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Part I:

Setup of two-particle correlations
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Two-particle correlations
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Frequency definition of two-particle correlations

Consider two particles or quanta. On each one of the two quanta,
certain measurements (such as the spin state or polarization) of
(dichotomic) observables O(a) and O(b) along the directions a and
b, respectively, are performed. The individual outcomes are
encoded or labeled by the values “−λ” and “+λ;” e.g., “−1” and
“+1” (or, alternatively, by the symbols“−” and “+,” or “0” and “1”)
are recorded along the directions a for the first particle, and b for
the second particle, respectively.
A two-particle correlation function E (a, b) is defined by averaging
over the product of the outcomes O(a)i ,O(b)i ∈ {−λ,+λ} in the
ith experiment for a total of N experiments; i.e.,

E (a, b) =
1
N

N∑
i=1

O(a)iO(b)i .



Two-particle correlations
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Figure: Simultaneous spin state measurement of the two-partite state.
Boxes indicate spin state analyzers such as Stern-Gerlach apparatus
oriented along the directions θ1, ϕ1 and θ2, ϕ2; their two output ports are
occupied with detectors associated with the outcomes “+” and “−”,
respectively.
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Classical two-particle quantum correlations
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Two-particle classical correlations
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By considering the length A+(a, b) and A−(a, b) of the positive
and negative contributions to expectation function, one obtains for
0 ≤ θ = |a − b| ≤ π,

Ecl,2,2(θ) = Ecl,2,2(a, b) = 1
2π [A+(a, b)− A−(a, b)]

= 1
2π [2A+(a, b)− 2π] = 2

π |a − b| − 1 = 2θ
π − 1,

where the subscripts stand for the number of mutually exclusive
measurement outcomes per particle, and for the number of
particles, respectively. Note that A+(a, b) + A−(a, b) = 2π.



Part III:

Quantum two-particle quantum correlations
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Definitions
Let |+〉 denote the pure state corresponding to ê1 = (0, 1), and
|−〉 denote the orthogonal pure state corresponding to ê2 = (1, 0).
The superscript “T ,” “∗” and “†” stand for transposition, complex
and hermitian conjugation, respectively.
In finite-dimensional Hilbert space, the matrix representation of
projectors Ea from normalized vectors a = (a1, a2, . . . , an)T with
respect to some basis of n-dimensional Hilbert space is obtained by
taking the dyadic product; i.e., by

Ea =
[
a, a†

]
=
[
a, (a∗)T ] = a⊗ a† =


a1a†

a2a†

. . .
ana†

 =

=


a1a∗1 a1a∗2 . . . a1a∗n
a2a∗1 a2a∗2 . . . a2a∗n
. . . . . . . . . . . .

ana∗1 ana∗2 . . . ana∗n

 .



The tensor or Kronecker product of two vectors a and
b = (b1, b2, . . . , bm)T can be represented by

a⊗ b = (a1b, a2b, . . . , anb)T = (a1b1, a1b2, . . . , anbm)T

The tensor or Kronecker product of some operators

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
an1 an2 . . . ann

 and B =


b11 b12 . . . b1m
b21 b22 . . . b2m
. . . . . . . . . . . .
bm1 bm2 . . . bmm


is represented by an n × n-matrix A⊗ B =

a11B a12B . . . a1nB
a21B a22B . . . a2nB
. . . . . . . . . . . .

an1B an2B . . . annB

 =


a11b11 a11b12 . . . a1nb1m
a11b21 a11b22 . . . a2nb2m
. . . . . . . . . . . .

annbm1 annbm2 . . . annbmm

 .



Observables
Let us start with the spin one-half angular momentum observables
of a single particle along an arbitrary direction in spherical
co-ordinates θ and ϕ in units of ~; i.e.,

Mx =
1
2

(
0 1
1 0

)
, My =

1
2

(
0 −i
i 0

)
, Mz =

1
2

(
1 0
0 −1

)
.

The angular momentum operator in arbitrary direction θ, ϕ is given
by its spectral decomposition

S 1
2
(θ, ϕ) = xMx + yMy + zMz

= Mx sin θ cosϕ+ My sin θ sinϕ+ Mz cos θ

= 1
2σ(θ, ϕ) = 1

2

(
cos θ e−iϕ sin θ

e iϕ sin θ − cos θ

)
= −1

2

(
sin2 θ

2 −1
2e−iϕ sin θ

−1
2e iϕ sin θ cos2 θ

2

)
+ 1

2

(
cos2 θ

2
1
2e−iϕ sin θ

1
2e iϕ sin θ sin2 θ

2

)
= −1

2

{1
2 [I2 − σ(θ, ϕ)]

}
+ 1

2

{1
2 [I2 + σ(θ, ϕ)]

}
.



The orthonormal eigenstates (eigenvectors) associated with the
eigenvalues −1

2 and +1
2 of S 1

2
(θ, ϕ) are

|−〉θ,ϕ ≡ x− 1
2
(θ, ϕ) = e iδ+

(
−e−

iϕ
2 sin θ

2 , e
iϕ
2 cos θ2

)
,

|+〉θ,ϕ ≡ x+ 1
2
(θ, ϕ) = e iδ−

(
e−

iϕ
2 cos θ2 , e

iϕ
2 sin θ

2

)
,

respectively. δ+ and δ− are arbitrary phases. These orthogonal unit
vectors correspond to the two orthogonal projectors

F∓(θ, ϕ) =
1
2

[I2 ∓ σ(θ, ϕ)]

for the spin down and up states along θ and ϕ, respectively. By
setting all the phases and angles to zero, one obtains the original
orthonormalized basis {|−〉, |+〉}.



If we are only interested in spin state measurements with the
associated outcomes of spin states in units of ~, the previous
formula can be rewritten to include all possible cases at once; i.e.,

S 1
2

1
2
(θ̂, ϕ̂) = S 1

2
(θ1, ϕ1)⊗ S 1

2
(θ2, ϕ2).

The two-particle projectors F±± or, by another notation, F±1±2 to
indicate the outcome on the first or the second particle,
corresponding to a two spin-12 particle joint measurement aligned
(“+”) or antialigned (“−”) along arbitrary directions are

F±1±2(θ̂, ϕ̂) =
1
2

[I2 ±1 σ(θ1, ϕ1)]⊗ 1
2

[I2 ±2 σ(θ2, ϕ2)] ;

where “±i ,” i = 1, 2 refers to the outcome on the i ’th particle, and
the notation θ̂, ϕ̂ is used to indicate all angular parameters.



To demonstrate its physical interpretation, let us consider as a
concrete example a spin state measurement on two quanta:
F−+(θ̂, ϕ̂) stands for the proposition

‘The spin state of the first particle measured along θ1, ϕ1
is “−” and the spin state of the second particle measured
along θ2, ϕ2 is “+” .’



More generally, we will consider two different numbers λ+ and λ−,
and the generalized single-particle operator

R 1
2
(θ, ϕ) = λ−

{
1
2

[I2 − σ(θ, ϕ)]

}
+ λ+

{
1
2

[I2 + σ(θ, ϕ)]

}
,

as well as the resulting two-particle operator

R 1
2

1
2
(θ̂, ϕ̂) = R 1

2
(θ1, ϕ1)⊗ R 1

2
(θ2, ϕ2)

= λ−λ−F−− + λ−λ+F−+ + λ+λ−F+− + λ+λ+F++.



Singlet state

In what follows, singlet states |Ψd ,n,i 〉 will be labeled by three
numbers d , n and i , denoting the number d of outcomes associated
with the dimension of Hilbert space per particle, the number n of
participating particles, and the state count i in an enumeration of
all possible singlet states of n particles of spin j = (d − 1)/2,
respectively. For n = 2, there is only one singlet state, and i = 1 is
always one.



Consider the singlet “Bell” state of two spin-12 particles

|Ψ2,2,1〉 =
1√
2

(
|+−〉 − | −+〉

)
.

With the identifications |+〉 ≡ ê1 = (1, 0) and |−〉 ≡ ê2 = (0, 1) as
before, the Bell state has a vector representation as

|Ψ2,2,1〉 ≡ 1√
2

(ê1 ⊗ ê2 − ê2 ⊗ ê1)

= 1√
2

[(1, 0)⊗ (0, 1)− (0, 1)⊗ (1, 0)]

=
(
0, 1√

2
,− 1√

2
, 0
)
.



Density operator

The density operator ρΨ2,2,1 is just the projector of the dyadic
product of this vector, corresponding to the one-dimensional linear
subspace spanned by |Ψ2,2,1〉; i.e.,

ρΨ2,2,1 = |Ψ2,2,1〉〈Ψ2,2,1|
=
[
|Ψ2,2,1〉, |Ψ2,2,1〉†

]
= 1

2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 .



Form invariance of singlet states

Singlet states are form invariant with respect to arbitrary unitary
transformations in the single-particle Hilbert spaces and thus also
rotationally invariant in configuration space, in particular under the
rotations

|+〉 = e i ϕ2

(
cos

θ

2
|+′〉 − sin

θ

2
|−′〉

)
and

|−〉 = e−i ϕ2

(
sin

θ

2
|+′〉+ cos

θ

2
|−′〉

)
in the spherical coordinates θ, ϕ defined above.



The Bell singlet state is unique in the sense that the outcome of a
spin state measurement along a particular direction on one particle
“fixes” also the opposite outcome of a spin state measurement
along the same direction on its “partner” particle: (assuming
lossless devices)

I whatever the common direction of spin (intrinsic angular
momentum) state measurement,

I whenever a “plus” or a “minus” is recorded on one side,

a “minus” or a “plus” is recorded on the other side, and vice versa.
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Results

We now turn to the calculation of quantum predictions. The joint
probability to register the spins of the two particles in state ρΨ2,2,1

aligned or antialigned along the directions defined by (θ1, ϕ1) and
(θ2, ϕ2) can be evaluated by the Born formula

PΨ2,2,1±1±2(θ̂, ϕ̂)

= Tr
[
ρΨ2,2,1 · F±1±2

(
θ̂, ϕ̂

)]
= 1

4 {1− (±11)(±21) [cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2)]} .

Again, “±i ,” i = 1, 2 refers to the outcome on the i ’th particle.



Since P= + P 6= = 1 and E = P= − P6=, the joint probabilities to
find the two particles in an even or in an odd number of
spin-“−1

2 ”-states when measured along (θ1, ϕ1) and (θ2, ϕ2) are in
terms of the expectation function given by

P= = P++ + P−−
= 1

2 (1 + E )
= 1

2 {1− [cos θ1 cos θ2 − sin θ1 sin θ2 cos(ϕ1 − ϕ2)]} ,

P 6= = P+− + P−+

= 1
2 (1− E )

= 1
2 {1 + [cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2)]} .



Finally, the quantum mechanical expectation function is obtained
by the difference P= − P6=; i.e.,

EΨ2,2,1−1,+1(θ1, θ2, ϕ1, ϕ2)
= − [cos θ1 cos θ2 + cos(ϕ1 − ϕ2) sin θ1 sin θ2] .

By setting either the azimuthal angle differences equal to zero, or by
assuming measurements in the plane perpendicular to the direction
of particle propagation, i.e., with θ1 = θ2 = π

2 , one obtains

EΨ2,2,1−1,+1(θ1, θ2) = − cos(θ1 − θ2),
EΨ2,2,1−1,+1(π2 ,

π
2 , ϕ1, ϕ2) = − cos(ϕ1 − ϕ2).



A more “natural” choice of λ± would be in terms of the spin state
observables in units of ~; i.e., λ+ = −λ− = 1

2 . The expectation
function of these observables can be directly calculated via S 1

2
; i.e.,

EΨ2,2,1− 1
2 ,+

1
2
(θ̂, ϕ̂)

= Tr
{
ρΨ2,2,1 ·

[
S 1

2
(θ1, ϕ1)⊗ S 1

2
(θ2, ϕ2)

]}
= 1

4 [cos θ1 cos θ2 + cos(ϕ1 − ϕ2) sin θ1 sin θ2]

= 1
4EΨ2,2,1−1,+1(θ̂, ϕ̂).



Plot of classical and quantum “singlet” two-particle
correlations: more different clicks between (0, π/2), and
more equals between (π/2, π) !
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Part IV:

Boole’s “conditions of physical existence”
– aka Bell-type inequalities
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Would you believe?

I Proposition #1 (P1): “It rains in Vienna, Austria, with
probability 0.1.”

I Proposition #2 (P2): “It rains in Auckland, New Zealand,
with probability 0.1.”

I Proposition #3 (joint # 1 and # 2, P12): “It simultaneously
rains in Auckland as well as in Vienna with probability 0.9.”

I Exactly when would you believe? – Boole’s Laws of Thought
(1958), and On the Theory of Probabilities (1863)
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Truth table
Suppose #1 and #2 are independent, then the joint probability is
just the product of the single probabilities:

two-valued P1 P2 P12 = P1 · P2
probability measure
interpreted as vector

p1 (0, 0, 0)
p2 (0, 1, 0)
p3 (1, 0, 0)
p4 (1, 1, 1)

All possible classical (joint) probabilities can be represented by the
following correlation polytope:

{(x , y , z) | (x , y , z) = λ1p1 + λ2p2 + λ3p3 + λ4p4;
with λ1 + λ2 + λ3 + λ4 = 1;λ1, . . . , λ4 ∈ R+ ∪ {0}}



Bell-type inequalities represented by half-spaces (faces) of
the correlation polytope

Weyl-Minkowski representation theorem: a convex polytope can
either be represented by its vertices, or by the inequalities
characterizing its half-spaces (and bounded by its “faces”).
The problem to find the polytope faces is NP-complete [Pitowski,
1991, http://dx.doi.org/10.1007/BF01594946]; yet for a small
number of vertices it is tractable.

URL http://www.ifor.math.ethz.ch/~fukuda/cdd_home/index.html:

V-representation
begin

4 4 integer
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
end
hull



Facet inequalities – the hull problem

* cdd+: Double Description Method in C++:Version 0.76a1 (June 8, 1999)
* Copyright (C) 1999, Komei Fukuda, fukuda@ifor.math.ethz.ch
* Compiled for Floating-Point Arithmetic
*Input File:2011-VIEAKL.ext(4x4)
*HyperplaneOrder: LexMin
*Degeneracy preknowledge for computation: None (possible degeneracy)
*Hull computation is chosen.
*Zero tolerance = 1e-06
*Computation starts at Tue May 31 12:22:44 2011
* terminates at Tue May 31 12:22:44 2011
*Total processor time = 0 seconds
* = 0h 0m 0s
*Since hull computation is chosen, the output is a minimal inequality system
*FINAL RESULT:
*Number of Facets = 4
H-representation
begin
4 4 real
1 -1 -1 1
0 1 0 -1
0 0 1 -1
0 0 0 1

end



Facet inequalities – the hull problem cntd.

# inequality
i1: 1P1 + 1P2− 1P12 ≤ 1 → P1 + P2− P12 ≤ 1
i2: −1P1 + 0P2 + 1P12 ≤ 0 → P1 ≥ P12
i3: 0P1− 1P2 + 1P12 ≤ 0 → P2 ≥ P12
i4: 0P1 + 0P2− 1P12 ≤ 0 → P12 ≥ 0

i1, . . . , i4 render conditions on classical probabilities; thus you could
believe P12 if an only if it claims that “It simultaneously rains in
Auckland as well as in Vienna with probability less than 0.1 (i2 and
i3).”
[[Other claim: “It rains in Auckland with probability 0.9.” “It rains
in Vienna with probability 0.7.” “It simultaneously rains in Auckland
as well as in Vienna with probability greater than 0.6 (i1) but less
than 0.7 (i3).”]]



Clauser-Horne-Shimony-Holt (CHSH) inequality

Four observables (e.g., polarization measurements on photons, spin
state measurements on electrons) – two observables on “Alice’s”
and “Bob’s” side: A1,A2,B1,B2

two-valued E(A1) E(A2) E(B1) E(B2) E(A1,B1) E(A2,B1) E(A1,B2) E(A2,B2)
expectations

p1 (-1, -1, -1, -1, +1, +1, +1, +1)
p2 (-1, -1, -1, +1, +1, +1, -1, -1)
p3 (-1, -1, +1, -1, -1, -1, +1, +1)
p4 (-1, -1, +1, +1, -1, -1, -1, -1)
· · · · · · · · ·
· · · · · · · · ·

p16 (+1, +1, +1, +1, +1, +1, +1, +1)

Solving the hull problem for this configuration yields some type of
“new” nontrivial (CHSH) inequalities for the joint expectation
values (in the case of equidistributed E (A1) = E (A2) =
E (B3) = E (B4) = 0):

−2 ≤ E (A1,B1) + E (A1,B2) + E (A2,B1)− E (A2,B2) ≤ 2



Tsirelson bound for CHSH

For ∠(A1) = π
2 , ∠(A2) = 0, ∠(B1) = π

4 , ∠(B2) = 3π
4 , and with

the quantum correlations E (Ai ,Bj) = − cos[∠(Aj)− ∠(Bj)],

|E (A1,B1) + E (A1,B2) + E (A2,B1)− E (A2,B2)|
= 4 cos(π/4) = 2

√
2,

which represents a (without proof: maximal) violation of Boole’s
conditions of classical experience!
Note 1: The classical expectation function E (θ) = 2θ/π − 1 could
never violate CHSH.)
Note 2: due to quantum complementarity measurement of each
one of the four joint expectations entails a separate measurement
(“breakfast-lunch-tea-dinner”).
Note 3: quantum mechanics does not violate the CHSH bounds
maximally; i.e., by the algebraic maximum of 4.



How bad could it get quantum mechanically?

Kochen-Specker theorem: from three mutually exclusive outcomes
onward (3-dim. Hilbert space), and for certain finite configurations
of quantum observables, there does not exist any two-valued
measure or (simultaneous) truth table.
That is very bad, as classically two-valued measures are used to
derive the set of all probabilities.
Gleason’s theorem: from three mutually exclusive outcomes onward
(3-dim. Hilbert space), Born’s rule for quantum probabilities and
expectations can be derived by assuming classical probabilities on
contexts (“maximal sets of commeasurable observables” equivalent
to maximal operators).



Diagrammatic proof of the Kochen-Specker theorem
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Figure: Greechie diagram of a finite subset of the continuum of blocks or
contexts embeddable in four-dimensional real Hilbert space without a
two-valued probability measure [Cabello, 1996, URL
http://dx.doi.org/10.1016/0375-9601(96)00134-X].



Diagrammatic proof of the Kochen-Specker theorem cntd.

The proof of the Kochen-Specker theorem uses nine tightly
interconnected contexts a = {A,B,C ,D}, b = {D,E ,F ,G},
c = {G ,H, I , J}, d = {J,K , L,M}, e = {M,N,O,P}, f = {P,Q,R,A},
g = {B, I ,K ,R}, h = {C ,E , L,N}, i = {F ,H,O,Q} consisting of the
18 projectors associated with the one dimensional subspaces spanned by
A = (0, 0, 1,−1), B = (1,−1, 0, 0), C = (1, 1,−1,−1), D = (1, 1, 1, 1),
E = (1,−1, 1,−1), F = (1, 0,−1, 0), G = (0, 1, 0,−1), H = (1, 0, 1, 0),
I = (1, 1,−1, 1), J = (−1, 1, 1, 1), K = (1, 1, 1,−1), L = (1, 0, 0, 1),
M = (0, 1,−1, 0), N = (0, 1, 1, 0), O = (0, 0, 0, 1), P = (1, 0, 0, 0),
Q = (0, 1, 0, 0), R = (0, 0, 1, 1).
Greechie diagram representing atoms by points, and contexts by maximal
smooth, unbroken curves. Every observable proposition occurs in exactly
two contexts. Thus, in an enumeration of the four observable
propositions of each of the nine contexts, there appears to be an even
number of true propositions. Yet, as there is an odd number of contexts,
there should be an odd number (actually nine) of true propositions.


