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Abstract The amount of contextuality is quantified in

terms of the probability of the necessary violations of

noncontextual assignments to counterfactual elements of

physical reality.
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Some of the mind boggling features attributed to quantized

systems are their alleged ability to counterfactually (Svozil

2009a; Vaidman 2007) respond to complementary queries

(Einstein et al. 1935; Clauser and Shimony 1978), as well

as their capacity to experimentally render outcomes which

have not been encoded into them prior to measurement

(Zeilinger 1999). Moreover, under certain ‘‘reasonable’’

assumptions, and by excluding various exotic quasi-clas-

sical possibilities (Pitowsky 1982; Meyer 1999), quantum

mechanics appears to ‘‘outperform’’ classical correlations

by allowing higher-that-classical coincidences of certain

events, reflected by violations of Boole–Bell type con-

straints on classical probabilities (Boole 1862; Froissart

1981; Pitowsky 1989). One of the unresolved issues is the

reason (beyond geometric and formal arguments) for the

quantitative form of these violations (Cirel’son 1993;

Filipp and Svozil 2004); in particular, why Nature should

not allow higher-than-quantum or maximal violations

(Popescu and Rohrlich 1994; Krenn and Svozil 1998) of

Boole’s conditions of possible experience (Boole 1862,

p. 229).

The Kochen–Specker theorem (Kochen and Specker

1967), stating the impossibility of a consistent truth assign-

ment to potential outcomes of even a finite number of certain

interlinked complementary observables, gave further indi-

cation for the absence of classical simultaneous omniscience

in the quantum domain. From a purely operational point of

view, the quantitative predictions that result from Bell- as

well as Kochen–Specker-type theorems present a advance-

ment over quantum complementarity. But they do not

explicitly indicate the conceivable interpretation of these

findings; at least not on the phenomenologic level. Thus the

resulting explanations, although sufficient and conceptually

desirable and gratifying, lack the necessity.

One possibility to interpret these findings, and the pre-

valent one among physicists, is in terms of contextuality.

Contextuality can be motivated by the benefits of a quasi-

classical analysis. In particular, omniscience appears to be

corroborated by the feasibility of the potential measurements

involved: it is thereby implicitly assumed that all potentially

observable elements of physical reality (Einstein et al. 1935)

exist prior to any measurement; albeit any such (potential)

measurement outcome (the entirety of which could thus

consistently pre-exist before the actual measurement)

depends on whatever other observables (the context) are co-

measured alongside (Bohr 1949; Bell 1966). As, contrary to

a very general interpretation of that assumption, the quantum

mechanical observables are represented context indepen-

dently, any such contextual behavior should be restricted to

single quanta and outcomes within the quantum statistical

bounds. This, in essence, is quantum realism in disguise.

Nevertheless, it requires very little modifications—indeed,

none on the statistical level, and some on the level of
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individual outcomes as described below—both of the

quantum as well as of the classical representations.

Einstein–Podolsky–Rosen type experiments (Einstein

et al. 1935) for entangled higher than two-dimensional

quantized systems seem to indicate that contextuality, if

viable, will remain hidden to any direct physical opera-

tionalization (and thus might be criticized to be meta-

physical) even if counterfactual measurements are allowed

(Svozil 2009b). Because ‘‘the immense majority of the

experimental violations of Bell inequalities does not prove

quantum nonlocality, but just quantum contextuality’’

(Cabello 2008), current claims of proofs of noncontextu-

ality are solely based on violations of classical constraints

in Boole–Bell-type, Kochen–Specker-type, or Greenber-

gerger–Horne–Zeilinger-type configurations.

Nevertheless, insistence on the simultaneous physical

contextual coexistence of certain finite sets of counterfac-

tual observables necessarily results in ‘‘ambivalent’’ truth

assignments which could be explicitly illustrated by a

forced tabulation (Peres 1978; Svozil 2010) of contextual

truth values for Boole–Bell-type or Kochen–Specker-type

configurations. Here contextual means that the truth value

of a particular quantum observable depends on whatever

other observables are measured alongside this particular

observable. Any forced tabulation of truth values would

render occurrences of mutually contradicting, potential,

counterfactual outcomes of one and the same observable,

depending on the measurement context (Svozil 2009c). The

amount of this violation of noncontextuality can be quan-

tified by the frequency of occurrence of contextuality. In

what follows these frequencies will be calculated for a

number of experimental configurations suggested in the

literature.

First, consider the generalized Clauser–Horne–Shimo-

ny–Holt (CHSH) inequality

�k�Eða; bÞ þ Eða; b0Þ þ Eða0; bÞ � Eða0; b0Þ � k ð1Þ

which, for k = 2 and k ¼ 2
ffiffiffi

2
p

, represents bounds for

classical (Clauser and Shimony 1978; Clauser et al. 1969)

and quantum (Cirel’son 1980) expectations of dichotomic

observables with outcomes ‘‘-1’’ and ‘‘?1,’’ respectively.

The algebraic maximal violation associated with k = 4 is

attainable only for hypothetical ‘‘nonlocal boxes’’ (Popescu

and Rohrlich 1994; Krenn and Svozil 1998; Popescu and

Rohrlich 1997; Barrett et al. 2005) or by bit exchange

(Svozil 2005a).

Equation 1 can be rewritten in an explicitly contextual

form by the substitution

Eðx; yÞ 7!Eðxy; yxÞ; ð2Þ

where xy stands for ‘‘observable x measured alongside

observable y’’ (Svozil 2010). Contextuality manifests itself

through xy 6¼ xy0 . Because in the particular CHSH

configuration there are no other observables measured

alongside the ones that appear already in Eq. 1, this form is

without ambiguity.

Equation 1 refers to the expectation values for four

complementary measurement configurations on the same

particles (two particles and two measurement configura-

tions per particle). These expectation values can in prin-

ciple be computed from the statistical average of the

individual two-particle contributions. This requires that all

of them exist counterfactually—a requirement that, at least

according to the contextuality assumption, is satisfied—

because only one of the four configurations can actually be

simultaneously measurable; the other three have to be

assigned in a consistent manner and contribute to the

expectation values E(a,b) = (1/N)
P

i=1
N aibi. Here, ai and bi

stand for the outcomes of the dichotomic observables a and

b in the ith experiment; N is the number of individual

experiments. Suppose we are interested in individual out-

comes contributing to a violation of Eq. 1. For the sake of

simplicity, suppose further that one would like to force the

algebraic maximum of k = 4 upon Eq. 1, and suppose that

only one observable, say b0, is contextual (a highly coun-

terintuitive assumption). Then one obtains, for individual

outcomes, say, in the ith experiment,

ð�1Þð�1Þ þ ð�1Þxþ ð�1Þð�1Þ � ð�1Þð�xÞ ¼ 4; ð3Þ

and thus x = ±1. That is, the algebraic maximum of k = 4

can be reached by a single instance of contextual assign-

ment b0a ¼ �b0a0 per quantum. Table 1 enumerates the two

possible truth value assignments associated with this

configuration.

It should be stressed that there is no unique correspon-

dence between the proportionality of contextuality and

amount of CHSH violation. Indeed, it can be expected that

there are several possible sets of truth assignments with

relative frequencies with differing amounts of contextuality

yielding the same violation. This plasticity is particularly

true for more than one instance of contextuality, where two

or more violations of noncontextuality may compensate

each other. Take, for example, the four-touple (E(a, b),

E(a, b0), E(a0, b), E(a0, b0)) of expectation values contained

Table 1 The first two rows represent contextual assignments asso-

ciated with an algebraic maximal rendition (k = 4) of the CHSH

inequality

ab ab0 a0b a0b0 ba ba0 b0a b0a0

?1 ?1 ?1 ?1 ?1 ?1 ?1 -1

-1 -1 -1 -1 -1 -1 -1 ?1

?1 ?1 ?1 ?1 ?1 ?1 ?1 ?1

-1 -1 -1 -1 -1 -1 -1 -1

The third and the fourth assignments are noncontextual
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in Eq. 1, and its transition ðþ1;þ1;þ1;�1Þ ! ðþ1;

þ1;�1;�1Þ, which, for example, can be achieved by

changing one instance of contextuality at b0 to two

instances of contextuality at b0 and b, resulting in Eða; bÞþ
Eða; b0Þ þ Eða0; bÞ � Eða0; b0Þ ¼ 4! 2.

That contextuality could accommodate any bound

0 \ k\ 4 can be demonstrated by interpreting all possible

noncontextual and contextual assignments, as well as the

resulting corresponding joint expectations enumerated in

Table 2 as vertices of a convex correlation polytope.

According to the Minkoswki-Weyl representation theorem

(Ziegler 1994, p. 29), an equivalent (hull) representation of

the associated convex polyhedron is in terms of the half-

spaces defined by Boole–Bell type inequalities of the form

�1�EðabÞ þ EðbaÞ þ EðabbaÞ;
�1�EðabÞ � EðbaÞ � EðabbaÞ;
�1� � EðabÞ þ EðbaÞ � EðabbaÞ;
�1� � EðabÞ � EðbaÞ þ EðabbaÞ;

ð4Þ

(and the inequalities resulting from permuting a$ a0,
b$ b0) which, for E(ab) = E(ba) = 0, reduce to -1 B

E(ab ba) B 1. Note that, by taking only the 16 context-

independent ðxy ¼ xy0 Þ from all the 256 assignments, the

CHSH inequality (1) with k = 2 is recovered.

Next, for the sake of demonstration, an example con-

figuration will be given that conforms to Tsirel’son’s

maximal quantum bound of k ¼ 2
ffiffiffi

2
p

(Cirel’son 1993).

Substituting this for 2
ffiffiffi

2
p

in Eq. (3) yields x ¼ �ð
ffiffiffi

2
p
� 1Þ;

that is, the (limit) frequency for the occurrence of con-

textual assignments b0a ¼ �b0a0 as enumerated in Table 1

with respect to the associated noncontextual assignments

b0a ¼ b0a0 (rendering 2 to the sum of terms in the CHSH

expression) should be ð
ffiffiffi

2
p
� 1Þ : ð2�

ffiffiffi

2
p
Þ. More explic-

itly, if there are four different assignments, enumerated in

Table 1, which may contribute quantum mechanically by

the correct (limiting) frequency, then Table 3 is a simula-

tion of 20 assignments rendering the maximal quantum

bound for the CHSH inequalities.

With regards to Kochen–Specker type configurations

(Kochen and Specker 1967; Cabello et al. 1996) with no two-

valued state, any co-existing set of observables (associated

with the configuration) must breach noncontextuality at least

once. Other Kochen–Specker type configurations (Kochen

and Specker 1967; Svozil 1998; Calude et al. 1999) still

allowing two-valued states, albeit an insufficient number for a

homeomorphic embedding into Boolean algebras, might

require contextual value assignments for quantum statistical

reasons; but this question remains unsolved at present.

In summary, several concrete, quantitative examples of

contextual assignments for co-existing complementary—

and thus strictly counterfactual—observables have been

given. The amount of noncontextuality can be characterized

quantitatively by the required relative amount of contextual

assignments versus noncontextual ones reproducing quan-

tum mechanical predictions; or, alternatively, by the

required relative amount of contextual assignment versus

all assignments. One may thus consider the average number

of contextual assignments per quantum as a criterion.

With regard to the above criteria, as could be expected,

Kochen–Specker type configurations require assignments

which violate noncontextuality for every single quantum,

whereas Boole–Bell-type configurations, such as CHSH,

would still allow occasional noncontextual assignments. In

this sense, Kochen–Specker-type arguments violate non-

contextuality stronger than Boole–Bell-type ones.

These considerations are relevant under the assumption

that contextuality is a viable concept for explaining the

experiments (Cabello 2008; Hasegawa et al. 2006; Bartosik

et al. 2009; Amselem et al. 2009; Kirchmair et al. 2009). As

I have argued elsewhere (Svozil 2009a, b, 2010, 2005b), this

might not be the case; at least contextuality might not be a

necessary quantum feature. In particular the abandonment of

quantum omniscience, in the sense that a quantum system

can carry information about its state with regard to only a

single context (Zeilinger 1999), in conjunction with a con-

text translation principle (Svozil 2004, 2009c) might yield

an alternative approach to the quantum formalism. Thereby

the many degrees of freedom of the ‘‘quasi-classical’’ mea-

surement apparatus effectively introduce stochasticity in the

Table 2 (Color online) Contextual (bold) and noncontextual value

assignments, and the associated joint values
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case of a mismatch between preparation and measurement

context.

Clearly, these considerations have large consequences for

the type of randomness that could be rendered by quantum

random number generators based on beam splitters, and on

quantum oracles in general (Calude and Svozil 2008; Calude

et al. 2010), as context translation schemes may still be

deterministic and even computable, whereas irreducible

indeterminism can be postulated only from a complete

lawlessness (Zeilinger 2005) of the underlying processes.

References
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