
CDMTCS preprint nr. 443

Value indefinite observables are almost everywhere

Alastair A. Abbott,1, 2, ∗ Cristian S. Calude,1, † and Karl Svozil3, 1, ‡

1Department of Computer Science, University of Auckland,

Private Bag 92019, Auckland, New Zealand
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Abstract

Kochen-Specker theorems assure the breakdown of certain types of non-contextual hidden variable theo-

ries through the non-existence of global, holistic frame functions; alas they do not allow us to identify where

this breakdown occurs, nor the extent of it. It was recently shown [Phys. Rev. A 86, 062109 (2012)] that this

breakdown does not occur everywhere; here we show that it is maximal in that it occurs almost everywhere,

and thus prove that quantum indeterminacy—often referred to as contextuality or value indefiniteness—is a

global property as is often assumed. In contrast to the Kochen-Specker theorem, we only assume the weaker

non-contextuality condition that any potential value assignments that may exist are locally non-contextual.

Under this assumption, we prove that once a single arbitrary observable is fixed to occur with certainty,

almost (i.e. with Lebesgue measure one) all remaining observables are indeterminate.
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I. INTRODUCTION

The Kochen-Specker theorem [2, 3] proves the impossibility of the existence of certain hidden

variable theories for quantum mechanics by showing the existence of a finite set of observables O

for which the following two assumptions cannot be simultaneously true for any given individual

system: (P1) every observable in O has a pre-assigned definite value; and (P2) the outcomes of

measurements of observables are non-contextual.

Non-contextuality means that the outcomes of measurements of observables are independent of

whatever other co-measurable observables are measured alongside them. Due to complementarity,

the observables in O cannot all be simultaneously co-measurable, that is, formally, commuting.

The Kochen-Specker theorem does not explicitly identify certain particular observables which

violate one or both assumptions (P1) and (P2), but only proves their existence. This form of the

theorem was amply sufficient for its intended scope, primarily to explore the logic of quantum

propositions [2]. The relation between value indefinite observables, that is, observables which do

not have definite values before measurement, and quantum randomness in [2, 3], requires a more

precise form of the Kochen-Specker theorem in which some value indefinite observables can be

located (identified). A stronger form of the Kochen-Specker theorem providing this information

was proved in [1].

In this paper we extend these results to show that indeed all observables on a quantum system

must be value indefinite except for those corresponding to the contexts compatible with the state

preparation. While it may seem intuitive that quantum indeterminism is widespread, it does not

follow from existing no-go theorems, so it is important that a theoretical grounding be given to this

intuition. This not only helps provide an information theoretic certification of quantum random

bits, but also develops our understanding of the origin of quantum indeterminism.

II. LOGICAL INDETERMINACY PRINCIPLE

Pitowsky [4] (also in the subsequent paper [5] with Hrushovski) gave a constructive proof

of Gleason’s theorem in terms of orthogonality graphs which motivated the study of probability

distributions on finite sets of rays. In this context he proved a result called “the logic indeterminacy

principle” which has a striking similarity with the Kochen-Specker theorem and appears as if it

could be used to locate value indefiniteness. However, as we discuss in this section, this is not the
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case.

For the sake of appreciating Pitowsky’s logical indeterminacy principle, some definitions have

to be reviewed. According to [5], a frame function on a set O ⊂ R
n of quantum states in a dimen-

sion n ≥ 3 Hilbert space is a function p : O → [0,1] such that:

(i) If {|x1〉 , . . . , |xn〉} is an orthonormal basis, ∑n
i=1 p(|xi〉) = 1, and for {|x1〉 , . . . , |xk〉} or-

thonormal with k ≤ n, ∑k
i=1 p(|xi〉)≤ 1.

(ii) For all complex α with |α|= 1 and all x ∈ O, p(|x〉) = p(α |x〉).

A Boolean frame function is a frame function taking only 0,1 values, i.e. for all |x〉 ∈O, p(|x〉)∈
{0,1}.

Pitowsky’s logical indeterminacy principle [4] states that for all states |a〉 , |b〉 ∈ R
3 with 0 <

|〈a|b〉|< 1, there exists a finite set of states O with |a〉 , |b〉 ∈ O such that there is no Boolean frame

function p on O unless p(|a〉) = p(|b〉) = 0.

A consequence of this principle is that there is no Boolean frame function p on O such that

p(|a〉) = 1. From the logical indeterminacy principle we can deduce the Kochen-Specker theorem

by identifying each state with the observable projecting onto it, as a Boolean frame function simply

gives a non-contextual, value definite yes-no value assignment, so (P2) is satisfied.

As noted by Hrushovski and Pitowsky [5], the logical indeterminacy principle is stronger than

the Kochen-Specker theorem because the result is true for arbitrary frame functions which can

take any value in the unit interval [0,1], but which are restricted to Boolean values for |a〉 , |b〉.
In fact, we may be tempted to use the logical indeterminacy principle to “locate” a value indef-

inite observable. Indeed, if we fix p and choose |a〉 ∈ R
3 such that p(|a〉) = 1, then, by the logical

indeterminacy principle, for every distinct non-orthogonal unit vector |b〉 ∈ R
3 it is impossible to

have p(|b〉) = 1 and p(|b〉) = 0, hence one could be inclined to conclude that the observable pro-

jecting onto |b〉 is value indefinite. However, such reasoning would be incorrect because if p(|b〉)
were 1, then the logical indeterminacy principle merely concludes that p does not exist; the same

conclusion is obtained if p(|b〉) were 0. Hence, in both cases p does not exist, so it makes no sense

to talk about its values, in particular, about p(|b〉). (Pointedly stated, from a physical viewpoint,

p(|a〉) as well as p(|b〉) could take on any of the four combinations of definite values, provided

that (P1) or (P2) is violated for some other observable in O. Nevertheless, as we shall demonstrate

in Section V, using the formalism of [1], all observables in O except |a〉 and those commuting

with |a〉 are indeed provable value indefinite.) This means that using the logical indeterminacy
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principle we get the same global information derived in the Kochen-Specker theorem, namely that

some observable in O has to be value indefinite, and no more. The reason for this limitation is the

use of frame functions, which by definition must be defined everywhere: they can model “local”

value definiteness, but not “local” value indefiniteness, which, as in the Kochen-Specker theorem,

“emerges” only as a global phenomenon.

III. VALUE INDEFINITENESS AND CONTEXTUALITY

To remedy the above deficiency we will use the formalism proposed in [1] for pure quantum

states. Specifically, we define value (in)definiteness and contextuality in the framework of quan-

tum logic of Birkhoff and von Neumann [6, 7] and Kochen and Specker [8, 9].

Projection operators projecting on to the linear subspace spanned by a non-zero vector |ψ〉 will

be denoted by Pψ = (|ψ〉〈ψ|)/〈ψ|ψ〉.
Let O = {Pψ1

,Pψ2
, . . .} be a non-empty set of projection observables in the n-dimensional

Hilbert space R
n. A context C = {P1,P2, . . .Pn} is a set of n orthogonal and thus compatible

(i.e. simultaneously co-measurable) projection observables from O. In quantum mechanics this

means the observables in C are pairwise commuting. In general, the result of a measurement

may depend not just on the observable measured but also on the context it is measured in. We

represent the fact that the measurement of an observable o measured in the context C may be

predetermined (e.g. by a hidden variables theory) by a value assignment function which assigns

the value v(o,C)∈ {0,1} to this observable if it is predetermined. If the result is not predetermined

the value v(o,C) is undefined. Formally this means v is in general a partial function. Accordingly

we adopt the convention that v(o,C) = v(o′,C′) if and only if v(o,C) and v(o′,C′) are both defined

and take equal values. In what follows, this value assignment function will allow us to formalise

the necessary notions of admissibility, value definiteness and non-contextuality.

To agree with the predictions of quantum mechanics—which place certain relations between

the values assigned to observables (in any context C)—we need to work with a class of value

assignment functions called admissible: they are value assignment functions v which satisfies the

following two properties: (i) if there exists an observable o in C with v(o,C) = 1, then v(o′,C) = 0

for all other observables o′ in C; (ii) if there exists an observable o in C such that for all other

observables o′ in C v(o′,C) = 0, then v(o,C) = 1.

Value definiteness formalises the notion that the result of a measurement (in a particular con-
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text) may be predetermined. For a given value assignment function v, an observable o in the

context C is value definite in C if v(o,C) is defined; otherwise o is value indefinite in C. If o is

value definite in all contexts then we simply say that o is value definite.

Non-contextuality corresponds to the classical notion that the value obtained via measurement

is independent of other compatible observables measured alongside it. An observable o is non-

contextual if for all contexts C,C′ we have v(o,C) = v(o,C′); otherwise, v is contextual. The set of

observables O is non-contextual if every observable o ∈ O is non-contextual; otherwise, the set of

observables O is contextual. (Here the term contextual means that the outcome of a measurement

either exists but is context dependent, or it is value indefinite.)

Our definitions of both value definiteness and non-contextually are formulated in a very flex-

ible sense. They allow us to specify individual value (in)definite observables, and only require

observables which are value definite to behave non-contextually. This technicality is critical in the

ability to localise the Kochen-Specker theorem.

IV. STRONG KOCHEN-SPECKER THEOREM

The incompatibility between the assumptions (P1) and (P2) is not maximal in the following

sense: for any set of observables, there exists an admissible assignment function under which the

set of observables is value definite and at least one observable is non-contextual. This shows that

not all observables need to be value indefinite [1], because for every pure quantum state at least

the propositions associated with the state preparation are certain, and thus value definite.

However, there always exist pairs of observables such that, if one of them is assigned the value 1

by an admissible assignment function under which O is non-contextual, the other must be “value

indefinite”. This result is deduced in [1] using the weaker assumption that not all observables

are assumed to be value definite, formally expressed by the admissibility of v. In particular, an

observable is deduced to be value definite only when the values of other commuting value-definite

observables require it to be so.

The theorem derived in Ref. [1], and henceforth called the strong Kochen-Specker theorem,

can be used to “locate” a provable value indefinite observable which when measured “produces”

a quantum random bit, which is guaranteed to be produced by a value indefinite observable under

some physical assumptions: Let |a〉 , |b〉 ∈R
3 be unit vectors such that

√

5
14

≤ |〈a|b〉| ≤ 3√
14

. Then

there exists a set of 24 projection observables O containing Pa = |a〉〈a| and Pb = |b〉〈b| such that
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there is no admissible assignment function under which O is non-contextual, Pa has the value 1

and Pb is value definite.

V. HOW WIDESPREAD IS VALUE INDEFINITENESS?

Assuming an observable Pa is predetermined to have the value 1, then from the strong Kochen-

Specker theorem we know that we can explicitly identify an observable Pb which is provable value

indefinite relative to the assumptions (mainly admissibility and non-contextuality). In this section

we address the following question: Which of the remaining observables Pb can be proven to be

value indefinite? We prove here the following answer: only observables which commute with Pa

can be value definite.

Specifically, we prove the following, more general extended Kochen-Specker theorem, which

increases the scope of the strong Kochen-Specker theorem to cover the rest of the state space:

Let |a〉 , |b〉 ∈ R
3 be neither orthogonal nor parallel unit vectors, i.e. 0 < |〈a|b〉|< 1. Then there

exists a set of projection observables O containing Pa = |a〉〈a| and Pb = |b〉〈b| such that there is

no admissible assignment function under which O is non-contextual, Pa has the value 1 and Pb is

value definite. The set O is finite and can be effectively constructed.

While this result is similar in form to the original Kochen-Specker theorem, the subtle differ-

ences are critical. As mentioned previously, the Kochen-Specker theorem is unable to locate value

definiteness. Because if Pa has the value 1, we cannot conclude that Pb is value indefinite, even

if we can show that any two-valued assignment leads to a complete contradiction. This is due

to the fact that this contradiction implies only that no global assignment function can exist; the

Kochen-Specker theorem does not show that Pb could not be value definite, while some other Pc

harbours the (necessary) value indefiniteness.

On the other hand, the sets of observables given in the proofs of the stronger form of the

Kochen-Specker theorem presented here are carefully constructed such that any attempt to place

the value indefiniteness on a Pc necessarily contradicts the admissibility of v. For example, it

would require a context containing an observable assigned the value 1, and another observable

being value indefinite. This contradicts both the admissibility of v, and the physical understanding

of what it means for that observable to be assigned the value 1—since we know measuring that

observable will give the value 1, measuring the other observables must give the value 0, and hence

the other observables are necessarily value definite. As a result, we are forced to conclude that Pb
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FIG. 1. (Color online) Greechie orthogonality diagram with an overlaid value assignment that illustrates

the reduction in the reduction lemma. The circles and squares represent observables that will be given the

values 0 and 1 respectively. They are joined by smooth lines which represent contexts.

itself is value indefinite.

In order to prove the strong Kochen-Specker theorem, in Ref. [1] a specific proof for the case

|〈a|b〉|= 3√
14

was given, followed by a reduction to this proof for the case |〈a|b〉|< 3√
14
. Here we

prove that this theorem can be extended for all cases by reducing the remaining case of |〈a|b〉|>
3√
14

to the existing result. This reduction is more subtle and difficult than the first one.

For the purpose of illustrating the reduction technique, let us state the following reduction

lemma (derived in Ref. [1]), which will also turn out to be important for the reduction we will

present later: Given any two unit vectors |a〉 , |b〉 with 0 < |〈a|b〉|< 1 and an x such that |〈a|b〉|<
|x|< 1, there exist a unit vector |c〉 with 〈a|c〉= x, a set of observables O containing Pa = |a〉〈a|,
Pb = |b〉〈b|, Pc = |c〉〈c|such that if Pa and Pb have the value 1, then Pc also has the value 1 under

any admissible, non-contextual assignment function on O. Furthermore, if we choose our basis

such that |a〉 ≡ (1,0,0) and |b〉 ≡ (p,q,0), where p = 〈a|b〉 and q =
√

1− p2, then |c〉 has the

form |c〉= (x,y,±z), where x = 〈a|c〉, y = p(1− x2)/qx and z =
√

1− x2 − y2.

This lemma is illustrated in Fig. 2 and constitutes a simple “forcing” of value definiteness:

given Pa and Pb both with the value 1, there is a Pc which is “closer” (i.e. at a smaller angle of our

choosing) to Pa which forces Pc to also take the value 1.

This reduction, however, requires necessarily that |x| > |p|, and finding a reduction to “force”

in the other direction (i.e. towards larger angles between Pa and Pc) is difficult. Here we present an
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FIG. 2. (Color online) Greechie orthogonality diagram with an overlaid value assignment that illustrates the

reduction in the iterated reduction lemma.

argument for this case in what henceforth will be called the iterated reduction lemma: Given any

two unit vectors |a〉 , |b〉 with 3√
14

< 〈a|b〉< 1, there exist a unit vector |c〉 with 〈a|c〉 ≤ 3√
14

, a set

of observables O containing Pa = |a〉〈a|, Pb = |b〉〈b|, Pc = |c〉〈c| such that if Pa and Pb have the

value 1, then Pc also has the value 1 under any admissible, non-contextual assignment function on

O.

The proof of this lemma is based on the generalisation of a specific reduction for the case

of 〈a|b〉 = 1√
2

to 〈a|c〉 = 1√
3
; that is, it is a “forcing” argument in the required direction. The

Greechie diagram for this is depicted in Fig. 2. In essence, this figure consists of three copies

of the reduction shown in Fig. 1 glued together, ensuring that the Greechie diagram is indeed

realisable. Specifically, the important relations are: 〈a|v1〉 =
√

2
3
, 〈a|v2〉 = 2√

5
, 〈b|c〉 =

√

2
3

and

〈b|v2〉 =
√

2
5
. The angles between unit vectors in this proof are then scaled, in a way which we

will soon make precise, to fit the required 〈a|b〉 for the general case. However, since this doesn’t

allow us to assert that an arbitrary |c〉 must have the value 1 in the same way we could using the

reduction lemma, this reduction is then iterated a finite number of times until a sufficiently small

〈a|c〉 is obtained.

Let us now formally prove the iterated reduction lemma. The constants which will be used for
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scaling, obtained from the reduction shown in Fig. 2, are as follows:

α1 =
arccos

√

2
3

arccos 1√
2

, α2 =
arccos 2√

5

arccos

√

2
3

, α3 =
arccos

√

2
3

arccos

√

2
5

.

Given the initial |a〉, |b〉 and the above constants, we thus make use of the following scaled angles

between the relevant observables:

θa,b = arccos〈a|b〉, θa,v1
= α1θa,b, θa,v2

= α2θa,v1
.

Once |v2〉 is determined via the procedure to follow, we take the following:

θb,v2
= arccos〈b|v2〉, θb,c = α3θb,v2

.

Without loss of generality, let |a〉 = (1,0,0) and |b〉 = (p1,q1,0) where p1 = 〈a|b〉 and q1 =
√

1− p2
1. This fixes our basis for the rest of the reduction. We want to have |v1〉 such that 〈a|v1〉=

x1 = cosθa,v1
. From the reduction lemma we know this is possible since x1 > p1 (because α1 < 1),

and we have |v1〉= (x1,y1,z1), y1 = p1(1− x2
1)/q1x1 and z1 =

√

1− x2
1 − y2

1.

We now want |v2〉 such that 〈a|v2〉 = x2 = cosθa,v2
(this is possible since α2 < 1). In order to

use the same general form (specified in the reduction lemma) as above, we perform a change of

basis to bring |v1〉 into the xy-plane, describe |v2〉 in this basis using the above result, then perform

the inverse change of basis. Our new basis vectors are given by |e2〉= (1,0,0),

| f2〉= (|v1〉− x1 |e2〉)/q2 = (0,y1/q2,z1/q2)

where q2 =
√

1− x2
1, and |g2〉= |e2〉×| f2〉= (0,z1/q2,−y1/q2). We thus have the transformation

matrix

T2 =











1 0 0

0 y1/q2 z1/q2

0 z1/q2 −y1/q2











.

We can now put y2 = x1(1− x2
2)/q2x2 and z2 =

√

1− x2
2 − y2

2 so that in our original basis we

have

|v2〉= T1(x2,y2,−z2)
t = (x2,

y1y2 − z1z2

q2
,
y2z1 + y1z2

q2
.

We note at this point that the constant θb,v2
is now determined, and we have

〈b|v2〉= p1x2 +
q1

q2
(y1y2 − z1z2).
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For the last iteration of the reduction, we want to find |c〉 such that 〈b|c〉= x3 = cosθb,c (again

this will be possible since α3 < 1). Let p3 = 〈b|v2〉 and q3 =
√

1− p2
3. Again we perform a basis

transformation; we have |e3〉= |b〉= (p1,q1,0),

| f3〉= (|v2〉− p3 |b〉)/k

= (x2 − p3 p1,(y1y2 − z1z2)/q2 − p3q1,(y2z1 + y1z2)/q2)/k,

where k is a constant such that | f3〉 is normalized, and

|g3〉= |e3〉× | f3〉

=

(

q1

q2
(y2z1 + y1z2),

−p1

q2
(y2z1 + y1z2),

p1

q2
(y1y2 − z1z2)−q1x2

)

/k.

The transformation matrix is then given by

T3 =











p1
x2−p3 p1

k

q1(y2z1+y1z2)
q2k

q1
y1y2−z1z2−p3q1q2

q2k

−p1(y2z1+y1z2)
q2k

0
y2z1+y1z2

q2k

p1(y1y2−z1z2)−x2q1q2

q2k











.

We now put y3 = p3(1− x2
3)/q3x3 and z3 =

√

1− x2
3 − y2

3 so that in the original basis we have

|c〉=T3(x3,y3,−z3)
t

=

(

x3 p1 +
y3

k
(x2 − p1 p3)−

q1z3

kq2
(y2z1 + y1z2),

x3q1 +
y3

kq2
(y1y2 − z1z2 − p3q1q2)+

z3p1

kq2
(y2z1 + y1z2),

y3

kq2
(y2z1 + y1z2)−

z3

k

[

p1

q2
(y1y2 − z1z2)−q1x2

])

.

Note that only the first term is of importance in the above expression. Specifically, we want to

prove that 〈a|c〉< 〈a|b〉= p1, where

〈a|c〉= x3 p1 +
y3

k
(x2 − p1 p3)−

q1z3

kq2
(y2z1 + y1z2).

The product 〈a|c〉 is, with appropriate substitutions, a function of one variable, p1; let us denote

f (p1) = 〈a|c〉. We thus need to determine if, for p1 ∈
(

3√
14
,1
)

the inequality f (p1)< p1 holds.

We note that f (p1) is well behaved and continuous on this domain, and limp1→1− f (p1) = 1,

hence using a combination of direct analysis and symbolic calculation [10] and plots, we show

that the inequality is indeed true. Further details of the analysis are given in the Appendix.
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FIG. 3. (Color online) Plot of p1 (dashed red line) and f (p1) (solid blue line) for p1 ∈ (0.8,1) ⊃
(

3√
14
,1
)

.

Using symbolic calculation [10] for a Taylor series expansion around p1 = 1, we find that for

small |p1 −1|, f (p1) = 1−m(1− p1), where m ≈ 1.27 is a constant. Hence limp1→1− f (p1) = 1

as claimed and for some ε > 0 we have f (p1) < p1 for p1 ∈ (1− ε,1). Further, the continuity

of f on this domain can be guaranteed by noting that f (p1) is simply composed of trigonometric

functions with arguments from (−1,1) \ {0}; since these are all continuous, so is f . From Fig. 3

and the above results it follows that to prove the inequality f (p1) < p1 for all p1 ∈
(

3√
14
,1
)

we

need to show that for no p1 → 1 (which implies f (p1)→ p1) we have f (p1)> p1.

Since we know from the Taylor series expansion that f (p1) < p1 in the neighbourhood of

p1 = 1, if for some p′1 ∈
(

3√
14
,1
)

we were to have f (p′1) > p′1, then for some p′′1 we must have

d
d p1

f (p′′1)< 1, which is false (see Fig. 4).

From Fig. 3 (and also from the fact that the derivative of f (p1) > 1) it also follows that the

difference p1− f (p1) is strictly decreasing with p1 on
(

3√
14
,1
)

⊂ (0.8,1). Thus, for large enough

(but finite) k, f k(p1)≤ 3√
14

, and the projector Pck
must be assigned the value 1 by v. This completes

the proof.

11



0.80 0.85 0.90 0.95 1.00
1.0

1.1

1.2

1.3

1.4

1.5

p1

d
f

d
p 1

FIG. 4. (Color online) Plot of
d f
dp1

for p1 ∈ (0.8,1) ⊃ ( 3√
14
,1).

The proof of the extended Kochen-Specker theorem follows rather straightforwardly from the

iterated reduction lemma as follows. If 0 < |〈a|b〉| < 3√
14

, we can appeal simply to the strong

Kochen-Specker theorem, so let 3√
14

< |〈a|b〉|< 1.

Without loss of generality, we can assume that 〈a|b〉 ∈ (0,1), since Pb = Pαb for α ∈ R with

|α|= 1, so the set of projection observables O obtained under this assumption will give the required

result for the general case.

Let us assume, for the sake of contradiction, that such an admissible assignment function v

exists for all sets of observables O, i.e. v(Pa,Ca) = 1 and v(Pb,Cb) is defined for all Ca,Cb with

Pa ∈Ca and Pb ∈Ca. (Since v is required to be non-contextual, we will omit the context and write

v(Pa, ·) for simplicity.) Then, for all such contexts, if v(Pb, ·) = 1, then by the iterated reduction

lemma, there exists a |c〉 with 〈a|c〉 ≤ 3√
14

such that v(Pc, ·) = 1. But this contradicts the strong

Kochen-Specker theorem. Hence, if Pb is to be value definite we must have v(Pb, ·) = 0. However,

we show that this also leads to a contradiction as follows.

Let p = 〈a|b〉 and q =
√

1− p2. We construct an orthonormal basis in which |a〉 ≡ (1,0,0) and

|b〉 ≡ (p,q,0). Define |α〉 ≡ (0,1,0), |β〉 ≡ (0,0,1) and |c〉 ≡ (q,−p,0). Then {|a〉 , |α〉 , |β〉} and

{|b〉 , |c〉 , |β〉} are orthonormal bases for R3, so we can define the contexts C1 = {Pa,Pα,Pβ} and
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C2 = {Pb,Pc,Pβ}. Since v(Pa,C1) = 1, we must have v(Pβ,C1) = v(Pβ,C2) = 0 by the admissibility

of v. But since, by assumption, v(Pb,C2) = 0, we must have v(Pc,C2) = 1. However, this also

contradicts the strong Kochen-Specker theorem, since it is easily seen that

0 < 〈a|c〉= q =
√

1− p2 <

√

5

14
<

3√
14

.

Hence, we conclude that Pb must be value indefinite under v. This then completes the proof the

extended Kochen-Specker theorem.

We are now able to answer, in a measure theoretic way, the question posed in the title of

this section: the set of value indefinite observables has Lebesgue measure one in R
3. The proof

starts by noting that the set of value indefinite observables depends on an arbitrarily fixed single

vector, say |a〉 ∈ R
3. Assume that Pa has a definite value (1 or 0). According to the extended

Kochen-Specker theorem, no observable outside the union of the linear subspaces either spanned

by the single vector Pa (dimension one),or the plane orthogonal to this vector {Pb | 〈Pa|Pb〉 = 0}
(dimension two) is value definite. This set has Lebesgue measure zero in R

3 because any subset

of R3 whose dimension is smaller than 3 has Lebesgue measure zero in R
3. This completes the

proof.

In terms of unit vectors, the set in the above proof corresponds to the set {(1,0,0),(0,0,0)}∪
{(0,x,y) | x2 + y2 = 1} on the three dimensional unit sphere, consisting of (i) a single point of

dimension zero, and (ii) a great circle of dimension one. Again this set has Lebesgue measure zero

on the unit sphere.

VI. FINAL COMMENTS

One could put our findings in the following perspective. In response to Bell-, as well as Kochen-

Specker- and Greenberger-Horne-Zeilinger-type theorems, the “quantum realists” – among them

Bell suggesting that [11, p. 451] “the result of an observation may reasonably depend . . . on the

complete disposition of the apparatus” – have been inclined to adopt contextual value definiteness

in order to save a kind of “contextual reality.” Contextual reality claims that all measurable prop-

erties exist, regardless of whether they are actually measured, or are counterfactuals; albeit these

properties may be context dependent. In this way one could still maintain the existence of some

“real (though counterfactual, context dependent) physical property.”

While one can probably never rule out such a (necessarily nonlocal) contextual reality, our re-
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sults explore the full extent of value indefiniteness. It is this formalised notion of quantum indeter-

minism which can be a crucial element of quantum information theory, particularly cryptography

and random number generation.

One immediate result of the above findings is that, if one insists on the type of non-contextuality

formalized by admissible assignments, then value definiteness cannot exist outside of a star-shaped

configuration in Greechie-type orthogonality diagrams. It is important to note that this form of

non-contextuality is weak in the sense that it is only required to apply locally when a definite value

is assigned. Thereby, no holistic frame function on all quantum observables need to be assumed.

Let us be more specific what is meant by the “star(-shaped)” configuration of a quantum state

|ψ〉. We consider a a quantum system prepared in a state corresponding to the proposition that

“a particular detector Dψ clicks among, say, three mutual exclusive detectors” (corresponding to

a three dimensional Hilbert space quantum model). Such a state can be formalized by a projector

Pψ = |ψ〉〈ψ|, or, equivalently, by the linear subspace spanned by the normalized vector |ψ〉 (to-

gether maybe with the other two orthonormal vectors to |ψ〉 and to each other). Now, if a quantum

state |ψ〉 is prepared such that the detector Dψ clicks, that corresponds to assigning |ψ〉 the value

v(Pψ, ·) = 1. |ψ〉’s star is formed by taking some or all vectors |ϕ〉 whose value assignments are

consistent with v(Pψ, ·) = 1. These are value assignments v(Pϕ, ·) = 0, with |ϕ〉 orthogonal to |ψ〉;
that is, 〈ϕ|ψ〉 = 0. Such potential observables |ϕ〉〈ϕ| are thus value definite. As they correspond

to vectors orthogonal to |ψ〉, they are, diagrammatically (i.e., in terms of Greechie orthogonality

diagrams) speaking, “in |ψ〉’s star.”

All other conceivable observables corresponding to vectors “outside of |ψ〉’s star” remain value

indefinite relative to our assumptions. The configuration can be represented by the Greechie or-

thogonality diagram depicted in Fig. 5(a). This finding is consistent with the Heisenberg un-

certainty relations and quantum complementarity. Note that this still allows the value definite

existence of a continuum of contexts (meaning that all observables therein are value definite) in-

terlinked at |ψ〉, but on a set of Lebesgue measure zero.

One could be inclined to go one step further and conjecture that there does not exist any value

definite observable outside of a single context [12]. This context is defined by the preparation of

the state: it consists of the observable corresponding to |ψ〉, as well as of the two other orthogonal

projectors associated with the two idle detectors that do not click if Dψ clicks. The configuration

can be represented by the Greechie orthogonality diagram depicted in Fig. 5(b). This conjecture is

strictly speculative with respect to quantum mechanics, because with our assumptions it seems that
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C4

|ψ〉

(a) (b)

FIG. 5. (Color online) Greechie orthogonality diagram of a star-shaped configuration, representing a com-

mon detector observable |ψ〉〈ψ| with an overlaid two-valued assignment reflecting v(Pψ, ·) = 1. (a) all

“branches” corresponding to contexts are assumed to be equally value definite; (b) it is assumed that, since

the system is prepared in, say, context C4, depicted by a block colored in thick filled black, only this context

is value definite; all the other (continuity of) contexts are “phantom contexts” colored in gray.

one cannot prove the sole existence of just one, unique context among the continuum of context

forming “|ψ〉’s star.” Let us mention that one of the authors is inclined to believe in such an

existence, another one is inclined to not believe therein, and the third author has no inclination

towards either speculation.
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Appendix: Further details and code of analysis of f (p1)

The proof of the iterated reduction lemma relies critically on the analysis of the function

f (p1) = 〈a|c〉 for p1 ∈
(

3√
14
,1
)

. Here we give further details of this analysis, which was car-

ried out using Wolfram Mathematica 9.0.1.0.

Specifically, we have

f (p1) = 〈a|c〉= x3p1 +
y3

k
(x2 − p1 p3)−

q1z3

kq2
(y2z1 + y1z2),

where the constants are defined in terms of p1 as follows:

α1 =
arccos

√

2
3

arccos 1√
2

, α2 =
arccos 2√

5

arccos

√

2
3

, α3 =
arccos

√

2
3

arccos

√

2
5

,

θa,b = arccos p1, θa,v1
= α1θa,b, θa,v2

= α2θa,v1
,

q1 =
√

1− p2
1, x1 = cosθa,v1

, y1 =
p1(1− x2

1)

q1x1
, z1 =

√

1− x2
1 − y2

1,

q2 =
√

1− x2
1, x2 = cosθa,v2

, y2 =
x1(1− x2

2)

q2x2
, z2 =

√

1− x2
2 − y2

2,

p3 = p1x2 +q1
y1y2 − z1z2

q2
, θb,v2

= arccos p3, θb,c = α3θb,v2
,

q3 =
√

1− p2
3, x3 = cosθb,c, y3 = p3

(1− x2
3)

q3x3
, z3 =

√

1− x2
3 − y2

3,

k =

√

(x2 − p3 p1)
2 +

(

(y1y2 − z1z2)

q2
− p3q1

)2

+

(

y2z1 + y1z2

q2

)2

.

The Mathematica code used for the analysis (available in [13]) uses these constants and the

form of f (p1) to give the following Taylor expansion of f at p1 = 1, showing the behaviour of

f (p1) as p1 → 1 from below. It also calculates the derivative which is used to generate Fig. 4.
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f (p1) =1+
(p1 −1)

π2 arccos2

√

2
5

(

π2

(

arccos2

√

2

5
+ arcosh2

√

2

3

)

+ 8arccos
2√
5

(

arccos
2√
5

(

2arccos2

√

2

3

+

√

√

√

√

(

π2 +16arcosh2

√

2

3

)(

arccos2

√

2

5
+ arcosh2

√

2

3

)



+4arccos

√

2

3

×

√

√

√

√

(

arccos2

√

2

5
+ arcosh2

√

2

3

)(

arccos2

√

2

3
+ arcosh2 2√

5

)









+O((p1 −1)2),

which numerically simplifies to

f (p1) = 1−1.2658(1− p1)+O((p1−1)2).
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