1−2t x + t 2

x − t

1−2t x + t 2

∂

∂t
g (x, t ) = x − t

1−2t x + t 2

∞∑
n=0

t nPn(x) =
∞∑

n=0
nt n−1Pn(x)

(x − t )
∞∑

n=0
t nPn(x)− (1−2t x + t 2)

∞∑
n=0

nt n−1Pn(x) = 0

∞∑
n=0

xt nPn(x)−
∞∑

n=0
t n+1Pn(x)−

∞∑
n=1

nt n−1Pn(x)+

+
∞∑

n=0
2xnt nPn(x)−

∞∑
n=0

nt n+1Pn(x) = 0

∞∑
n=0

(2n +1)xt nPn(x)−
∞∑

n=0
(n +1)t n+1Pn(x)−

∞∑
n=1

nt n−1Pn(x) = 0

∞∑
n=0

(2n +1)xt nPn(x)−
∞∑

n=1
nt nPn−1(x)−

∞∑
n=0

(n +1)t nPn+1(x) = 0,

xP0(x)−P1(x)+
∞∑

n=1
t n

[
(2n +1)xPn(x)−nPn−1(x)− (n +1)Pn+1(x)

]
= 0,

hence

xP0(x)−P1(x) = 0, (2n +1)xPn(x)−nPn−1(x)− (n +1)Pn+1(x) = 0,

hence

P1(x) = xP0(x), (n +1)Pn+1(x) = (2n +1)xPn(x)−nPn−1(x).

Let us prove

Pl−1(x) = P ′
l (x)−2xP ′

l−1(x)+P ′
l−2(x). (11.104)
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g (x, t ) = 1p
1−2t x + t 2

=
∞∑

n=0
t nPn(x)

∂

∂x
g (x, t ) =−1

2
(1−2t x + t 2)−

3
2 (−2t ) = 1p

1−2t x + t 2

t

1−2t x + t 2

∂

∂x
g (x, t ) = t

1−2t x + t 2

∞∑
n=0

t nPn(x) =
∞∑

n=0
t nP ′

n(x)

∞∑
n=0

t n+1Pn(x) =
∞∑

n=0
t nP ′

n(x)−
∞∑

n=0
2xt n+1P ′

n(x)+
∞∑

n=0
t n+2P ′

n(x)

∞∑
n=1

t nPn−1(x) =
∞∑

n=0
t nP ′

n(x)−
∞∑

n=1
2xt nP ′

n−1(x)+
∞∑

n=2
t nP ′

n−2(x)

tP0 +
∞∑

n=2
t nPn−1(x) = P ′

0(x)+ tP ′
1(x)+

∞∑
n=2

t nP ′
n(x)−

−2xtP ′
0−

∞∑
n=2

2xt nP ′
n−1(x)+

∞∑
n=2

t nP ′
n−2(x)

P ′
0(x)+ t

[
P ′

1(x)−P0(x)−2xP ′
0(x)

]
+

+
∞∑

n=2
t n[P ′

n(x)−2xP ′
n−1(x)+P ′

n−2(x)−Pn−1(x)] = 0

P ′
0(x) = 0, hence P0(x) = const.

P ′
1(x)−P0(x)−2xP ′

0(x) = 0.

Because of P ′
0(x) = 0 we obtain P ′

1(x)−P0(x) = 0, hence P ′
1(x) = P0(x), and

P ′
n(x)−2xP ′

n−1(x)+P ′
n−2(x)−Pn−1(x) = 0.

Finally we substitute n +1 for n:

P ′
n+1(x)−2xP ′

n(x)+P ′
n−1(x)−Pn(x) = 0,

hence

Pn(x) = P ′
n+1(x)−2xP ′

n(x)+P ′
n−1(x).

Let us prove

P ′
l+1(x)−P ′

l−1(x) = (2l +1)Pl (x). (11.105)

(n +1)Pn+1(x) = (2n +1)xPn(x)−nPn−1(x)

∣∣∣∣ d

d x

(n +1)P ′
n+1(x) = (2n +1)Pn(x)+ (2n +1)xP ′

n(x)−nP ′
n−1(x)

∣∣∣·2
(i): (2n +2)P ′

n+1(x) = 2(2n +1)Pn(x)+2(2n +1)xP ′
n(x)−2nP ′

n−1(x)

P ′
n+1(x)−2xP ′

n(x)+P ′
n−1(x) = Pn(x)

∣∣∣· (2n +1)

(ii): (2n +1)P ′
n+1(x)−2(2n +1)xP ′

n(x)+ (2n +1)P ′
n−1(x) = (2n +1)Pn(x)

We subtract (ii) from (i):

P ′
n+1(x)+2(2n +1)xP ′

n(x)− (2n +1)P ′
n−1(x) =

= (2n+1)Pn(x)+2(2n+1)xP ′
n(x)−2nP ′

n−1(x);

hence

P ′
n+1(x)−P ′

n−1(x) = (2n +1)Pn(x).
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11.6.4 Expansion in Legendre polynomials

We state without proof that square integrable functions f (x) can be

written as series of Legendre polynomials as

f (x) =
∞∑

l=0
al Pl (x),

with expansion coefficients al =
2l +1

2

+1∫
−1

f (x)Pl (x)d x.

(11.106)

Let us expand the Heaviside function defined in Eq. (7.110)

H(x) =
{

1 for x ≥ 0

0 for x < 0
(11.107)

in terms of Legendre polynomials.

We shall use the recursion formula (2l +1)Pl = P ′
l+1 −P ′

l−1 and rewrite

al = 1

2

1∫
0

(
P ′

l+1(x)−P ′
l−1(x)

)
d x = 1

2

(
Pl+1(x)−Pl−1(x)

)∣∣∣1

x=0
=

= 1

2

[
Pl+1(1)−Pl−1(1)

]︸ ︷︷ ︸
= 0 because of

“normalization”

−1

2

[
Pl+1(0)−Pl−1(0)

]
.

Note that Pn(0) = 0 for odd n; hence al = 0 for even l 6= 0. We shall treat

the case l = 0 with P0(x) = 1 separately. Upon substituting 2l +1 for l one

obtains

a2l+1 =−1

2

[
P2l+2(0)−P2l (0)

]
.

We shall next use the formula

Pl (0) = (−1)
l
2

l !

2l
((

l
2

)
!
)2 ,

and for even l ≥ 0 one obtains

a2l+1 = −1

2

[
(−1)l+1(2l +2)!
22l+2((l +1)!)2

− (−1)l (2l )!
22l (l !)2

]
=

= (−1)l (2l )!
22l+1(l !)2

[
(2l +1)(2l +2)

22(l +1)2 +1

]
=

= (−1)l (2l )!
22l+1(l !)2

[
2(2l +1)(l +1)

22(l +1)2 +1

]
=

= (−1)l (2l )!
22l+1(l !)2

[
2l +1+2l +2

2(l +1)

]
=

= (−1)l (2l )!
22l+1(l !)2

[
4l +3

2(l +1)

]
=

= (−1)l (2l )!(4l +3)

22l+2l !(l +1)!

a0 = 1

2

+1∫
−1

H(x)P0(x)︸ ︷︷ ︸
= 1

d x = 1

2

1∫
0

d x = 1

2
;

and finally

H(x) = 1

2
+

∞∑
l=0

(−1)l (2l )!(4l +3)

22l+2l !(l +1)!
P2l+1(x).
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11.7 Associated Legendre polynomial

Associated Legendre polynomials P m
l (x) are the solutions of the general

Legendre equation

{
(1−x2)

d 2

d x2 −2x
d

d x
+

[
l (l +1)− m2

1−x2

]}
P m

l (x) = 0,

or

[
d

d x

(
(1−x2)

d

d x

)
+ l (l +1)− m2

1−x2

]
P m

l (x) = 0

(11.108)

Eq. (11.108) reduces to the Legendre equation (11.96) on page 206 for

m = 0; hence

P 0
l (x) = Pl (x). (11.109)

More generally, by differentiating m times the Legendre equation (11.96)

it can be shown that

P m
l (x) = (−1)m(1−x2)

m
2

d m

d xm Pl (x). (11.110)

By inserting Pl (x) from the Rodrigues formula for Legendre polynomials

(11.97) we obtain

P m
l (x) = (−1)m(1−x2)

m
2

d m

d xm

1

2l l !
d l

d xl
(x2 −1)l

= (−1)m(1−x2)
m
2

2l l !
d m+l

d xm+l
(x2 −1)l .

(11.111)

In terms of the Gauss hypergeometric function the associated Legen-

dre polynomials can be generalied to arbitrary complex indices µ, λ and

argument x by

Pµ

λ
(x) = 1

Γ(1−µ)

(
1+x

1−x

) µ
2

2F1

(
−λ,λ+1;1−µ;

1−x

2

)
. (11.112)

No proof is given here.

11.8 Spherical harmonics

Let us define the spherical harmonics Y m
l (θ,ϕ) by

Y m
l (θ,ϕ) =

√
(2l +1)(l −m)!

4π(l +m)!
P m

l (cosθ)e i mϕ for − l ≤ m ≤ l .. (11.113)

Spherical harmonics are solutions of the differential equation

{∆+ l (l +1)}Y m
l (θ,ϕ) = 0. (11.114)

This equation is what typically remains after separation and “removal”

of the radial part of the Laplace equation ∆ψ(r ,θ,ϕ) = 0 in three dimen-

sions when the problem is invariant (symmetric) under rotations. Twice continuously differentiable,
complex-valued solutions u of the
Laplace equation ∆u = 0 are called
harmonic functions

Sheldon Axler, Paul Bourdon, and
Wade Ramey. Harmonic Function
Theory, volume 137 of Graduate texts in
mathematics. second edition, 1994. ISBN
0-387-97875-5

11.9 Solution of the Schrödinger equation for a hydrogen

atom

Suppose Schrödinger, in his 1926 annus mirabilis – a year which seems to

have been initiated by a trip to Arosa with ‘an old girlfriend from Vienna’
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(apparently it was neither his wife Anny who remained in Zurich, nor

Lotte, nor Irene nor Felicie 12), – came down from the mountains or from 12 Walter Moore. Schrödinger: Life and
Thought. Cambridge University Press,
Cambridge, UK, 1989

whatever realm he was in – and handed you over some partial differential

equation for the hydrogen atom – an equation (note that the quantum

mechanical “momentum operator” P is identified with −i —h∇)

1

2µ
P 2ψ= 1

2µ

(
P 2

x +P 2
y +P 2

z

)
ψ= (E −V )ψ,

or, with V =− e2

4πε0r
,

−
[

—h2

2µ
∆+ e2

4πε0r

]
ψ(x) = Eψ,

or

[
∆+ 2µ

—h2

(
e2

4πε0r
+E

)]
ψ(x) = 0,

(11.115)

which would later bear his name – and asked you if you could be so kind

to please solve it for him. Actually, by Schrödinger’s own account 13 he 13 Erwin Schrödinger. Quantisierung als
Eigenwertproblem. Annalen der Physik,
384(4):361–376, 1926. ISSN 1521-3889.
D O I : 10.1002/andp.19263840404. URL
http://dx.doi.org/10.1002/andp.

19263840404

handed over this eigenwert equation to Hermann Klaus Hugo Weyl; in

this instance he was not dissimilar from Einstein, who seemed to have

employed a (human) computator on a very regular basis. Schrödinger

might also have hinted that µ, e, and ε0 stand for some (reduced) mass,

charge, and the permittivity of the vacuum, respectively, —h is a constant

of (the dimension of) action, and E is some eigenvalue which must be

determined from the solution of (11.115).

So, what could you do? First, observe that the problem is spherical

symmetric, as the potential just depends on the radius r =p
x ·x, and also

the Laplace operator ∆=∇·∇ allows spherical symmetry. Thus we could

write the Schrödinger equation (11.115) in terms of spherical coordinates

(r ,θ,ϕ) with x = r sinθcosϕ, y = r sinθ sinϕ, z = r cosθ, whereby θ is the

polar angle in the x–z-plane measured from the z-axis, with 0 ≤ θ ≤ π,

and ϕ is the azimuthal angle in the x–y-plane, measured from the x-axis

with 0 ≤ ϕ < 2π. In terms of spherical coordinates the Laplace operator

essentially “decays into” (i.e. consists additively of) a radial part and an

angular part

∆=
(
∂

∂x

)2

+
(
∂

∂y

)2

+
(
∂

∂z

)2

= 1

r 2

[
∂

∂r

(
r 2 ∂

∂r

)
+ 1

sinθ

∂

∂θ
sinθ

∂

∂θ
+ 1

sin2θ

∂2

∂ϕ2

]
.

(11.116)

11.9.1 Separation of variables Ansatz

This can be exploited for a separation of variable Ansatz, which, accord-

ing to Schrödinger, should be well known (in German sattsam bekannt)

by now (cf chapter 10). We thus write the solution ψ as a product of func-

tions of separate variables

ψ(r ,θ,ϕ) = R(r )Θ(θ)Φ(ϕ) = R(r )Y m
l (θ,ϕ) (11.117)

That the angular partΘ(θ)Φ(ϕ) of this product will turn out to be the

spherical harmonics Y m
l (θ,ϕ) introduced earlier on page 210 is nontrivial

http://dx.doi.org/10.1002/andp.19263840404
http://dx.doi.org/10.1002/andp.19263840404
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– indeed, at this point it is an ad hoc assumption. We will come back to its

derivation in fuller detail later.

11.9.2 Separation of the radial part from the angular one

For the time being, let us first concentrate on the radial part R(r ). Let us

first totally separate the variables of the Schrödinger equation (11.115) in

radial coordinates {
1

r 2

[
∂

∂r

(
r 2 ∂

∂r

)
+ 1

sinθ

∂

∂θ
sinθ

∂

∂θ
+ 1

sin2θ

∂2

∂ϕ2

]
+ 2µ

—h2

(
e2

4πε0r
+E

)}
ψ(r ,θ,ϕ) = 0,

(11.118)

and multiplying it with r 2

{
∂

∂r

(
r 2 ∂

∂r

)
+ 2µr 2

—h2

(
e2

4πε0r
+E

)
+ 1

sinθ

∂

∂θ
sinθ

∂

∂θ
+ 1

sin2θ

∂2

∂ϕ2

}
ψ(r ,θ,ϕ) = 0,

(11.119)

so that, after division by ψ(r ,θ,ϕ) = R(r )Θ(θ)Φ(ϕ) and writing separate

variables on separate sides of the equation,

1

R(r )

{
∂

∂r

(
r 2 ∂

∂r

)
+ 2µr 2

—h2

(
e2

4πε0r
+E

)}
R(r )

=− 1

Θ(θ)Φ(ϕ)

{
1

sinθ

∂

∂θ
sinθ

∂

∂θ
+ 1

sin2θ

∂2

∂ϕ2

}
Θ(θ)Φ(ϕ)

(11.120)

Because the left hand side of this equation is independent of the angular

variables θ and ϕ, and its right hand side is independent of the radius

r , both sides have to be constant; say λ. Thus we obtain two differential

equations for the radial and the angular part, respectively{
∂

∂r
r 2 ∂

∂r
+ 2µr 2

—h2

(
e2

4πε0r
+E

)}
R(r ) =λR(r ), (11.121)

and {
1

sinθ

∂

∂θ
sinθ

∂

∂θ
+ 1

sin2θ

∂2

∂ϕ2

}
Θ(θ)Φ(ϕ) =−λΘ(θ)Φ(ϕ). (11.122)

11.9.3 Separation of the polar angle θ from the azimuthal angle ϕ

As already hinted in Eq. (11.117) The angular portion can still be sepa-

rated into a polar and an azimuthal part because, when multiplied by

sin2θ/[Θ(θ)Φ(ϕ)], Eq. (11.122) can be rewritten as{
sinθ

Θ(θ)

∂

∂θ
sinθ

∂Θ(θ)

∂θ
+λsin2θ

}
+ 1

Φ(ϕ)

∂2Φ(ϕ)

∂ϕ2 = 0, (11.123)

and hence

sinθ

Θ(θ)

∂

∂θ
sinθ

∂Θ(θ)

∂θ
+λsin2θ =− 1

Φ(ϕ)

∂2Φ(ϕ)

∂ϕ2 = m2, (11.124)

where m is some constant.
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11.9.4 Solution of the equation for the azimuthal angle factor

Φ(ϕ)

The resulting differential equation forΦ(ϕ)

d 2Φ(ϕ)

dϕ2 =−m2Φ(ϕ), (11.125)

has the general solution

Φ(ϕ) = Ae i mϕ+Be−i mϕ. (11.126)

AsΦmust obey the periodic boundary conditionsΦ(ϕ) = Φ(ϕ+2π), m

must be an integer. The two constants A,B must be equal if we require

the system of functions {e i mϕ|m ∈ Z} to be orthonormalized. Indeed, if

we define

Φm(ϕ) = Ae i mϕ (11.127)

and require that it is normalized, it follows that∫ 2π

0
Φm(ϕ)Φm(ϕ)dϕ

=
∫ 2π

0
Ae−i mϕAe i mϕdϕ

=
∫ 2π

0
|A|2dϕ

= 2π|A|2

= 1,

(11.128)

it is consistent to set

A = 1p
2π

; (11.129)

and hence,

Φm(ϕ) = e i mϕ

p
2π

(11.130)

Note that, for different m 6= n,∫ 2π

0
Φn(ϕ)Φm(ϕ)dϕ

=
∫ 2π

0

e−i nϕ

p
2π

e i mϕ

p
2π

dϕ

=
∫ 2π

0

e i (m−n)ϕ

2π
dϕ

= − i e i (m−n)ϕ

2(m −n)π

∣∣∣∣ϕ=2π

ϕ=0

= 0,

(11.131)

because m −n ∈Z.

11.9.5 Solution of the equation for the polar angle factorΘ(θ)

The left hand side of Eq. (11.124) contains only the polar coordinate.

Upon division by sin2θ we obtain

1

Θ(θ)sinθ

d

dθ
sinθ

dΘ(θ)

dθ
+λ= m2

sin2θ
, or

1

Θ(θ)sinθ

d

dθ
sinθ

dΘ(θ)

dθ
− m2

sin2θ
=−λ,

(11.132)
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Now, first, let us consider the case m = 0. With the variable substitu-

tion x = cosθ, and thus d x
dθ = −sinθ and d x = −sinθdθ, we obtain from

(11.132)

d

d x
sin2θ

dΘ(x)

d x
=−λΘ(x),

d

d x
(1−x2)

dΘ(x)

d x
+λΘ(x) = 0,

(
x2 −1

) d 2Θ(x)

d x2 +2x
dΘ(x)

d x
=λΘ(x),

(11.133)

which is of the same form as the Legendre equation (11.96) mentioned on

page 206.

Consider the series Ansatz

Θ(x) = a0 +a1x +a2x2 +·· ·+ak xk +·· · (11.134)

for solving (11.133). Insertion into (11.133) and comparing the coeffi- This is actually a “shortcut” solution of the
Fuchian Equation mentioned earlier.cients of x for equal degrees yields the recursion relation

(
x2 −1

) d 2

d x2 [a0 +a1x +a2x2 +·· ·+ak xk +·· · ]

+2x
d

d x
[a0 +a1x +a2x2 +·· ·+ak xk +·· · ]

=λ[a0 +a1x +a2x2 +·· ·+ak xk +·· · ],(
x2 −1

)
[2a2 +·· ·+k(k −1)ak xk−2 +·· · ]

+[2xa1 +2x2a2x +·· ·+2xkak xk−1 +·· · ]
=λ[a0 +a1x +a2x2 +·· ·+ak xk +·· · ],(

x2 −1
)

[2a2 +·· ·+k(k −1)ak xk−2 +·· · ]
+[2a1x +4a2x2 +·· ·+2kak xk +·· · ]

=λ[a0 +a1x +a2x2 +·· ·+ak xk +·· · ],
[2a2x2 +·· ·+k(k −1)ak xk +·· · ]

−[2a2 +·· ·+k(k −1)ak xk−2 +·· · ]
+[2a1x +4a2x2 +·· ·+2kak xk +·· · ]

=λ[a0 +a1x +a2x2 +·· ·+ak xk +·· · ],
[2a2x2 +·· ·+k(k −1)ak xk +·· · ]

−[2a2 +·· ·+k(k −1)ak xk−2

+(k +1)kak+1xk−1 + (k +2)(k +1)ak+2xk +·· · ]
+[2a1x +4a2x2 +·· ·+2kak xk +·· · ]

=λ[a0 +a1x +a2x2 +·· ·+ak xk +·· · ],

(11.135)

and thus, by taking all polynomials of the order of k and proportional to

xk , so that, for xk 6= 0 (and thus excluding the trivial solution),

k(k −1)ak xk − (k +2)(k +1)ak+2xk +2kak xk −λak xk = 0,

k(k +1)ak − (k +2)(k +1)ak+2 −λak = 0,

ak+2 = ak
k(k +1)−λ

(k +2)(k +1)
.

(11.136)

In order to converge also for x = ±1, and hence for θ = 0 and θ = π,

the sum in (11.134) has to have only a finite number of terms. Because if
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the sum would be infinite, the terms ak , for large k, would be dominated

by ak−2O(k2/k2) = ak−2O(1), and thus would converge to ak
k→∞−→ a∞

with constant a∞ 6= 0, and thusΘwould diverge asΘ(1)
k→∞≈ ka∞

k→∞−→ ∞
. That means that, in Eq. (11.136) for some k = l ∈ N, the coefficient

al+2 = 0 has to vanish; thus

λ= l (l +1). (11.137)

This results in Legendre polynomialsΘ(x) ≡ Pl (x).

Let us now shortly mention the case m 6= 0. With the same variable

substitution x = cosθ, and thus d x
dθ =−sinθ and d x =−sinθdθ as before,

the equation for the polar angle dependent factor (11.132) becomes{
d

d x
(1−x2)

d

d x
+ l (l +1)− m2

1−x2

}
Θ(x) = 0, (11.138)

This is exactly the form of the general Legendre equation (11.108), whose

solution is a multiple of the associated Legendre polynomial P m
l (x), with

|m| ≤ l .

Note (without proof) that, for equal m, the P m
l (x) satisfy the orthogo-

nality condition ∫ 1

−1
P m

l (x)P m
l ′ (x)d x = 2(l +m)!

(2l +1)(l −m)!
δl l ′ . (11.139)

Therefore we obtain a normalized polar solution by dividing P m
l (x) by

{[2(l +m)!]/[(2l +1)(l −m)!]}1/2.

In putting both normalized polar and azimuthal angle factors together

we arrive at the spherical harmonics (11.113); that is,

Θ(θ)Φ(ϕ) =
√

(2l +1)(l −m)!
2(l +m)!

P m
l (cosθ)

e i mϕ

p
2π

= Y m
l (θ,ϕ) (11.140)

for −l ≤ m ≤ l , l ∈ N0. Note that the discreteness of these solutions

follows from physical requirements about their finite existence.

11.9.6 Solution of the equation for radial factor R(r )

The solution of the equation (11.121){
d

dr
r 2 d

dr
+ 2µr 2

—h2

(
e2

4πε0r
+E

)}
R(r ) = l (l +1)R(r ) , or

− 1

R(r )

d

dr
r 2 d

dr
R(r )+ l (l +1)−2

µe2

4πε0—h2 r = 2µ

—h2 r 2E

(11.141)

for the radial factor R(r ) turned out to be the most difficult part for

Schrödinger 14. 14 Walter Moore. Schrödinger: Life and
Thought. Cambridge University Press,
Cambridge, UK, 1989

Note that, since the additive term l (l + 1) in (11.141) is non-

dimensional, so must be the other terms. We can make this more explicit

by the substitution of variables.

First, consider y = r
a0

obtained by dividing r by the Bohr radius

a0 = 4πε0—h2

me e2 ≈ 5 10−11m, (11.142)
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thereby assuming that the reduced mass is equal to the electron mass

µ ≈ me . More explicitly, r = y a0 = y(4πε0—h2)/(me e2), or y = r /a0 =
r (me e2)/(4πε0—h2). Furthermore, let us define ε= E

2µa2
0

—h2 .

These substitutions yield

− 1

R(y)

d

d y
y2 d

d y
R(y)+ l (l +1)−2y = y2ε, or

−y2 d 2

d y2 R(y)−2y
d

d y
R(y)+ [

l (l +1)−2y −εy2]R(y) = 0.

(11.143)

Now we introduce a new function R̂ via

R(ξ) = ξl e−
1
2 ξR̂(ξ), (11.144)

with ξ = 2y
n and by replacing the energy variable with ε = − 1

n2 . (It will

later be argued that ε must be dicrete; with n ∈N−0.) This yields

ξ
d 2

dξ2 R̂(ξ)+ [2(l +1)−ξ]
d

dξ
R̂(ξ)+ (n − l −1)R̂(ξ) = 0. (11.145)

The discretization of n can again be motivated by requiring physical

properties from the solution; in particular, convergence. Consider again a

series solution Ansatz

R̂(ξ) = c0 + c1ξ+ c2ξ
2 +·· ·+ckξ

k +·· · , (11.146)

which, when inserted into (11.143), yields

ξ
d 2

d 2ξ
[c0 + c1ξ+ c2ξ

2 +·· ·+ckξ
k +·· · ]

+[2(l +1)−ξ]
d

d y
[c0 + c1ξ+ c2ξ

2 +·· ·+ckξ
k +·· · ]

+(n − l −1)[c0 + c1ξ+ c2ξ
2 +·· ·+ckξ

k +·· · ]
= 0,

ξ[2c2 +·· ·k(k −1)ckξ
k−2 +·· · ]

+[2(l +1)−ξ][c1 +2c2ξ+·· ·+kckξ
k−1 +·· · ]

+(n − l −1)[c0 + c1ξ+ c2ξ
2 +·· ·+ckξ

k +·· · ]
= 0,

[2c2ξ+·· ·+k(k −1)ckξ
k−1 +·· · ]

+2(l +1)[c1 +2c2ξ+·· ·+k + ckξ
k−1 +·· · ]

−[c1ξ+2c2ξ
2 +·· ·+kckξ

k +·· · ]
+(n − l −1)[c0 + c1ξ+ c2ξ

2 +·· ·ckξ
k +·· · ]

= 0,

[2c2ξ+·· ·+k(k −1)ckξ
k−1 +k(k +1)ck+1ξ

k +·· · ]
+2(l +1)[c1 +2c2ξ+·· ·+kckξ

k−1 + (k +1)ck+1ξ
k +·· · ]

−[c1ξ+2c2ξ
2 +·· ·+kckξ

k +·· · ]
+(n − l −1)[c0 + c1ξ+ c2ξ

2 +·· ·+ckξ
k +·· · ]

= 0,

(11.147)
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so that, by comparing the coefficients of ξk , we obtain

k(k +1)ck+1ξ
k +2(l +1)(k +1)ck+1ξ

k = kckξ
k − (n − l −1)ckξ

k ,

ck+1[k(k +1)+2(l +1)(k +1)] = ck [k − (n − l −1)],

ck+1(k +1)(k +2l +2) = ck (k −n + l +1),

ck+1 = ck
k −n + l +1

(k +1)(k +2l +2)
.

(11.148)

Because of convergence of R̂ and thus of R – note that, for large ξ and

k, the k’th term in Eq. (11.146) determining R̂(ξ) would behave as ξk /k!
and thus R̂(ξ) would roughly behave as eξ – the series solution (11.146)

should terminate at some k = n − l −1, or n = k + l +1. Since k, l , and 1

are all integers, n must be an integer as well. And since k ≥ 0, n must be

at least l +1, or

l ≤ n −1. (11.149)

Thus, we end up with an associated Laguerre equation of the form{
ξ

d 2

dξ2 + [2(l +1)−ξ]
d

dξ
+ (n − l −1)

}
R̂(ξ) = 0, with n ≥ l +1, and n, l ∈Z.

(11.150)

Its solutions are the associated Laguerre polynomials L2l+1
n+l which are the

(2l +1)-th derivatives of the Laguerre’s polynomials Ln+l ; that is,

Ln(x) = ex d n

d xn

(
xne−x)

,

Lm
n (x) = d m

d xm Ln(x).

(11.151)

This yields a normalized wave function

Rn(r ) =N

(
2r

na0

)l

e
− r

a0n L2l+1
n+l

(
2r

na0

)
, with

N =− 2

n2

√
(n − l −1)!

[(n + l )!a0]3 ,

(11.152)

where N stands for the normalization factor.

11.9.7 Composition of the general solution of the Schrödinger

Equation

Now we shall coagulate and combine the factorized solutions (11.117) Always remember the alchemic principle
of solve et coagula!into a complete solution of the Schrödinger equation for n+1, l , |m| ∈N0,

0 ≤ l ≤ n −1, and |m| ≤ l ,

ψn,l ,m(r ,θ,ϕ)

= Rn(r )Y m
l (θ,ϕ)

=− 2

n2

√
(n − l −1)!

[(n + l )!a0]3

(
2r

na0

)l

e
− r

a0n L2l+1
n+l

(
2r

na0

)√
(2l +1)(l −m)!

2(l +m)!
P m

l (cosθ)
e i mϕ

p
2π

.

(11.153)

[





12
Divergent series

In this final chapter we will consider divergent series, which, as has al-

ready been mentioned earlier, seem to have been “invented by the devil”
1. Unfortunately such series occur very often in physical situations; for 1 Godfrey Harold Hardy. Divergent Series.

Oxford University Press, 1949instance in celestial mechanics or in quantum field theory 2, and one
2 John P. Boyd. The devil’s invention:
Asymptotic, superasymptotic and hy-
perasymptotic series. Acta Applicandae
Mathematica, 56:1–98, 1999. ISSN 0167-
8019. D O I : 10.1023/A:1006145903624.
URL http://dx.doi.org/10.1023/A:

1006145903624; Freeman J. Dyson.
Divergence of perturbation theory in
quantum electrodynamics. Phys. Rev., 85
(4):631–632, Feb 1952. D O I : 10.1103/Phys-
Rev.85.631. URL http://dx.doi.org/

10.1103/PhysRev.85.631; Sergio A.
Pernice and Gerardo Oleaga. Divergence
of perturbation theory: Steps towards a
convergent series. Physical Review D, 57:
1144–1158, Jan 1998. D O I : 10.1103/Phys-
RevD.57.1144. URL http://dx.doi.

org/10.1103/PhysRevD.57.1144; and
Ulrich D. Jentschura. Resummation
of nonalternating divergent perturba-
tive expansions. Physical Review D, 62:
076001, Aug 2000. D O I : 10.1103/Phys-
RevD.62.076001. URL http://dx.doi.

org/10.1103/PhysRevD.62.076001

may wonder with Abel why, “for the most part, it is true that the results

are correct, which is very strange” 3. On the other hand, there appears to

3 Christiane Rousseau. Divergent series:
Past, present, future . . .. preprint, 2004.
URL http://www.dms.umontreal.ca/

~rousseac/divergent.pdf

be another view on diverging series, a view that has been expressed by

Berry as follows 4: “. . . an asymptotic series . . . is a compact encoding of a

4 Michael Berry. Asymptotics, su-
perasymptotics, hyperasymptotics...
In Harvey Segur, Saleh Tanveer, and Her-
bert Levine, editors, Asymptotics beyond
All Orders, volume 284 of NATO ASI Se-
ries, pages 1–14. Springer, 1992. ISBN
978-1-4757-0437-2. D O I : 10.1007/978-1-
4757-0435-8. URL http://dx.doi.org/

10.1007/978-1-4757-0435-8

function, and its divergence should be regarded not as a deficiency but as a

source of information about the function.”

12.1 Convergence and divergence

Let us first define convergence in the context of series. A series

∞∑
j=0

a j = a0 +a1 +a2 +·· · (12.1)

is said to converge to the sum s, if the partial sum

sn =
n∑

j=0
a j = a0 +a1 +a2 +·· ·+an (12.2)

tends to a finite limit s when n →∞; otherwise it is said to be divergent.

One of the most prominent series is the Grandi’s series, sometimes

also referred to as Leibniz series 5

5 Gottfried Wilhelm Leibniz. Letters LXX,
LXXI. In Carl Immanuel Gerhardt, editor,
Briefwechsel zwischen Leibniz und Chris-
tian Wolf. Handschriften der Königlichen
Bibliothek zu Hannover,. H. W. Schmidt,
Halle, 1860. URL http://books.google.

de/books?id=TUkJAAAAQAAJ; Charles N.
Moore. Summable Series and Convergence
Factors. American Mathematical Soci-
ety, New York, NY, 1938; Godfrey Harold
Hardy. Divergent Series. Oxford University
Press, 1949; and Graham Everest, Alf
van der Poorten, Igor Shparlinski, and
Thomas Ward. Recurrence sequences.
Volume 104 in the AMS Surveys and Mono-
graphs series. American mathematical
Society, Providence, RI, 2003

s =
∞∑

j=0
(−1) j = 1−1+1−1+1−·· · , (12.3)

whose summands may be – inconsistently – “rearranged,” yielding

either 1−1+1−1+1−1+·· · = (1−1)+ (1−1)+ (1−1)−·· · = 0

or 1−1+1−1+1−1+·· · = 1+ (−1+1)+ (−1+1)+·· · = 1.

One could tentatively associate the arithmetical average 1
2 to represent

“the sum of Grandi’s series.”

Note that, by Riemann’s rearrangement theorem, even convergent

series which do not absolutely converge (i.e.,
∑n

j=0 a j converges but

http://dx.doi.org/10.1023/A:1006145903624
http://dx.doi.org/10.1023/A:1006145903624
http://dx.doi.org/10.1103/PhysRev.85.631
http://dx.doi.org/10.1103/PhysRev.85.631
http://dx.doi.org/10.1103/PhysRevD.57.1144
http://dx.doi.org/10.1103/PhysRevD.57.1144
http://dx.doi.org/10.1103/PhysRevD.62.076001
http://dx.doi.org/10.1103/PhysRevD.62.076001
http://www.dms.umontreal.ca/~rousseac/divergent.pdf
http://www.dms.umontreal.ca/~rousseac/divergent.pdf
http://dx.doi.org/10.1007/978-1-4757-0435-8
http://dx.doi.org/10.1007/978-1-4757-0435-8
http://books.google.de/books?id=TUkJAAAAQAAJ
http://books.google.de/books?id=TUkJAAAAQAAJ
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∑n
j=0

∣∣a j
∣∣ diverges) can converge to any arbitrary (even infinite) value by

permuting (rearranging) the (ratio of) positive and negative terms (the

series of which must both be divergent).

The Grandi series is a particular case q =−1 of a geometric series

s(q) =
∞∑

j=0
q j = 1+q +q2 +q3 +·· · = 1+qs (12.4)

which, since s(q) = 1+qs(q), for |q | < 1, converges to

s(q) =
∞∑

j=0
q j = 1

1−q
. (12.5)

One way to sum the Grandi series is by “continuing” Eq. (12.5) for arbi-

trary q 6= 1, thereby defining the Abel sum

∞∑
j=0

(−1) j A= 1

1− (−1)
= 1

2
. (12.6)

Another divergent series, which can be obtained by formally expand-

ing the square of the Abel sum of the Grandi series s2 A= (1+ x)−2 around 0

and inserting x = 1 6 is 6 Morris Kline. Euler and infi-
nite series. Mathematics Maga-
zine, 56(5):307–314, 1983. ISSN
0025570X. D O I : 10.2307/2690371. URL
http://dx.doi.org/10.2307/2690371

s2 =
( ∞∑

j=0
(−1) j

)( ∞∑
k=0

(−1)k

)
=

∞∑
j=0

(−1) j+1 j = 0+1−2+3−4+5−·· · . (12.7)

In the same sense as the Grandi series, this yields the Abel sum s2 A= 1
4 .

Note that, once established this identifican, all of Abel’s hell breaks

loose: One could, for instance, “compute the finite sum of all natural

numbers”

S =
∞∑

j=0
j = 1+2+3+4+5+·· · A=− 1

12
(12.8)

by sorting out

S − 1

4
A= S − s2 = 1+2+3+4+5+·· ·− (1−2+3−4+5−·· · )

= 4+8+12+·· · = 4S,
(12.9)

so that 3S
A=− 1

4 , and, finally, S
A=− 1

12 .

The Riemann zeta function (sometimes also referred to as the Euler-

Riemann zeta function), defined for ℜt > 1 by

ζ(t )
def=

∞∑
n=1

1

nt = ∏
p prime

( ∞∑
n=1

p−nt
)
= ∏

p prime

1

1− 1
p t

, (12.10)

can be continued analytically to all complex values t 6= 1, so that, for

t =−1, ζ(−1) = S.

Note that the sequence of its partial sums s2
n = ∑n

j=0(−1) j+1 j yield

every integer once; that is, s2
0 = 0, s2

1 = 0+ 1 = 1, s2
2 = 0+ 1− 2 = −1,

s2
3 = 0+ 1− 2+ 3 = 2, s2

4 = 0+ 1− 2+ 3− 4− 2, . . ., s2
n = −n

2 for even n,

and s2
n =−n+1

2 for odd n. It thus establishes a strict one-to-one mapping

s2 :N 7→Z of the natural numbers onto the integers.

http://dx.doi.org/10.2307/2690371
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12.2 Euler differential equation

In what follows we demonstrate that divergent series may make sense,

in the way Abel wondered. That is, we shall show that the first partial

sums of divergent series may yield “good” approximations of the exact

result; and that, from a certain point onward, more terms contributing

to the sum might worsen the approximation rather an make it better –

a situation totally different from convergent series, where more terms

always result in better approximations.

Let us, with Rousseau, for the sake of demonstration of the former

situation, consider the Euler differential equation(
x2 d

d x
+1

)
y(x) = x, or

(
d

d x
+ 1

x2

)
y(x) = 1

x
. (12.11)

We shall solve this equation by two methods: we shall, on the one

hand, present a divergent series solution, and on the other hand, an exact

solution. Then we shall compare the series approximation to the exact

solution by considering the difference.

A series solution of the Euler differential equation can be given by

ys (x) =
∞∑

j=0
(−1) j j !x j+1. (12.12)

That (12.12) solves (12.11) can be seen by inserting the former into the

latter; that is, (
x2 d

d x
+1

) ∞∑
j=0

(−1) j j !x j+1 = x,

∞∑
j=0

(−1) j ( j +1)!x j+2 +
∞∑

j=0
(−1) j j !x j+1 = x,

[change of variable in the first sum: j → j −1 ]
∞∑

j=1
(−1) j−1( j +1−1)!x j+2−1 +

∞∑
j=0

(−1) j j !x j+1 = x,

∞∑
j=1

(−1) j−1 j !x j+1 +x +
∞∑

j=1
(−1) j j !x j+1 = x,

x +
∞∑

j=1
(−1) j [

(−1)−1 +1
]

j !x j+1 = x,

x +
∞∑

j=1
(−1) j [−1+1]︸ ︷︷ ︸

=0

j !x j+1 = x,

x = x.

(12.13)

On the other hand, an exact solution can be found by quadrature;

that is, by explicit integration (see, for instance, Chapter one of Ref. 7). 7 Garrett Birkhoff and Gian-Carlo Rota.
Ordinary Differential Equations. John
Wiley & Sons, New York, Chichester,
Brisbane, Toronto, fourth edition, 1959,
1960, 1962, 1969, 1978, and 1989

Consider the homogenuous first order differential equation(
d

d x
+p(x)

)
y(x) = 0,

or
d y(x)

d x
=−p(x)y(x),

or
d y(x)

y(x)
=−p(x)d x.

(12.14)
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Integrating both sides yields

log |y(x)| = −
∫

p(x)d x +C , or |y(x)| = K e−
∫

p(x)d x , (12.15)

where C is some constant, and K = eC . Let P (x) = ∫
p(x)d x. Hence,

heuristically, y(x)eP (x) is constant, as can also be seen by explicit differ-

entiation of y(x)eP (x); that is,

d

d x
y(x)eP (x) = eP (x) d y(x)

d x
+ y(x)

d

d x
eP (x)

= eP (x) d y(x)

d x
+ y(x)p(x)eP (x)

= eP (x)
(

d

d x
+p(x)

)
y(x)

= 0

(12.16)

if and, since eP (x) 6= 0, only if y(x) satisfies the homogenuous equation

(12.14). Hence,

y(x) = ce−
∫

p(x)d x is the solution of(
d

d x
+p(x)

)
y(x) = 0

(12.17)

for some constant c.

Similarly, we can again find a solution to the inhomogenuos first order

differential equation (
d

d x
+p(x)

)
y(x)+q(x) = 0,

or

(
d

d x
+p(x)

)
y(x) =−q(x)

(12.18)

by differentiating the function y(x)eP (x) = y(x)e
∫

p(x)d x ; that is,

d

d x
y(x)e

∫
p(x)d x = e

∫
p(x)d x d

d x
y(x)+p(x)e

∫
p(x)d x y(x)

= e
∫

p(x)d x
(

d

d x
+p(x)

)
y(x)︸ ︷︷ ︸

=q(x)

=−e
∫

p(x)d x q(x).

(12.19)

Hence, for some constant y0 and some a,b, we must have, by integration,

∫ x

b

d

d t
y(t )e

∫ t
a p(s)d s d t = y(x)e

∫ x
a p(t )d t

= y0 −
∫ x

b
e

∫ t
a p(s)d s q(t )d t ,

and hence y(x) = y0e−
∫ x

a p(t )d t −e−
∫ x

a p(t )d t
∫ x

b
e

∫ t
a p(s)d s q(t )d t .

(12.20)

If a = b, then y(b) = y0.

Coming back to the Euler differential equation and identifying

p(x) = 1/x2 and q(x) = −1/x we obtain, up to a constant, with b = 0
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and arbitrary constant a 6= 0,

y(x) =−e−
∫ x

a
d t
t2

∫ x

0
e

∫ t
a

d s
s2

(
−1

t

)
d t

= e−
(− 1

t

)∣∣x
a

∫ x

0
e − 1

s

∣∣t
a

(
1

t

)
d t

= e
1
x − 1

a

∫ x

0
e−

1
t + 1

a

(
1

t

)
d t

= e
1
x e−

1
a + 1

a︸ ︷︷ ︸
=e0=1

∫ x

0
e−

1
t

(
1

t

)
d t

= e
1
x e−

1
a

∫ x

0
e−

1
t e

1
a

(
1

t

)
d t

= e
1
x

∫ x

0

e−
1
t

t
d t

=
∫ x

0

e
1
x − 1

t

t
d t .

(12.21)

With a change of the integration variable

ξ

x
= 1

t
− 1

x
, and thus ξ= x

t
−1, and t = x

1+ξ ,

d t

dξ
=− x

(1+ξ)2 , and thus d t =− x

(1+ξ)2 dξ,

and thus
d t

t
=

− x
(1+ξ)2

x
1+ξ

dξ=− dξ

1+ξ ,

(12.22)

the integral (12.21) can be rewritten as

y(x) =
∫ 0

∞

(
− e−

ξ
x

1+ξ

)
dξ=

∫ ∞

0

e−
ξ
x

1+ξdξ. (12.23)

It is proportional to the Stieltjes Integral 8 8 Carl M. Bender Steven A. Orszag. And-
vanced Mathematical Methods for Sci-
entists and Enineers. McGraw-Hill,
New York, NY, 1978; and John P. Boyd.
The devil’s invention: Asymptotic, su-
perasymptotic and hyperasymptotic
series. Acta Applicandae Mathemat-
ica, 56:1–98, 1999. ISSN 0167-8019.
D O I : 10.1023/A:1006145903624. URL
http://dx.doi.org/10.1023/A:

1006145903624

S(x) =
∫ ∞

0

e−ξ

1+xξ
dξ. (12.24)

Note that whereas the series solution ys (x) diverges for all nonzero x,

the solution y(x) in (12.23) converges and is well defined for all x ≥ 0.

Let us now estimate the absolute difference between ysk (x) which

represents the partial sum “ys (x) truncated after the kth term” and y(x);

that is, let us consider

|y(x)− ysk (x)| =
∣∣∣∣∣
∫ ∞

0

e−
ξ
x

1+ξdξ−
k∑

j=0
(−1) j j !x j+1

∣∣∣∣∣ . (12.25)

For any x ≥ 0 this difference can be estimated 9 by a bound from above 9 Christiane Rousseau. Divergent series:
Past, present, future . . .. preprint, 2004.
URL http://www.dms.umontreal.ca/

~rousseac/divergent.pdf|Rk (x)| def= |y(x)− ysk (x)| ≤ k!xk+1, (12.26)

that is, this difference between the exact solution y(x) and the diverg-

ing partial series ysk (x) is smaller than the first neglected term; and all

subsequent ones.

For a proof, observe that, since a partial geometric series is the sum of

all the numbers in a geometric progression up to a certain power; that is,

n∑
k=0

r k = 1+ r + r 2 +·· ·+ r k +·· ·+ r n . (12.27)

http://dx.doi.org/10.1023/A:1006145903624
http://dx.doi.org/10.1023/A:1006145903624
http://www.dms.umontreal.ca/~rousseac/divergent.pdf
http://www.dms.umontreal.ca/~rousseac/divergent.pdf
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By multiplying both sides with 1− r , the sum (12.27) can be rewritten as

(1− r )
n∑

k=0
r k = (1−k)(1+ r + r 2 +·· ·+ r k +·· ·+ r n)

= 1+ r + r 2 +·· ·+ r k +·· ·+ r n − r (1+ r + r 2 +·· ·+ r k +·· ·+ r n + r n)

= 1+ r + r 2 +·· ·+ r k +·· ·+ r n − (r + r 2 +·· ·+ r k +·· ·+ r n + r n+1)

= 1− r n+1,

(12.28)

and, since the middle terms all cancel out,

n∑
k=0

r k = 1− r n+1

1− r
, or

n−1∑
k=0

r k = 1− r n

1− r
= 1

1− r
− r n

1− r
. (12.29)

Thus, for r =−ζ, it is true that

1

1+ζ =
n−1∑
k=0

(−1)kζk + (−1)n ζn

1+ζ . (12.30)

Thus

f (x) =
∫ ∞

0

e−
ζ
x

1+ζdζ

=
∫ ∞

0
e−

ζ
x

(
n−1∑
k=0

(−1)kζk + (−1)n ζn

1+ζ

)
dζ

=
n−1∑
k=0

∫ ∞

0
(−1)kζk e−

ζ
x dζ+

∫ ∞

0
(−1)n ζ

ne−
ζ
x

1+ζ dζ.

(12.31)

Since

k! = Γ(k +1) =
∫ ∞

0
zk e−z d z, (12.32)

one obtains ∫ ∞

0
ζk e−

ζ
x dζ

[substitution: z = ζ

x
,dζ= xd z ]

=
∫ ∞

0
xk+1zk e−z d z

= xk+1k!,

(12.33)

and hence

f (x) =
n−1∑
k=0

∫ ∞

0
(−1)kζk e−

ζ
x dζ+

∫ ∞

0
(−1)n ζ

ne−
ζ
x

1+ζ dζ

=
n−1∑
k=0

(−1)k xk+1k!+
∫ ∞

0
(−1)n ζ

ne−
ζ
x

1+ζ dζ

= fn(x)+Rn(x),

(12.34)

where fn(x) represents the partial sum of the power series, and Rn(x)

stands for the remainder, the difference between f (x) and fn(x). The

absolute of the remainder can be estimated by

|Rn(x)| =
∫ ∞

0

ζne−
ζ
x

1+ζ dζ

≤
∫ ∞

0
ζne−

ζ
x dζ

= n!xn+1.

(12.35)
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12.2.1 Borel’s resummation method – “The Master forbids it”

In what follows we shall again follow Christiane Rousseau’s treatment 10 10 Christiane Rousseau. Divergent series:
Past, present, future . . .. preprint, 2004.
URL http://www.dms.umontreal.ca/

~rousseac/divergent.pdf

and use a resummation method invented by Borel 11 to obtain the exact

For more resummation techniques, please
see Chapter 16 of

Hagen Kleinert and Verena Schulte-
Frohlinde. Critical Properties of φ4-
Theories. World scientific, Singapore,
2001. ISBN 9810246595
11 Émile Borel. Mémoire sur les séries
divergentes. Annales scientifiques de
l’École Normale Supérieure, 16:9–131,
1899. URL http://eudml.org/doc/

81143

“The idea that a function could be deter-
mined by a divergent asymptotic series was
a foreign one to the nineteenth century
mind. Borel, then an unknown young
man, discovered that his summation
method gave the “right” answer for many
classical divergent series. He decided to
make a pilgrimage to Stockholm to see
Mittag-Leffler, who was the recognized lord
of complex analysis. Mittag-Leffler listened
politely to what Borel had to say and then,
placing his hand upon the complete works
by Weierstrass, his teacher, he said in Latin,
“The Master forbids it.” A tale of Mark
Kac,” quoted (on page 38) by

Michael Reed and Barry Simon. Methods
of Modern Mathematical Physics IV:
Analysis of Operators. Academic Press,
New York, 1978

convergent solution (12.23) of the Euler differential equation (12.11)

from the divergent series solution (12.12). First we can rewrite a suitable

infinite series by an integral representation, thereby using the integral

representation of the factorial (12.32) as follows:

∞∑
j=0

a j =
∞∑

j=0
a j

j !
j !

=
∞∑

j=0

a j

j !
j !

=
∞∑

j=0

a j

j !

∫ ∞

0
t j e−t d t

B=
∫ ∞

0

( ∞∑
j=0

a j t j

j !

)
e−t d t .

(12.36)

A series
∑∞

j=0 a j is Borel summable if
∑∞

j=0
a j t j

j ! has a non-zero radius of

convergence, if it can be extended along the positive real axis, and if the

integral (12.36) is convergent. This integral is called the Borel sum of the

series.

In the case of the series solution of the Euler differential equation,

a j = (−1) j j !x j+1 [cf. Eq. (12.12)]. Thus,

∞∑
j=0

a j t j

j !
=

∞∑
j=0

(−1) j j !x j+1t j

j !
= x

∞∑
j=0

(−xt ) j = x

1+xt
, (12.37)

and therefore, with the substitionion xt = ζ, d t = dζ
x

∞∑
j=0

(−1) j j !x j+1 B=
∫ ∞

0

∞∑
j=0

a j t j

j !
e−t d t =

∫ ∞

0

x

1+xt
e−t d t =

∫ ∞

0

e−
ζ
x

1+ζdζ,

(12.38)

which is the exact solution (12.23) of the Euler differential equation

(12.11).

We can also find the Borel sum (which in this case is equal to the Abel

sum) of the Grandi series (12.3) by

s =
∞∑

j=0
(−1) j B=

∫ ∞

0

( ∞∑
j=0

(−1) j t j

j !

)
e−t d t

=
∫ ∞

0

( ∞∑
j=0

(−t ) j

j !

)
e−t d t =

∫ ∞

0
e−2t d t

[variable substitution 2t = ζ,d t = 1

2
dζ]

= 1

2

∫ ∞

0
e−ζdζ

= 1

2

(
−e−ζ

)∣∣∣∞
ζ=0

= 1

2

(−e−∞+e−0)= 1

2
.

(12.39)

http://www.dms.umontreal.ca/~rousseac/divergent.pdf
http://www.dms.umontreal.ca/~rousseac/divergent.pdf
http://eudml.org/doc/81143
http://eudml.org/doc/81143
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A similar calculation for s2 defined in Eq. (12.7) yields

s2 =
∞∑

j=0
(−1) j+1 j = (−1)

∞∑
j=1

(−1) j j
B=−

∫ ∞

0

( ∞∑
j=1

(−1) j j t j

j !

)
e−t d t

=−
∫ ∞

0

( ∞∑
j=1

(−t ) j

( j −1)!

)
e−t d t

=−
∫ ∞

0

( ∞∑
j=0

(−t ) j+1

j !

)
e−t d t

=−
∫ ∞

0
(−t )

( ∞∑
j=0

(−t ) j

j !

)
e−t d t

=−
∫ ∞

0
(−t )e−2t d t

[variable substitution 2t = ζ,d t = 1

2
dζ]

= 1

4

∫ ∞

0
ζe−ζdζ

= 1

4
Γ(2) = 1

4
1! = 1

4
,

(12.40)

which is again equal to the Abel sum.

c
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