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Abstract: Unpredictability is an important concept throughout physics and plays a central
role in quantum information theory. Despite this, little effort has been devoted to studying
generalised notions or models of (un)predictability in physics. In this paper, we continue
the programme of developing a general, non-probabilistic model of (un)predictability in
physics. We present a more refined model that is capable of studying different degrees
of “relativised” unpredictability. This model is based on the ability of an agent, acting via
uniform, effective means, to predict correctly and reproducibly the outcome of an experiment
using finite information extracted from the environment. We use this model to study the
degree of unpredictability certified by different quantum phenomena further, showing that
quantum complementarity guarantees a form of relativised unpredictability that is weaker
than that guaranteed by Kochen–Specker-type value indefiniteness. We exemplify further
the difference between certification by complementarity and value indefiniteness by showing
that, unlike value indefiniteness, complementarity is compatible with the production of
computable sequences of bits.
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1. Introduction

Many physical processes and phenomena are intuitively thought of as unpredictable: the roll of a
die, the evolution of weather systems and the outcomes of quantum measurements, to mention a few.
While ad hoc definitions of unpredictability may exist within certain domains, little work has been done
towards developing a more general understanding of the concept. Although domain-specific notions
of unpredictability may help describe and categorise phenomena within the domain, the concept of
unpredictability has a much more central and important role in quantum information theory.

Many of the advantages promised by quantum information theory and cryptography rely critically
on the belief that the outcomes of quantum measurements are intrinsically unpredictable [2,3]. This
belief underlies the use of quantum random number generators to produce “quantum random” sequences
that are truly unpredictable (unlike pseudo-randomness) [4], as well as the generation of cryptographic
keys unpredictable to any adversary [3]. Such claims of quantum unpredictability are generally based
on deeper theoretical results, such as the Kochen–Specker [5] and Bell [6] theorems, or quantum
complementarity, but nonetheless remain informal intuition.

The quantum cryptography community has used a probability theoretic approach to try and make
use of, and quantify, the degree of unpredictability in quantum information-theoretical situations, in
particular by following the cryptographic paradigm of adversaries with limited side information [7].
This approach, while suitable in such cryptographic situations precisely because of its epistemic
nature [8], relies on the probabilistic formalism of quantum mechanics and the subsequently assumed
unpredictability. In order to fully understand and study the degree of quantum unpredictability and
randomness, it is instead crucial to have more general models of unpredictability to apply.

Historically, little work has been devoted to such generalised notions of unpredictability. In [1], we
discussed in some detail the most notable approaches, in particular those of Popper [9], Wolpert [10]
and Eagle [11]. In response to these approaches, we outlined a new model based on the ability for a
predicting agent, acting via uniform, effective, means, to predict correctly and reproducibly the outcome
of an experiment using some finite information the agent extracts from the “environment” as input.

This model allowed us to consider a specific, ontic form of unpredictability, which was particularly
suited for analysing the type of unpredictability quantum mechanics claims to provide. However,
this strong form of unpredictability is too strong in many cases and failed to capture the possible
different degrees of unpredictability: what is predictable for one agent may not be for another with
different capabilities.

In this paper, we refine and improve this model of (un)predictability, providing a more nuanced,
relativised notion of unpredictability that can take into account the epistemic limits of an observer,
something crucial, for example, in chaotic systems [12]. This also provides the ability to look at
the degree of unpredictability guaranteed by different possible origins of quantum unpredictability.
We examine one such case, that of quantum complementarity, in detail and show that it provides a
weaker form of unpredictability than that arising from Kochen–Specker-type value indefiniteness, as
discussed in [1].
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2. Relativised Model of Predictability

The model of (un)predictability that we proposed in [1] is based on the ability of an agent
to, in principle, predict the outcome of a physical experiment. By using computability theory,
motivated by the Church–Turing thesis, to provide a universal framework in which prediction can
occur; this information-theoretical approach allows different physical systems and theories to be
uniformly analysed.

Here, we refine and extend this model in order to be able to relativise it with respect to the
means/resources of the predicting agent. This gives our model an epistemic element, where our previous
and more objective model can be obtained as the limit case. In this framework, we can consider the
predictive capabilities of an agent with limited capacities imposed by practical limitations, or under the
constraints of physical hypotheses restricting such abilities.

Before we proceed to present our model in detail, we will briefly outline the key elements
comprising it.

(1) The specification of an experiment E for which the outcome must be predicted.
(2) A predicting agent or “predictor”, which must predict the outcome of the experiment. We model

this as an effectively computable function, a choice that we will justify further.
(3) An extractor ξ, which is a physical device the agent uses to (uniformly) extract information

pertinent to prediction that may be outside the scope of the experimental specification E. This
could be, for example, the time, the measurement of some parameter, the iteration of the
experiment, etc.

(4) A prediction made by the agent with access to a set Ξ of extractors. The set of extractors Ξ provides
the relativisation of the model.

This model is explicitly a non-probabilistic one, a fact that may seem overly restrictive given that
highly probable events seem predictable. However, the uncertainty present in “high probabilities”
represents an important latent unpredictability in such processes, and certainty is needed if predictions
are to be related to definite properties of physical systems [13], as is the case in quantum scenarios, for
example.

It should be noted that our model does not assess the ability to make statistical predictions about
physical processes (about the throw of a die, for example), as probabilistic models might, but rather, the
ability to predict precise measurement outcomes.

We will next elaborate on the individual aspects of the model.

2.1. Predictability Model

Experimental specification: An experiment is a finite specification for which the outcome is to be
predicted. We restrict ourselves to the case where the result of the experiment, that is the value to be
predicted, is a single bit: zero or one. However, this can readily be generalised for any finite number
of outcomes. On the other hand, it does not make sense to predict an outcome requiring an infinite
description, such as a real number, since this can never be measured exactly. In such a case, the outcome
would be an approximation of the real, a rational number, and, thus, finitely specifiable.
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The experimental specification, being finite, cannot normally specify exactly the required setup
of the experiment, as a precise description of experimental conditions generally involves real-valued
parameters. Rather, it is expressed with finite precision by the experimenter within their limited
capacities, making use, for example, of the pertinent symmetries to describe the experiment.
A particular trial ofE is associated with the parameter λ, which fully describes the “state of the universe”
in which the trial is run. As an example, one could consider E to specify the flipping of a certain coin, or
it could go further and specify, up to a certain accuracy, the initial dynamical conditions of the coin flip.
In both cases, λ contains further details, such as the exact initial conditions, which could be used by an
agent in trying to predict the result of E.

The parameter λ will generally be “an infinite quantity”, for example, an infinite sequence or a real
number, structured in an unknown manner. (If one insists on a discrete or computational universe,
whether it be as a “toy” universe, in reality or in virtual reality, then λ could be conceived of as a finite
quantity. This is, however, the exception, and in the orthodox view of real physical experiments, λ would
be infinite, even if the prediction itself is discrete or finite, so we will adopt this view here.) Forcing a
specific encoding upon λ, such as a real number, may impose an inadequate structure (e.g., metric,
topological), which is not needed for what follows. While λ is generally not in its entirety an obtainable
quantity, it contains any information that may be pertinent to prediction, such as the time at which the
experiment takes place, the precise initial state, any hidden parameters, etc., and any predictor can have
practical access to a finite amount of this information. We can view λ as a resource from which one can
extract finite information in order to try and predict the outcome of the experiment E.

Predicting agent: The predicting agent (or “predictor”) is, as one might expect, the agent trying to
predict the outcome of a particular experiment, using potentially some data obtained from the system
(i.e., from λ) to help in the process. Since such an agent should be able to produce a prediction in a finite
amount of time via some uniform procedure, we need the prediction to be effective.

Formally, we describe a predicting agent as a computable function PE (i.e., an algorithm), which halts
on every input and outputs either zero, one or “prediction withheld”. Thus, the agent may refrain from
making a prediction in some cases if it is not certain of the outcome. PE will generally be dependent on
E, but its definition as an abstract algorithm means it must be able to operate without interacting with
the subsystem whose behaviour it predicts. This is necessary to avoid the possibility that the predictor
affects the very outcome the it is trying to predict.

We note finally that the choice of computability as the level of effectivity required can be strengthened
or weakened, as long as some effectivity is kept. Our choice of computability is motivated by the
Church–Turing thesis, a rather robust assumption [14].

Extractor: An extractor is a physically-realisable device that a predicting agent can use to
extract (a finite amount of) useful data that may not be a part of the description of E from λ to use
for prediction, that is as input to PE . In many cases, this can be viewed as a measurement instrument,
whether it be a ruler, a clock or a more complicated device.

Formally, an extractor produces a finite string of bits ξ(λ) that can be physically realised without
altering the system, that is passively. In order to be used by PE for prediction, ξ(λ) should be finite and
effectively codable, for example as a binary string or a rational number.
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Prediction: We define now the notion of a correct prediction for a predicting agent having access to a
fixed (finite or infinite) set Ξ of extractors.

Given a particular extractor ξ, we say the prediction of a run of E with parameter λ is correct for ξ if
the output PE(ξ(λ)) is the same as the outcome of the experiment. That is, it correctly predicts E when
using information extracted from λ by ξ as input.

However, this is not enough to give us a robust definition of predictability, since for any given run,
it could be that we predict correctly by chance. To overcome this possibility, we need to consider the
behaviour of repeated runs of predictions.

A repetition procedure forE is an algorithmic procedure for resetting and repeating the experimentE.
Generally, this will be of the form “E is prepared, performed and reset in a specific fashion”. The specific
procedure is of little importance, but the requirement is needed to ensure that the way the experiment
is repeated cannot give a predicting agent power that should be beyond their capabilities or introduce
mathematical loopholes by “encoding” the answer in the repetitions; both the prediction and repetition
should be performed algorithmically.

We say the predictor PE is correct for ξ if for any k and any repetition procedure for E (giving
parameters λ1, λ2, . . . when E is repeated), there exists an n ≥ k, such that after n repetitions of E
producing the outputs x1, . . . , xn, the sequence of predictions PE(ξ(λ1)), . . . , PE(ξ(λn)):

(1) contains k correct predictions,
(2) contains no incorrect prediction; that is, the remaining n− k predictions are withheld.

From this notion of correctness, we can define predictability both relative to a set of extractors and in
a more absolute form.

Let Ξ be a set of extractors. An experiment E is predictable for Ξ if there exists a predictor PE and
an extractor ξ ∈ Ξ, such that PE is correct for ξ. Otherwise, it is unpredictable for Ξ.

This means that PE has access to an extractor ξ ∈ Ξ, which, when using this extractor to provide
input to PE , can be made to give arbitrarily many correct predictions by repeating E enough (but finitely
many) times, without ever giving an incorrect prediction.

The more objective notion proposed in [1] can be recovered by considering all possible extractors.
Specifically, an experiment is (simply) predictable if there exists a predictor PE and an extractor ξ, such
that PE is correct for ξ. Otherwise, it is (simply) unpredictable.

The outcome x of a single trial of the experiment E performed with parameter λ is predictable
(for Ξ) if E is predictable (for Ξ) and PE(ξ(λ)) = x. Otherwise, it is unpredictable (for Ξ).
We emphasise here that the predictability of the result of a single trial is predictability with certainty.

2.2. Relativisation

While the notion of simple predictability provides a very strong notion of unpredictability, one that
seems to correspond to what is often meant in the context of quantum measurements [1], in some
physical situations, particularly in classical physics, our inability to predict would seem to be linked
to our epistemic lack of information, often due to measurement. Put differently, unpredictability is a
result of only having access to a set Ξ of extractors of limited power. Our relativised model of prediction
attempts to capture this, defining predictability relative to a given set of extractors Ξ.
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2.2.1. Specifying the Set of Extractors Ξ

In defining this notion, we deliberately avoided saying anything about how Ξ should be specified.
Here, we outline two possible ways this can be done.

The simplest, but most restrictive, way would be to explicitly specify the set of extractors. As an
example, let us consider the experiment of firing a cannonball from a cannon and the task of predicting
where it will land (assume for now that the muzzle velocity is known and independent of firing angle).
Clearly, the position will depend on the angle at which the cannonball is fired. Then, if we are limited to
measuring this with a ruler, we can consider, for example, the set of extractors:

Ξ = {ξ | ξ(λ) = (x, y) where x and y are the muzzle position to an accuracy of 1 cm}

and then consider predictability with respect to this set Ξ (for example, by using trigonometry to calculate
the angle of firing and then where the cannonball will land).

Often, it is unrealistic to characterise completely the set of extractors available to an agent in this
way; think about a standard laboratory full of measuring devices that can be used in various ways.
Furthermore, such devices might be able to measure properties indirectly, so we might not be able
to characterise the set Ξ so naively. Nonetheless, this can allow simple consideration and analysis of
predictability in various situations, such as under-sensitivity to initial conditions.

A more general approach, although often requiring further assumptions, is to limit the “information
content” of extractors. This avoids the difficulty of having to explicitly specify Ξ. Continuing with the
same example as before, we could require that no extractor ξ ∈ Ξ can allow us to know the firing angle
better than 1◦. This circumvents any problems raised by the possibility of indirect measurement, but of
course requires us to have faith in the assumption that this is indeed the case; it could be possible that
we can extract the angle better than this, but we simply do not know how to do it with our equipment
(which would not be a first in science). Nonetheless, this approach captures the epistemic position of the
predicting agent well.

Let us formalise this more rigorously. We hypothesise that we cannot do any better than a hypothetical
extractor ξ′ extracting the desired physical quantity. Then, we characterise Ξ by asserting: for all ξ ∈ Ξ,
there is no computable function f , such that for every parameter λ, f(ξ(λ)) is more accurate than ξ′.
Obviously, the evaluation of “more accurate” requires a (computable) metric on the physical quantity
extracted, something not unreasonable physically, given that observables tend to be measured as rational
approximations of reals [15].

This general approach would need to be applied on a case by case basis, given assumptions about
the capabilities available to the predicting agent. Assumptions have to be carefully justified and, ideally,
subject themselves to experimental verification.

Either of these approaches, and perhaps others, can be used with our relativised model of prediction.
In any such case of relativisation, one would need to argue that the set Ξ for which unpredictability is
proven is relevant physically. This is unavoidable for any epistemic model of prediction.
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2.2.2. A Detailed Example

Let us illustrate the use of relativised unpredictability with a more interesting example of an
experiment that is predictable, but its intuitive unpredictability is well captured by the notion of
relativised unpredictability. In particular, let us consider a simple chaotic dynamical system. Chaos is
often considered to be a form of unpredictability and is characterised by sensitivity to initial conditions
and the mixing of nearby dynamical trajectories [12]. However, chaos is, formally, an asymptotic
property [16], and we will see that, as a result, the unpredictability of chaotic systems is not so simple as
might be initially suspected.

For simplicity, we will take the example of the dyadic map, that is the operation on infinite sequences
defined by d(x1x2x3 . . . ) = x2x3 . . . , as in [1]. We work with this example, since it is mathematically
clear and simple and is an archetypical example of a chaotic system, being topologically conjugate
to many other well-known systems [17]. However, the analysis could equally apply to more familiar
(continuous) chaotic physical dynamics, such as that of a double pendulum.

Let us consider the hypothetical experiment Ek (for fixed k ≥ 1), which involves iterating the dyadic
map k times (i.e., dk) on an arbitrary “seed” x = x1x2 . . . . The outcome of the experiment is then taken
to be the first bit of the resulting sequence dk(x) = xk+1xk+2 . . . , that is xk+1. This corresponds to
letting the system evolve for some fixed time k before measuring the result.

While the shift d (and hence, dk) is chaotic and generally considered to be unpredictable, it is
clearly simply predictable if we have an extractor that can “see” (or measure) more than k bits of
the seed. That is, take the extractor ξk(λx) = xk+1, which clearly extracts only finite information,
and the identity Turing machine I as PEk

, so that, for any trial of Ek with parameter λx, we have
PEk

(ξk(λx)) = I(xk+1) = xk+1, which is precisely the result of the experiment.
On the other hand, if we consider that there is some limit l on the “precision” of measurement of x

that we can perform, the experiment is unpredictable relative to this limited set of extractors Ξl defined
such that for every sequence x and every computable function f , there exists λ, such that for all j > l,
f(ξ(λ)) 6= xj . It is clear that for l = k, given the limited precision of measurements assumption, the
experiment Ek is unpredictable for Ξk. Indeed, if this were not the case, the pair (ξ, PEk

) allowing
prediction would make arbitrarily many correct predictions, thus contradicting the assumption of the
limited precision of measurements.

This example may appear somewhat artificial, but this is not necessarily so. If one considers the more
physical example of a double pendulum, as mentioned earlier, one can let it evolve for a fixed time t and
attempt to predict its final position (e.g., above or below the horizontal plane) given a set limit l on the
precision of any measurement of the initial position in phase space. If the time t is very short, we may
well succeed, but for long t, this becomes unpredictable.

This re-emphasises that chaos is an asymptotic property, occurring only strictly at infinite time. While
in the limit it indeed seems to correspond well to unpredictability, in finite time, the unpredictability of
chaotic systems is relative: a result of our limits on measurement. Of course, in physical situations, such
limits may be rather fundamental: thermal fluctuations or quantum uncertainty seem to pose very real
limits on measurement precision [15], although in most situations, the limits actually obtained are of a
far more practical origin.
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3. Unpredictability in Quantum Mechanics

As we discussed in the Introduction, the outcomes of individual quantum measurements are generally
regarded as being inherently unpredictable, a fact that plays an important practical role in quantum
information theory [18,19]. This unpredictability has many potential origins, of which quantum value
indefiniteness is perhaps one of the most promising candidates to be used to certify it more formally.

3.1. Quantum Value Indefiniteness

Value indefiniteness is the notion that the outcomes of quantum measurements are not predetermined
by any function of the observables and their measurement contexts; that there are no hidden variables.
It is thus a formalised notion of indeterminism, and the measurement of such observables results in an
outcome not determined before the measurement took place.

While it is possible to hypothesise value indefiniteness in quantum mechanics [20], its importance
comes from the fact that it can be proven (for systems represented in dimension three or higher Hilbert
space) to be true under simple classical hypotheses via the Kochen–Specker theorem [5,21,22]. We will
not present the formalism of the Kochen–Specker theorem here, but just emphasise that this gives value
indefiniteness a more solid status than a blind hypothesis in the face of a lack of deterministic explanation
for quantum phenomena.

In [1], we used our model to prove that value indefiniteness can indeed be used to explain quantum
unpredictability. Specifically, we showed that ifE is an experiment measuring a quantum value indefinite
projection observable, then the outcome of a single trial of E is (simply) unpredictable.

Although value indefiniteness guarantees unpredictability, it relies largely on, and is thus relative to,
the Kochen–Specker theorem and its hypotheses [5,21,23], which only holds for systems in three or
more dimensional Hilbert space. It is thus useful to know if any other quantum phenomena can be used
to certify unpredictability that would be present in two-dimensional systems or in the absence of other
Kochen–Specker hypotheses and, if so, what degree of unpredictability is guaranteed.

3.2. Complementarity

The quantum phenomena of complementarity has also been linked to unpredictability and, contrary
to the value indefiniteness pinpointed by the Kochen–Specker theorem, is present in all quantum systems
with at least two outcomes.

Although complementarity is often taken to refer to a range of different concepts [24], these are
all closely related and are not a priori incompatible with value definiteness (there exist automaton and
generalised urn models featuring complementarity, but not value indefiniteness [25,26]), and it hence
constitutes a weaker hypothesis, even though it is occasionally taken as “evidence” when arguing that
value indefiniteness is present in all quantum systems.

It is therefore of interest to see if a form of complementarity alone can guarantee some degree of
unpredictability and is an ideal example to which to apply our model. This interest is not only theoretical,
but also practical, as some current quantum random generators [4] operate in two-dimensional Hilbert
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space where the Kochen–Specker theorem cannot be used to certify value indefiniteness and would hence
seem to (implicitly) rely on complementarity for certification.

3.2.1. Quantum Complementarity

Since complementarity can be taken to mean a range of different concepts [24], it is important that
we first discuss briefly the notion of quantum complementarity and the particular form that we will use,
before we proceed to an analysis of its predictability.

The principle of complementarity was originally formulated and promoted by Pauli [27].
As originally intended, it is more of a general principle than a formal statement about quantum mechanics
and states that it is impossible to simultaneously (i.e., jointly) measure formally non-commuting
observables; for this reason, commutativity is nowadays often synonymous with co-measurability.
It is often discussed in the context of the position and momentum observables, but it is equally applicable
to any other non-commuting observables, such as spin operators corresponding to different directions,
such as Sx and Sy, which operate in two-dimensional Hilbert space.

Given a pair of such “complementary” observables and a spin-1
2

particle, measuring one observable
alters the state of the particle, so that the measurement of the other observable can no longer be performed
on the original state. Such complementarity is closely related to Heisenberg’s original uncertainty
principle [28], which postulated that any measurement arrangement for an observable necessarily
introduces uncertainty into the value of any complementary observable. For example, an apparatus
used to measure the position of a particle would necessarily introduce uncertainty in the knowledge
of the momentum of said particle. This principle and supposed proofs of it have been the subject of
long-standing (and ongoing) debate [29–31].

More precise are the formal uncertainty relations due to Robertson [32], confusingly also often
referred to as Heisenberg’s uncertainty principle, which state that the standard deviations of the position
and momentum observables satisfy σxσp ≥ ~/2 and give a more general form for any non-commuting
observables A and B. However, this mathematically only places constraints on the variances of
repeated measurements of such observables and does not formally imply that such observables cannot
be co-measured, let alone have co-existing definite values, as is often claimed ([33], Chapter 3).

In contrast to such uncertainty relations, complementarity is usually taken to mean the stronger
statement that it is impossible to simultaneously measure pairs of non-commuting observables and that a
measurement of one will result in an irreversible loss of information relating to the other, non-measured,
observable. Although one may define simultaneous (or joint) measurability in several ways, such as the
existence of a joint distribution or the non-existence of uncertainty relations [24], we take this to mean
the possibility to measure two observables A and B, such that subsequent measurements of either A or
B yield the same results (i.e., the state is not altered). We will take the negation of this as our basis
in formalising complementarity, but we do not claim that such a loss of information need be more than
epistemic; to deduce more from the uncertainty relations, one has to assume quantum indeterminism,
that is value indefiniteness.
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3.2.2. Complementarity and Value Definiteness: A Toy Configuration

In order to illustrate that complementarity is not incompatible with value definiteness, we briefly
consider an example of a toy model of a system that is value definite, but exhibits complementarity.
This model was outlined in [26] and concerns a system modelled as an automaton; a different,
but equivalent, generalised urn-type model is described in [25].

In this framework, a quantum system is modelled as a Mealy automaton, and every input to the
automaton, corresponding to a measurement, produces an outcome depending on the input and the
internal state of the automaton, and may lead to an irreversible change in its state. If one is uncomfortable
thinking of a quantum system as an automaton, one can consider the system as a black-box accessible
only via inputs (measurements) and outputs (measurement results), whose internal workings as an
automaton are hidden. Although such a model does not capture all of the behaviour of a quantum
system, it represents many aspects of quantum logic well and, in particular, complementarity.

More formally, the system is modelled as a Mealy automaton M = (Q,Σ,Θ, δ, ω), where Q is the set
of states, Σ and Θ the input and output alphabets, respectively, δ : Q × Σ → Q the transition function
and ω : Q× Σ→ Θ the output function. The state q of the automaton thus represents a hidden internal
state of the system, and each input character a ∈ Σ corresponds to a measurement, the output of which
is ω(q, a); the state of the automaton changes to q′ = δ(q, a). To give a stronger correspondence to the
quantum situation, a further condition is required: that repeated measurements of the same input a ∈ Σ

(i.e., observable) give the same output: for all q ∈ Q, ω(q, a) = ω(δ(q, a), a). The system is clearly
value definite, since the output of a measurement is defined prior to any measurement being made.

However, if we have two “measurements” a, b ∈ Σ, such that ω(q, a) 6= ω(δ(q, b), a), then the system
exhibits complementarity: measuring b changes the state of the system from q to q′ = δ(q, b), and as a
consequence, we lose the ability to know ω(q, a). We thus cannot “measure” both a and b at the same
time, which serves to show that complementarity itself is not incompatible with value definiteness.

3.3. Complementarity and Unpredictability

Complementarity tends to be more of a general principle than a formal statement; hence, in order
to investigate mathematically the degree of unpredictability that complementarity entails, we need to
give complementarity a solid formalism. While several approaches are perhaps possible, following
our previous discussion, we choose a fairly strong form of complementarity and consider it not as an
absolute impossibility to simultaneously know the values of non-commuting observables, but rather as
a restriction on our current set of extractors; that is, using standard quantum measurements and other
techniques to which we currently have access.

Let E be an experiment involving a quantum system, and let ΛA be the set of parameters λ

corresponding to the situation in which the value v(A) of an observable A is known. We assume for
simplicity that the observables A and B have discrete spectra (as for bounded systems), that is the
eigenvalues are isolated points, and hence, the values v(A) and v(B) can be uniquely determined by
measurement. Furthermore, since the choice of units is arbitrary (e.g., we can choose ~ = 1), one can
generally assume that v(A) and v(B) are rational valued and, hence, can be known “exactly”. Even if
this were not the case, a finite approximation of v(A) is sufficient to uniquely identify it and, thus, is
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enough here. For continuous observables, it is obviously impossible to identify precisely v(A) or v(B).
Such systems are generally idealisations, but one can still handle this case by considering observables
A′ and B′ that measure A and B to some fixed accuracy. Protection by complementarity may depend
on this accuracy. For example, for position and momentum, one expects complementarity to apply only
when the product of accuracies in position and momentum is less than ~/2 according to the uncertainty
relations.

Formally, we say the set of extractors Ξ is restricted by complementarity if, for any two incompatible
quantum observables A,B (i.e., [A,B] 6= 0), there does not exist an extractor ξ ∈ Ξ and partially
computable function f , such that, whenever the value v(A) of the observable A is known, the following
holds for an infinite set Λ ⊂ ΛA: for all λ ∈ Λ, f(ξ(λ)) = v(B), and f(ξ(λ)) is undefined for all
λ ∈ ΛA \ Λ.

It would be tempting to require that v(B) cannot be “extracted” for any single trial λ ∈ ΛA without
altering the system, but, as in the definition of predictability, we need to ensure that one cannot
correctly obtain v(B) simply by chance. Thus, this definition requires that the value v(B) cannot be
reliably extracted an infinite number of times. We stress that this does not imply that A and B cannot
simultaneously have definite values, simply that we cannot know both at once.

Let us consider an experiment EC that prepares a system in an arbitrary pure state |ψ〉, thus giving
v(Pψ) = 1 for the projection observable Pψ = |ψ〉〈ψ|, before performing a projective measurement Pφ
onto a state |φ〉 with 0 < 〈ψ|φ〉 < 1 (thus [Pψ, Pφ] 6= 0), and outputting the resulting bit.

It is not difficult to see that this experiment is unpredictable relative to an agent whose predicting
power is restricted by complementarity. More formally, if a set of extractors ΞC is restricted by
complementarity, then the experiment EC described above is unpredictable for ΞC . For otherwise,
there would exist an extractor ξ ∈ ΞC and a computable predictor PEC

, such that, under any repetition
procedure giving parameters λ1, λ2, . . . , we have PEC

(ξ(λi)) = xi for infinitely many i and PEC
(ξ(λi))

withheld otherwise, where xi is the outcome of the i-th iteration/trial. However, if we define f , such that
f = PEC

when prediction is not withheld and undefined otherwise, then the pair (ξ, f) contradicts the
restriction by complementarity, and hence, EC is unpredictable for ΞC .

It is important to note that this result holds regardless of whether the observables measured are value
definite or not, although the value-definite case is of more interest. Indeed, if the observables are value
indefinite, then we are guaranteed unpredictability without assuming restriction by complementarity, and
hence, we gain little extra by considering this situation.

As a concrete example, consider the preparation of a spin-1
2

particle, for instance an electron, prepared
in a Sz = +~/2 state before measuring the complementary observable 2Sx/~ producing an outcome in
{−1,+1}. This could, for example, be implemented by a pair of orthogonally-aligned Stern–Gerlach
devices. Next, let us assume that the system is indeed value definite. The preparation step means that,
prior to the trial of the experiment being performed, v(Sz) is known, and by assumption, v(Sx) exists
(i.e., is value definite) and is thus “contained” in the parameter λ. The assumption that ΞC is restricted
by complementarity means that there is no extractor ξ ∈ ΞC able to be used by a predictor PE giving
PE(ξ(λi)) = 2v(Sx)/~ = xi, thus giving unpredictability for ΞC .

As we noted at the start of the section, this is a fairly strong notion of complementarity (although
not the strongest possible). A weaker option would be to consider only that we cannot directly extract
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the definite values: that is, there is no ξ ∈ Ξ, such that ξ(λ) = v(Sx), for all λ. However, this does not
rule out the possibility that there are other extractors allowing us to indirectly measure the definite values
(unless we take the strong step of assuming Ξ is closed under composition with computable functions, for
example). This weaker notion of complementarity would thus seem insufficient to derive unpredictability
for Ξ, although it would not show predictability either. We would thus, at least for the moment, be left
unsure about the unpredictability of measurements limited by this weak notion of complementarity.

4. Unpredictability, Computability and Complementarity

Quantum randomness can be produced by measuring unpredictable quantum observables, and in an
effort to understand more precisely the quality of this form of randomness, we showed in [21] that
the result of repeatedly measuring a value-indefinite quantum observable always produces a strongly
incomputable sequence of bits (technically, a bi-immune sequence, which means that no computable
function can compute exactly the values of more than finitely many bits of the sequence). Since
this type of incomputability represents a notion of purely algorithmic unpredictability [1], one may
be tempted to think that this is a result not so much of quantum value indefiniteness, but rather of
quantum unpredictability.

In [1], however, we showed that this is not the case: there are unpredictable experiments capable
of producing both computable and strongly incomputable sequences when repeated ad infinitum.
It is thus a fortiori also true for relativised unpredictability, and there is no immediate guarantee that
measurements of complementary observables must lead to incomputable sequences, as is the case with
value indefiniteness.

4.1. Incomputability and Complementarity

Even though the (relativised) unpredictability associated with complementary quantum observables
cannot guarantee incomputability, one may ask whether this complementarity may, with reasonable
physical assumptions, lead directly to incomputability, much as value indefiniteness does.

Here, we show this not to be true in the strongest possible way. Specifically, we will show how the
toy model of quantum systems we presented in Section 3.2.2 based on Mealy automata is unpredictable
for predictors restricted by complementarity in a way analogous to that defined for quantum observables
and, furthermore, that such systems can produce (low complexity) computable sequences when repeated.

Consider an experimentEM involving the prediction of the outcome of a measurement on a (unknown,
but fixed) Mealy automaton M = (Q,Σ,Θ, δ, ω), which we can idealise as a black box, with {x, z} ∈ Σ

characters in the input alphabet, output alphabet Θ = {0, 1} and satisfying the conditions that (1)
for all q ∈ Q and a ∈ Σ, ω(q, a) = ω(δ(q, a), a), and (2) x and z are complementary; that is, for
all q ∈ Q we have ω(q, z) 6= ω(δ(q, x), z) and ω(q, x) 6= ω(δ(q, z), x). Note that the specification
of EM does not require M to be in any particular initial state, which in general is unknown. This
automaton is deliberately specified to resemble measurements on a qubit and can be viewed as a toy
model of a two-dimensional value-definite quantum system, where the outcomes of measurements are
determined by some unknown, hidden Mealy automaton. Since the Kochen–Specker theorem does not
apply to two-dimensional systems, this value-definite toy model poses no direct contradiction with
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quantum mechanics [5], even if it is not intended to be particularly realistic. We complete the
specification ofEM by considering a trial ofEM to be the output on the string xz, that is if the automaton
is initially in the state q, the output is ω(δ(q, x), z), and the final state is δ(δ(q, x), z). This is a clear
analogy to the preparation and measurement of a qubit using complementary observables, of the type
discussed earlier.

Let Λx be the set of parameters λ corresponding toM being in a state q in the set {q ∈ Q | δ(q′, x) = q

for some q′ ∈ Q}. Note that such a state q satisfies ω(q′, x) = ω(δ(q′, x), x) = ω(q, x), and hence, q is
an “eigenstate” of x. In analogy to the definition for quantum observables, we will say that a set ΞM of
extractors is restricted by M -complementarity if there is no extractor ξ ∈ ΞM and partially computable
function f , such that, if M is in a state q with λ ∈ Λx, the following holds for an infinite set Λ ⊂ Λx: for
all λ ∈ Λ, f(ξ(λ)) = ω(q, x)), and f(ξ(λ)) is undefined for all λ∈Λx \ Λ.

Let us show that EM is unpredictable for any set ΞM of extractors restricted by M -complementarity,
the proof of which mirrors that of the unpredictability for quantum observables in Section 3.3. Let us
assume for the sake of contradiction that EM is predictable for ΞM : that is, there is a predictor PEM

and an extractor ξ ∈ ΞM , such that EM is predictable for ξ. Thus, from the definition of predictability,
when EM is repeated under any repetition procedure, PEM

must provide infinitely correct predictions
and no incorrect ones. This must thus be true if EM is repeated by inputting x to prepare the i-th trial,
so that each λi is in Λx. For such a repetition procedure, the output of the i-th trial of EM is precisely
ω(δ(qi, x), z) = ω(qi, z), and for each trial, we have either PEM

(ξ(λi)) = ω(qi, z) or prediction withheld.
However, if we define f , such that f = PEM

when prediction is not withheld, and undefined otherwise,
then the pair (ξ, f) contradicts the restriction by M -complementarity, and hence, we conclude that EM
is unpredictable for ΞM .

It is important to understand that the unpredictability of EM for any ΞM restricted by
M -complementarity expresses the inability to give a single predictor/extractor pair that gives correct
predictions for any valid repetition procedure, rather than just for a single repetition procedure. Indeed,
if we consider perhaps the simplest repetition procedure, where the final state of the system after the
i-th trial is the initial state for the (i + 1)-th trial, then the sequence produced by the infinite repetition
of trials is necessarily computable, even cyclic, since it simply represents the run of the automaton.
This computability, however, fails to provide a predictor for EM , since it would fail to provide correct
predictions for other repetition procedures, where, for example, a new copy of the system in a new initial
state is used for each trial. This same observation means that the fact that any Mealy automaton is
learnable in the infinite limit [34] equally fails to provide a general method of prediction for EM .

This example does show, however, that the experimentEM , although unpredictable for ΞM , is capable
of producing computable sequences, even if it need not do so under all repetition procedures, and hence,
computability is not excluded by complementarity.

We note that one could easily consider slightly more complicated scenarios where the outcomes are
controlled not by a Mealy automaton, but an arbitrary computable, or even, in principle, incomputable,
function; complementarity is agnostic with respect to the computability of the output of such an
experiment. Such a computable sequence may be obviously computable, such as 000 . . . , but it could
equally be something far less obvious, such as the digits in the binary expansion of π at prime indices,
that is π2π3π5π7π11 . . . . Hence, this scenario cannot be easily ruled out empirically, regardless of the
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computability, that is the low complexity, of the resulting sequences. Further emphasising this, we note
that computable sequences can also be Borel-normal, as in Champernowne’s constant or (as conjectured)
π, and, thus, satisfy many statistical properties one would expect of random sequences.

Our point was not to propose this as a realistic physical model, although it perhaps cannot be dismissed
so easily, but to illustrate a conceptual possibility. Value indefiniteness rules this computability out,
but complementarity fails to do the same in spite of its intuitive interpretation as a form of quantum
uncertainty. At best, it can be seen as an epistemic uncertainty, as it at least poses a physical barrier to
the knowledge of any definite values. The fact that complementarity cannot guarantee incomputability is
in agreement with the fact that value-definite, contextual models of quantum mechanics are perfectly
possible [1,35,36]; such models need not contradict any principle of complementarity and can be
computable or incomputable.

5. Summary

In this paper, following on from previous work in [1], we developed a revised and more nuanced
formal model of (un)predictability for physical systems. By considering prediction agents with access
to restricted sets of extractors with which to obtain information for prediction, this model allows various
intermediate degrees of prediction to be formalised.

Although models of prediction such as this can be applied to arbitrary physical systems, we have
discussed in detail their utility in helping to understand quantum unpredictability, which plays a key role
in quantum information and cryptography.

We showed that, unlike measurements certified by value indefiniteness, those certified by
complementarity alone are not necessarily simply unpredictable: they are unpredictable relative to the
ability of the predicting agent to access the values of complementary observables, a more epistemic,
relativised notion of predictability. This is a general result about complementarity, not specifically about
quantum complementarity; in particular, one may aim to have certification by both complementarity and
value indefiniteness. Indeed, in dimension three and higher Hilbert space, relative to the assumptions
of the Kochen–Specker theorem [21], one has certification by both properties value indefiniteness, thus
providing the stronger certification. However, our results are of more importance for two-dimensional
systems, since although quantum complementarity is present, this does not necessarily lead to value
indefiniteness. While one may postulate value indefiniteness in such cases as well, this constitutes
an extra physical assumption, a fact that should not be forgotten [1]. In assessing the randomness of
quantum mechanics, one thus needs to take carefully into account all physical assumptions contributing
towards the conclusions that one reaches.

The fact that quantum complementarity provides a weaker certification than value indefiniteness
is emphasised by our final result, showing that complementarity is compatible with the production
of computable sequences of bits, which is not true for value indefiniteness. Thus, quantum
value indefiniteness and the Kochen–Specker theorem appear, for now, essential in certifying the
unpredictability and incomputability of quantum randomness.
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