
CHAPTER 10

Physical Unknowables

Karl Svozil

As we know, there are known knowns;
there are things we know we know.
We also know there are known unknowns;
that is to say we know there are some things we do not know.
But there are also unknown unknowns –
the ones we don’t know we don’t know.

– United States Secretary of Defense Donald H. Rumsfeld
at a Department of Defense news briefing on
February 12, 2002

Ei mihi, qui nescio saltem quid nesciam!
(Alas for me, that I do not at least know the extent of my own ignorance!)

– Aurelius Augustinus, 354–430, “Confessiones”
(Book XI, chapter 25)

10.1 Rise and Fall of Determinism

In what follows, a variety of physical unknowables will be discussed. Provable lack of
physical omniscience, omnipredictability and omnipotence is derived by reduction to
problems that are known to be recursively unsolvable. “Chaotic” symbolic dynamical
systems are unstable with respect to variations of initial states. Quantum unknowables
include the random occurrence of single events, complementarity, and value indefinite-
ness.

From antiquity onward, various waves of (in)determinism have influenced human
thought. Regardless of whether they were shaped by some Zeitgeist, or whether, as
Goethe’s Faust puts it, “what you the Spirit of the Ages call, is nothing but the
spirit of you all, wherein the Ages are reflected,” their proponents have sometimes
vigorously defended their stance in irrational, unscientific, and ideologic ways. Indeed,
from an emotional point of view, may it not appear frightening to be “imprisoned” by
remorseless, relentless predetermination, even in a dualistic setup (Descartes, 1641);
and, equally frightening, to accept that one’s fate depends on total arbitrariness and
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chance? Does determinism expose freedom, self-determination and human dignity as
an idealistic illusion? On the other extreme, what kind of morale, merits and efforts
appear worthy in a universe governed by pure chance? Is there some reasonable in-
between straddling those extreme positions that may also be consistent with science?

We shall, for the sake of separating the scientific debate from emotional overtones
and possible bias, adopt a contemplative strategy of evenly-suspended attention outlined
by Freud (1999), who admonishes analysts to be aware of the dangers caused by
“temptations to project, what [the analyst] in dull self-perception recognizes as the
peculiarities of his own personality, as generally valid theory into science.” Nature is
thereby treated as a client-patient, and whatever findings come up are accepted as is
without any immediate emphasis or judgment.

10.1.1 Toward Explanation and Feasibility

Throughout history, the human desire to foresee and manipulate the physical world
for survival and prosperity, and in accord with personal wishes and fantasies, has been
confronted with the inability to predict and manipulate large portions of the habitat. As
time passed, people have figured out various ways to tune ever increasing fragments
of the world according to their needs. From a purely behavioral perspective, this is
brought about in the way of pragmatic quasi-causal conditional rules of the following
kind, “if one does this, one obtains that.” A typical example of such a rule is “if I rub
my hands, they get warmer.”

How does one arrive at those kinds of rules? Guided by suspicions, thoughts, for-
malisms and by pure chance, inquiries start by roaming around, inspecting portions of
the world and examining their behavior. Repeating phenomena or patterns of behavior
are observed and pinned down by reproducing and evoking them. A physical behavior
is anything that can be observed and thus operationally obtained and measured; for
example, the rise and fall of the sun, the ignition of fire, the formation and melting
of ice (in principle even time series of financial entities traded at stock exchanges or
over-the-counter).

As physical behaviors are observed, people attempt to understand them by trying
to figure out some cause (Frank, 1932; Schlick, 1932) or reason for their occurrences.
Researchers invent virtual parallel worlds of thoughts and intellectual concepts such
as “electric field” or “mechanical force” to explain and manipulate the physical behav-
iors, calling these creations of their minds “physical theories.” Contemporary physical
theories are heavily formalized and spelled out in the language of mathematics. A good
theory provides people with the feeling of a key unlocking new ways of world com-
prehension and manipulation. Ideally, an explanation should be as compact as possible
and should apply to as many behavioral patterns as possible.

Ultimately, theories of everything (Barrow, 1991; Kragh, 1999; Schlick, 1935)
should be able to predict and manipulate all phenomena. In the extreme form, science
becomes omniscient and omnipotent, and we envision ourselves almost as becoming
empowered with magic: we presume that our ability to manipulate and tune the world
is limited by our fantasies alone, and any constraints whatsoever can be bypassed
or overcome one way or another. Indeed, some of what in the past has been called
“supernatural,” “mystery,” and “the beyond” has been realized in everyday life. Many
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wonders of witchcraft have been transferred into the realm of the physical sciences.
Take, for example, our abilities to fly, to transmute mercury into gold (Sherr et al.,
1941), to listen and speak to far away friends, or to cure bacterial diseases with a few
pills of antibiotics.

Until about 1900, the fast-growing natural sciences, guided by rational (Descartes,
1637) and empirical (Hume, 1748; Locke, 1690) thinking, and seconded by the Euro-
pean Enlightenment, prospered under the assumption of physical determinism. Under
the aegis of physical determinism, all incapacities to predict and manipulate physical
behavior were interpreted to be merely epistemic in nature, purporting that, with grow-
ing precision of measurements and improvements of theory, all physical unknowables
will eventually be overcome and turned into knowables; that is, everything should in
principle be knowable. Even statistical quantities would describe underlying determin-
istic behaviors. Consequently, there could not exist any physical behavior or entity
without a cause stimulating or pushing it into existence.

The uprise of determinism culminated in the following statement by Laplace (1998,
chap. 2):

Present events are connected with preceding ones by a tie based upon the evident principle
that a thing cannot occur without a cause which produces it. This axiom, known by the
name of the principle of sufficient reason, extends even to actions which are considered
indifferent . . .

We ought then to regard the present state of the universe as the effect of its anterior state
and as the cause of the one which is to follow. Given for one instant an intelligence which
could comprehend all the forces by which nature is animated and the respective situation
of the beings who compose it an intelligence sufficiently vast to submit these data to
analysis it would embrace in the same formula the movements of the greatest bodies of
the universe and those of the lightest atom; for it, nothing would be uncertain and the
future, as the past, would be present to its eyes.

The invention of (analytic) functions reflects this paradigm quite nicely: some disper-
sionless point coordinate x(t) of infinite precision serves as the representation (Hertz,
1894) of a physical state as a (unique) function of physical time t .

Indeed, the possibility to formulate theories per se, and in particular, the applicabil-
ity of formal, mathematical models, comes as a mind-boggling surprise and cannot be
taken for granted; there appears to be what Wigner (1960) called an “unreasonable ef-
fectiveness of mathematics in the natural sciences.” Even today, there is a Pythagorean
consensus that there is no limit to dealing with physical entities in terms of mathe-
matical formalism. And, as mathematics increasingly served as a proper representation
of reality, and computational deduction systems were increasingly introduced to de-
lineate formalizable truth, algorithmics started to become a metaphor for physics. In
algorithmic terms, nature computes, and can be (re)programmed to perform certain
tasks.

The natural sciences continued to be uninhibited by any sense of limits until about
fin-de-siècle, around 1900. In parallel, the formalization of mathematics progressed in
an equally uninhibited way. Hilbert (1926, 170) argued that nobody should ever expel
mathematicians from the paradise created by Cantor’s set theory and posed a challenge
(Hilbert, 1902) to search for a consistent, finite system of formal axioms which would
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be able to render all mathematical and physical truths; just like quasi-finitistic ways to
cope with infinitesimal calculus had been found.

This type of belief system that claims omniscience could be called “deterministic
conjecture” because no proof for its validity can be given, nor is there any way of
falsification (Popper, 1959). Alas, from a pragmatic point of view, omniscience can be
effectively disproved on a daily basis by tuning in to local weather forecasts.

Furthermore, it seems to be an enduring desire of human nature to be able not merely
to trust the rules and theories syntactically and operationally (Bridgman, 1934) but also
to be able to semantically interpret them as implying and carrying some ontological
significance or truth – as if reality would communicate with us, mediated through our
senses, thereby revealing the laws governing nature. Stated pointedly, we not only wish
to accept physical theories as pure abstractions and constructions of our own mind
(Berkeley, 1710) but we associate meaning and truth to them so much so that only very
reluctantly do we admit their preliminary, transient, and changing character (Lakatos,
1978).

10.1.2 Rise of Indeterminism

Almost unnoticed, the tide of indeterminism started to build toward the end of the nine-
teenth century (Kragh, 1999; Purrington, 1997). At that time, mechanistic theories faced
an increasing number of anomalies: Poincaré’s discovery of instabilities of trajectories
of celestial bodies (which made them extremely sensible to initial conditions), radioac-
tivity (Kragh, 1997, 2009), X-rays, specific heats of gases and solids, emission and
absorption of light (in particular, blackbody radiation), the (ir)reversibility dichotomy
between classical reversible mechanics and Boltzmann’s statistical-mechanical theory
of entropy versus the second law of thermodynamics, and the experimental refutation
of classical constructions of the ether as a medium for the propagation of light waves.

After the year 1900 followed a short period of revolutionary new physics, in par-
ticular, quantum theory and relativity theory, without any strong inclination toward
(in)determinism. Then indeterminism erupted with Born’s claim that quantum me-
chanics has it both ways: the quantum state evolves strictly deterministically, whereas
the individual event or measurement outcome occurs indeterministically. Born also
stated that he believed that there is no cause for an individual quantum event; that is,
such an outcome occurs irreducibly at random.

There followed a fierce controversy, with many researchers such as Born, Bohr,
Heisenberg, and Pauli taking the indeterministic stance, whereas others, like Planck
(Born, 1955), Einstein (Einstein, 1938; Einstein et al., 1935), Schrödinger, and De
Brogli, leaning toward determinism. This latter position was pointedly put forward
by Einstein’s dictum in a letter to Born, dated December 12, 1926 (Born, 1969, 113):
“In any case I am convinced that he [the Old One] does not throw dice.” At present,
indeterminism is clearly favored, the canonical position being expressed by Zeilinger
(2005): “The discovery that individual events are irreducibly random is probably one
of the most significant findings of the twentieth century. . . . For the individual event in
quantum physics, not only do we not know the cause, there is no cause.”

The last quarter of the twentieth century saw the rise of yet another form of physical
indeterminism, originating in Poincaré’s aforementioned discovery of instabilities of
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the motion of classical bodies against variations of initial conditions (Campbell, and
Garnett, 1882; Diacu, and Holmes, 1996; Poincaré, 1914). This scenario of determin-
istic chaos resulted in a plethora of claims regarding indeterminism that resonated with
a general public susceptible to fables and fairy tales (Bricmont, 1996).

In parallel, Gödel’s incompleteness theorems (Davis, 1958, 1965; Gödel, 1931;
Smullyan, 1992a; Tarski, 1932), as well as related findings in the computer sciences
(Calude, 2002; Chaitin, 1987a; Grünwald, and Vitányi, 1987; Turing, 1937), put an
end to Hilbert’s program of finding a finite axiom system for all mathematics. Gödel’s
incompleteness theorems also established formal bounds on provability, predictability,
and induction. (The incompleteness theorems also put an end to philosophical con-
tentions expressed by Schlick (1935, 101) that, beyond epistemic unknowables and the
“essential incompetence of human knowledge,” there is “not a single real question for
which it would be logically impossible to find a solution.”)

Alas, just like determinism, physical indeterminism cannot be proved, nor can there
be given any reasonable criterion for its falsification. After all, how can one check
against all laws and find none applicable? Unless one is willing to denote any system
whose laws are currently unknown or whose behavior is hard to predict with present
techniques as indeterministic, there is no scientific substance to such absolute claims,
especially if one takes into account the bounds imposed by the theory of recursive
functions discussed later. So, just as in the deterministic case, this position should be
considered conjectural.

In discussing the present status of physical (in)determinism, we shall first consider
provable unknowables through reduction to incompleteness theorems of recursion
theory, then discuss classical deterministic chaos, and finally deal with the three types
of quantum indeterminism: the occurrence of certain single events, complementarity,
and value indefiniteness. The latter quantum unknowables are not commonly accepted
by the entire community of physicists; a minority is still hoping for a more complete
quantum theory than the present statistical theory.

10.2 Provable Physical Unknowables

In the past century, unknowability has been formally defined and derived in terms
of a precise, formal notion of unprovability (Davis, 1958; Gödel, 1931; Odifreddi,
1989; Rogers, Jr., 1967; Smullyan, 1992a; Tarski, 1932, 1956; Turing, 1937). This
is a remarkable departure from informal suspicions and observations regarding the
limitations of our worldview. No longer is one reduced to informal, heuristic contem-
plations and comparisons about what one knows and can do versus one’s ignorance
and incapability. Formal unknowability is about formal proofs of unpredictability and
impossibility.

There are several pathways to formal undecidability. For contemporaries accustomed
to computer programs (and their respective codes), a straight route may be algorithmic.
What is an algorithm? In Turing’s (1968, 34) own words,

a man provided with paper, pencil and rubber, and subject to strict discipline [carrying
out a set of rules of procedure written down] is in effect a universal computer.
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From a purely syntactic point of view, formal systems in mathematics can be identified
with computations and vice versa. Indeed, as stated by Gödel (1986, 369–370) in a
postscript, dated from June 3, 1964:

due to A. M. Turing’s work, a precise and unquestionably adequate definition of the general
concept of formal system can now be given, the existence of undecidable arithmetical
propositions and the non-demonstrability of the consistency of a system in the same
system can now be proved rigorously for every consistent formal system containing a
certain amount of finitary number theory.

Turing’s work gives an analysis of the concept of “mechanical procedure” (alias
“algorithm” or “computation procedure” or “finite combinatorial procedure”). This con-
cept is shown to be equivalent with that of a “Turing machine.” A formal system can
simply be defined to be any mechanical procedure for producing formulas, called prov-
able formulas.

Almost since its discovery, attempts (Popper, 1950a,b) have been made to translate
formal incompleteness into physics, mostly by reduction to some provable undecidable
problem of recursion theory such as the halting problem (Barrow, 1998; Casti, and
Karlquist, 1996; Casti, and Traub, 1994; Costa, and Doria, 1991; da Costa, and Doria,
1991; Hole, 1994; Kanter, 1990; Moore, 1990; Suppes, 1993; Svozil, 1993; Wolfram,
1984, 1985). Here the term reduction indicates that physical undecidability is linked
or reduced to logical undecidability. A typical example is the embedding of a Turing
machine or any type of computer capable of universal computation into a physical
system. As a consequence, the physical system inherits any type of unsolvability
derivable for universal computers such as the unsolvability of the halting problem:
because the computer is part of the physical system, so are its behavioral patterns [and
vice versa (Bridgman, 1934; Landauer, 1986, 1991)].

Note that these logical and recursion-theoretical types of physical unknowables
are only derivable within deterministic systems that are strong enough to express
self-reference, substitution (Smullyan, 1992a, chap. 1), and universal computation.
Indeterministic systems are not deterministic by definition, and too-weak forms of ex-
pressibility are trivially incomplete (Brukner, 2003), as they are incapable of expressing
universal computation or self-reference and substitution.

Gödel himself did not believe that his incompleteness theorems had any relevance
for physics, especially not for quantum mechanics. The author was told by professor
Wheeler that Gödel’s resentments [also mentioned in Bernstein (1991, 140–141)] may
have been due to Einstein’s negative opinion about quantum theory, because Einstein
may have brainwashed Gödel into believing that all efforts in this direction were in
vain.

10.2.1 Intrinsic Self-Referential Observers

Embedded (Toffoli, 1978), intrinsic observers (Svozil, 1994) cannot leave their Carte-
sian prison (Descartes, 1641, Meditation 1.12) and step outside the universe examining
it from some Archimedean point (Boskovich, 1966, sect. 11, 405–409). Thus every
physical observation is reflexive (Nagel, 1986; Sosa, 2009) and circular (Kauffman,



provable physical unknowables 219

1987). The self-referential and substitution capability of observers results in very di-
verse, unpredictable forms of behavior and in provable unknowables.

For the sake of the further analysis, suppose that there exist observers measuring
objects and that observers and objects are distinct from one another, separated by a cut.
Through that cut, information is exchanged. Symbolically, we may regard the object as
an agent contained in a black box, whose only relevant emanations are representable
by finite strings of zeroes and ones appearing on the cut, which can be modeled by any
kind of screen or display. According to this purely syntactic point of view, a physical
theory should be able to render identical symbols like the ones appearing through the
cut; that is, a physical theory should be able to mimic or emulate the black box to
which it purports to apply. This view is often adapted in quantum mechanics (Fuchs,
and Peres, 2000), where the question regarding any meaning of the quantum formalism
is notorious (Feynman, 1965, 129).

A sharp distinction between a physical object and an extrinsic outside observer is a
rarely affordable abstraction. Mostly the observer is part of the system to be observed.
In such cases, the measurement process is modeled symmetrically, and information is
exchanged between observer and object bidirectionally. This symmetrical configuration
makes a distinction between observer and object purely conventional (Svozil, 2002a).
The cut is constituted by the information exchanged. We tend to associate with the
measurement apparatus one of the two subsystems that, in comparison, is larger, more
classical, and up-linked with some conscious observer (Wigner, 1961). The rest of the
system can then be called the measured object.

Intrinsic observers face all kinds of paradoxical self-referential situations. These
have been expressed informally as puzzling amusement and artistic perplexity, and
as a formalized, scientifically valuable resource. The liar paradox, for instance, is
already mentioned in the Bible’s Epistle to Titus 1:12, stating that “one of Crete’s own
prophets has said it: ‘Cretans are always liars, evil brutes, lazy gluttons.’ He has surely
told the truth.” In what follows, paradoxical self-referentiality will be applied to argue
against the solvability of the general induction problem as well as for a pandemonium
of undecidabilities related to physical systems and their behaviors. All are based on
intrinsic observers embedded in the systems they observe.

It is not totally unreasonable to speculate that the limits of intrinsic self-expression
seems to be what Gödel himself considered the gist of his incompleteness theorems. In
a reply to a letter by Burks [reprinted in von Neumann (1966, 55); see also Feferman
(1984, 554)], Gödel states:

that a complete epistemological description of a language A cannot be given in the same
language A, because the concept of truth of sentences of A cannot be defined in A. It is
this theorem which is the true reason for the existence of undecidable propositions in the
formal systems containing arithmetic.

One of the first researchers to become interested in the application of paradoxical
self-reference to physics was the philosopher Popper (1950a,b) who published two
almost forgotten papers discussing, among other issues, Russell’s paradox of Tristram
Shandy (Sterne, 1767): In volume 1, chapter 14, Shandy finds that he could publish two
volumes of his life every year, covering a time span far shorter than the time it took him
to write these volumes. This de-synchronization, Shandy concedes, will rather increase
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than diminish as he advances; one may thus have serious doubts about whether he
will ever complete his autobiography. This relates to a question of whether there can
be a physical computer that can be assured of correctly processing information faster
than the universe does. Wolpert (2001, 016128-1) states that [see also Calude et al.
(1995, sect. 5)] “In a certain sense, the universe is more powerful than any information-
processing system constructed within it could be. This result can alternatively be viewed
as a restriction on the computational power of the universe – the universe cannot support
the existence within it of a computer that can process information as fast as it can.”

10.2.2 Unpredictability

For any deterministic system strong enough to support universal computation, the
general forecast or prediction problem is provable unsolvable. This proposition will be
argued by reduction to the halting problem, which is provable unsolvable. A straightfor-
ward embedding of a universal computer into a physical system results in the fact that,
owing to the reduction to the recursive undecidability of the halting problem, certain
future events cannot be predicted and are thus provable indeterministic. Here reduction
again means that physical undecidability is linked or reduced to logical undecidability.

A clear distinction should be made between determinism (such as computable evo-
lution laws) and predictability (Suppes, 1993). Determinism does not exclude unpre-
dictability in the long run. The local (temporal), step-by-step evolution of the system can
be perfectly deterministic and computable, whereas recursion-theoretic unknowables
correspond to global observables at unbounded time scales. Indeed, (nontrivial) prov-
able unpredictability requires determinism, because formalized proofs require formal
systems or algorithmic behavior.

Unpredictability in indeterministic systems is tautological and trivial. At the other
extreme, one should also keep in mind that there exist rather straightforward pre-
Gödelian impossibilities (Brukner, 2003) to express certain mathematical truths in weak
systems that are incapable of representing universal computation or Peano arithmetic.

For the sake of exploring (algorithmically) what paradoxical self-reference is like,
one can consider the sketch of a proof by contradiction of the unsolvability of the halting
problem. The halting problem is about whether or not a computer will eventually halt on
a given input, that is, will evolve into a state indicating the completion of a computation
task or will stop altogether. Stated differently, a solution of the halting problem will be
an algorithm that decides whether another arbitrary algorithm on arbitrary input will
finish running or will run forever.

The scheme of the proof by contradiction is as follows: the existence of a hypothetical
halting algorithm capable of solving the halting problem will be assumed. This could,
for instance, be a subprogram of some suspicious supermacro library that takes the
code of an arbitrary program as input and outputs 1 or 0, depending on whether or not
the program halts. One may also think of it as a sort of oracle or black box analyzing
an arbitrary program in terms of its symbolic code and outputting one of two symbolic
states, say, 1 or 0, referring to termination or nontermination of the input program,
respectively.

On the basis of this hypothetical halting algorithm one constructs another diagonal-
ization program as follows: on receiving some arbitrary input program code as input,
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the diagonalization program consults the hypothetical halting algorithm to find out
whether or not this input program halts; on receiving the answer, it does the opposite:
If the hypothetical halting algorithm decides that the input program halts, the diag-
onalization program does not halt (it may do so easily by entering an infinite loop).
Alternatively, if the hypothetical halting algorithm decides that the input program does
not halt, the diagonalization program will halt immediately.

The diagonalization program can be forced to execute a paradoxical task by receiving
its own program code as input. This is so because, by considering the diagonalization
program, the hypothetical halting algorithm steers the diagonalization program into
halting if it discovers that it does not halt; conversely, the hypothetical halting algorithm
steers the diagonalization program into not halting if it discovers that it halts.

The contradiction obtained in applying the diagonalization program to its own code
proves that this program and, in particular, the hypothetical halting algorithm cannot
exist. A slightly revised form of the proof (using quantum diagonalizaton operators
that are equivalent to a classical derangement or subfactorial) holds for quantum
diagonalization (Svozil, 2009b), as quantum information could be in a fifty-fifty fixed-
point halting state. Procedurally, in the absence of any fixed-point halting state, the
aforemetioned task might turn into a nonterminating alteration of oscillations between
halting and nonhalting states (Kauffman, 1987).

A universal computer can in principle be embedded into, or realized by, certain phys-
ical systems designed to universally compute. An example of such a physical system is
the computer on which I am currently typing this chapter. Assuming unbounded space
[i.e., memory (Calude, and Staiger, 2010)] and time, it follows by reduction (Barrow,
1998; Calude et al., 1995; Casti, and Karlquist, 1996; Casti, and Traub, 1994; Costa,
and Doria, 1991; da Costa, and Doria, 1991; Hole, 1994; Kanter, 1990; Moore, 1990;
Suppes, 1993; Svozil, 1993; Wolfram, 1984, 1985) that there exist physical observ-
ables, in particular, forecasts about whether or not an embedded computer will ever
halt in the sense sketched earlier, that are provably undecidable.

10.2.3 The Busy Beaver Function as the Maximal Recurrence Time

The busy beaver function (Brady, 1988; Chaitin, 1974; Dewdney, 1984; Rado, 1962)
addresses the following question: suppose one considers all programs (on a particular
computer) up to length (in terms of the number of symbols) n. What is the largest
number producible by such a program before halting? (Note that non-halting programs,
possibly producing an infinite number, e.g., by a non-terminating loop, do not apply.)
This number may be called the busy beaver function of n. The first values of a certain
universal computer’s busy beaver function with two states and n symbols are, for n =
2, 3, 4, 5, 7 and 8, known to be, or estimated by (Brady, 1988; Dewdney, 1984), 4, 6,
13, greater than 103, greater than 104, and greater than 1044.

Consider a related question: what is the upper bound of running time – or, al-
ternatively, recurrence time – of a program of length n bits before terminating or,
alternatively, recurring? An answer to this question will explain just how long we have
to wait for the most time-consuming program of length n bits to halt. That, of course,
is a worst-case scenario. Many programs of length n bits will have halted long before
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the maximal halting time. We mention without proof (Chaitin, 1974, 1987b) that this
bound can be represented by the busy beaver function.

Knowledge of the maximal halting time would solve the halting problem quantita-
tively because if the maximal halting time were known and bounded by any computable
function of the program size of n bits, one would have to wait just a little longer than the
maximal halting time to make sure that every program of length n – also this particular
program, if it is destined for termination – has terminated. Otherwise, the program
would run forever. Hence, because of the recursive unsolvability of the halting problem
the maximal halting time cannot be a computable function. Indeed, for large values of
n, the maximal halting time explodes and grows faster than any computable function
of n.

By reduction, upper bounds for the recurrence of any kind of physical behavior can
be obtained; for deterministic systems representable by n bits, the maximal recurrence
time grows faster than any computable number of n. This bound from below for
possible behaviors may be interpreted quite generally as a measure of the impossibility
to predict and forecast such behaviors by algorithmic means.

10.2.4 Undecidability of the Induction Problem

Induction, in physics, is the inference of general rules dominating and generating
physical behaviors from these behaviors alone. For any deterministic system strong
enough to support universal computation, the general induction problem is provable
unsolvable. Induction is thereby reduced to the unsolvability of the rule inference
problem (Adleman, and Blum, 1991; Angluin, and Smith, 1983; Blum, and Blum,
1975; Gold, 1967; Li, and Vitányi, 1992) of identifying a rule or law reproducing the
behavior of a deterministic system by observing its input-output performance by purely
algorithmic means (not by intuition).

Informally, the algorithmic idea of the proof is to take any sufficiently powerful rule
or method of induction and, by using it, to define some functional behavior that is not
identified by it. This amounts to constructing an algorithm which (passively) fakes the
guesser by simulating some particular function until the guesser pretends to be able
to guess the function correctly. In a second, diagonalization step, the faking algorithm
then switches to a different function to invalidate the guesser’s guess.

One can also interpret this result in terms of the recursive unsolvability of the halting
problem, which in turn is related to the busy beaver function; there is no recursive bound
on the time the guesser has to wait to make sure that the guess is correct.

10.2.5 Impossibility

Physical tasks which would result in paradoxical behavior (Hilbert, 1926) are im-
possible to perform. One such task is the solution of the general halting problem, as
discussed earlier. Thus omnipotence appears infeasible, at least as long as one sticks
to the usual formal rules opposing inconsistencies (Hilbert, 1926, 163).

Another such paradoxical task (requiring substitution and self-reference) can be
forced upon La Bocca della Veritá (Mouth of Truth), located in the portico of the
church of Santa Maria in Cosmedin in Rome. It is believed that if one tells a lie with
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one’s hand in the mouth of the sculpture, the hand will be bitten off; another less violent
legend has it that anyone sticking a hand in the mouth while uttering a false statement
will never be able to pull the hand back out. Rucker (1982, 178) once allegedly put in
his hand in the sculpture’s mouth uttering, “I will not be able to pull my hand back
out.” The author leaves it to the reader to imagine La Bocca della Veritá’s confusion
when confronted with such as statement!

There is a pandemonium of conceivable physical tasks (Barrow, 1998), some quite
entertaining (Smullyan, 1992b), which would result in paradoxical behavior and are
thus impossible to perform. Some of these tasks are pre-Gödelian and merely require
substitution.

For the sake of demonstrating paradoxical substitution and the resulting impos-
sibility, consider the following printing task discussed by Smullyan (1992a, 2–4).
Let the expressions (not), (printable), (self-substitute), have a standard interpreta-
tion in terms of negation, printing, and self-reference by substitution [i.e., if X is
some expression formed by the earlier three expressions and brackets, then (self-
substitute)(X) = X(X)], respectively, and define (not)(printable)(X) for arbitray ex-
pressionsX to be true if and only ifX cannot be printed. Likewise, (not)(printable)(self-
substitute)(X) is defined to be true if and only if (self-substitute)X cannot be printed.
Whatever the rules deriving expressions (subject to the notion of truth defined ear-
lier) may be, as long as the system is consistent and produces only true proposi-
tions (and no false ones), within this small system, the following proposition is true
but unprintable: (not)(printable)(self-substitute)[(not)(printable)(self-substitute)]. By
definition, this proposition is true if and only if (self-substitute)[(not)(printable)(self-
substitute)] cannot be printed. As per definition, (self-substitute)[(not)(printable)(self-
substitute)] is just (not)(printable)(self-substitute)[(not)(printable)(self-substitute)], the
proposition is true if and only if it is not printable. Thus the proposition is either true
and cannot be printed, or it is printable and thus false. The latter alternative is ex-
cluded by the assumption of consistency. Thus one is left with the only consistent
alternative that the proposition (not)(printable)(self-substitute)[(not)(printable)(self-
substitute)] is true but unprintable. Note also that, since its negation (printable)(self-
substitute)[(not)(printable)(self-substitute)] is false, it is also not printable (by the
consistency assumption), and hence (printable)(self-substitute)[(not)(printable)(self-
substitute)] is an example of a proposition which is undecidable within the system –
neither it nor its negation will ever be printed in a consistent formalized system with
the notion of truth defined earlier.

10.2.6 Results in Classical Recursion Theory with Implications
for Theoretical Physics

The following theorems of recursive analysis (Aberth, 1980; Weihrauch, 2000) have
some implications for theoretical physics (Kreisel, 1974): (1) There exist recursive
monotone bounded sequences of rational numbers whose limit is no computable num-
ber (Specker, 1949). A concrete example of such a number is Chaitin’s Omega number
(Calude, 2002; Calude, and Dinneen, 2007; Chaitin, 1987a), the halting probability
for a computer (using prefix-free code), which can be defined by a sequence of ra-
tional numbers with no computable rate of convergence. (2) There exist a recursive
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real function which has its maximum in the unit interval at no recursive real number
(Specker, 1959). This has implications for the principle of least action. (3) There exists
a real number r such that G(r) = 0 is recursively undecidable for G(x) in a class
of functions which involves polynomials and the sine function (Wang, 1974). This,
again, has some bearing on the principle of least action. (4) There exist incomputable
solutions of the wave equations for computable initial values (Bridges, 1999; Pour-El,
and Richards, 1989). (5) On the basis of theorems of recursive analysis (Richardson,
1968; Scarpellini, 1963), many questions in dynamical systems theory are provable
undecidable (Calude et al., 2010; da Costa et al., 1993; Hirsch, 1985; Stewart, 1991).

10.3 Deterministic Chaos

The wording deterministic chaos appears to be a contradictio in adjecto, indicating a
hybrid form of chaotic behavior in deterministic systems (Anishchenko et al., 2007;
Lichtenberg, and Lieberman, 1983). Operationally, it is characterized by the practical
impossibility of forecasting the future because the system is unstable (Lyapunov, 1992)
and very sensitive to tiny variations of the initial state. Because the initial state can only
be determined with finite accuracy, its evolution will soon become totally unpredictable.

10.3.1 Instabilities in Classical Motion

In 1885 King Oscar II of Sweden and Norway, stimulated by Weierstrass, Hermite,
and Mittag-Leffler, offered a prize to anybody contributing toward the solution of the
so-called n-body problem (Weierstrass et al., 1885, 2):

Given a system of arbitrarily many mass points that attract each according to Newton’s
law, try to find, under the assumption that no two points ever collide, a representation of
the coordinates of each point as a series in a variable that is some known function of time
and for all of whose values the series converges uniformly.

The prize-winning work was expected to render systematic techniques toward a
solution to stable motion such that systems whose states start out close together will
stay close together forever (Diacu, and Holmes, 1996, 69). To everyone’s surprise, the
exciting course of events (Diacu, 1996; Diacu, and Holmes, 1996; Peterson, 1993)
resulted in Poincaré’s prize-winning centennial revised contribution (Poincaré, 1890),
which predicted unexpected and irreducible instabilities in the mechanical motion of
bodies. Poincaré was led to the conclusion that sometimes small variations in the initial
state could lead to huge variations in the evolution of a physical system at later times.
In Poincaré’s own words (Poincaré, 1914, chapt. 4, sect. 2, 56–57):

If we would know the laws of nature and the state of the Universe precisely for a certain
time, we would be able to predict with certainty the state of the Universe for any later
time. But . . . it can be the case that small differences in the initial values produce great
differences in the later phenomena; a small error in the former may result in a large error
in the latter. The prediction becomes impossible and we have a “random phenomenon.”
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Note that Poincaré adheres to a Laplacian-type determinism but recognizes the
possibility that systems whose states start out close together will stay close together for
a while (Diacu, and Holmes, 1996, 69) and then diverge into totally different behaviors.
Today such behaviors are subsumed under the name deterministic chaos. In chaotic
systems, it is practically impossible to specify the initial value precise enough to allow
long-term predictions.

Already in 1873, Maxwell mentioned (Campbell, and Garnett, 1882, 211–212)

When an infinitely small variation in the present state may bring about a finite difference
in the state of the system in a finite time, the condition of the system is said to be unstable.
It is manifest that the existence of unstable conditions renders impossible the prediction of
future events, if our knowledge of the present state is only approximate, and not accurate.

Maxwell also discussed unstable states of high potential energy whose spontaneous
(Frank, 1932) decay or change (Campbell, and Garnett, 1882, 212) “requires an ex-
penditure of work, which in certain cases may be infinitesimally small, and in general
bears no definite proportion to the energy developed in consequence thereof.”

Today, after more than a century of research into unstable chaotic motion, symbolic
dynamics identified the Poincaré map near a homocyclic orbit, the horseshoe map
(Smale, 1967), and the shift map as equivalent origins of classical deterministic chaotic
motion, which is characterized by a computable evolution law and the sensitivity and
instability with respect to variations of the initial value (Anishchenko et al., 2007;
Lichtenberg, and Lieberman, 1983; Shaw, 1981).

This scenario can be demonstrated by considering the shift map σ as it pushes up
dormant information residing in the successive bits of the initial state represented by the
sequence s = 0.(bit 1)(bit 2)(bit 3) . . . , thereby truncating the bits before the comma;
that is, σ (s) = 0.(bit 2)(bit 3)(bit 4) . . . , σ (σ (s)) = 0.(bit 3)(bit 4)(bit 5) . . . , and so
on. Suppose a measurement device operates with a precision of, say, two bits after the
comma, indicated by a two bit window of measurability; thus intially all information
beyond the second bit after the comma is hidden to the experimenter. Consider two ini-
tial states s = [0.(bit 1)(bit 2)](bit 3) . . . and s ′ = [0.(bit 1)(bit 2)](bit 3)′ . . . , where
the square brackets indicate the boundaries of the window of measurability (two bits
in this case). Initially, as the representations of both states start with the same two bits
after the comma [0.(bit 1)(bit 2)], these states appear operationally identical and can-
not be discriminated experimentally. Suppose further that, after the second bit, when
compared, the successive bits (bit i) and (bit i)′ in both state representations at identical
positions i = 3, 4, . . . are totally independent and uncorrelated. After just two itera-
tions of the shift map σ , s and s ′ may result in totally different, diverging observables
σ (σ (s)) = [0.(bit 3)(bit 4)](bit 5) . . . and σ (σ (s ′)) = [0.(bit 3)′(bit 4)′](bit 5)′. . . .

If the initial values are defined to be elements of a continuum, then almost all
(of measure one) of them are not representable by any algorithmically compressible
number; in short, they are random (Calude, 2002; Martin-Löf, 1966). Classical de-
terministic chaos results from the assumption of such a random initial value – drawn
somehow [one needs the axiom of choice (Svozil, 1995b; Wagon, 1986) for doing this]
from the continuum urn – and the unfolding of the information contained therein by
a recursively enumerable (computable), deterministic (temporal evolution) function.
Of course, if one restricts the initial values to finite sets, or, say, to the rationals, then
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the behavior will be periodic. The randomness of classical, deterministic chaos re-
sides in the assumption of the continuum; an assumption which might be considered
a convenience (for the sake of applying the infinitesimal calculus), as it is difficult to
conceive of any convincing physical operational evidence supporting the full structure
of continua. If the continuum assumption is dropped, then what remains is Maxwell’s
and Poincaré’s observation of the unpredictability of the behavior of a deterministic
system due to instabilities and diverging evolutions from almost identical initial states
(Lyapunov, 1992).

10.3.2 Rate of Convergence

The connections between symbolic dynamical systems and universal computation
result in provable unknowables (da Costa et al., 1993; Stewart, 1991). These symbolic
dynamic unknowables are different in type from the dynamical instabilities, and should
be interpreted recursion theoretically, as outlined in Section 10.2.2.

Let us come back to the original n-body problem. About one hundred years after
its formulation, as quoted earlier, the n-body problem has been solved (Babadzanjanz,
1969, 1979, 1993; Babadzanjanz, and Sarkissian, 2006; Diacu, 1996; Wang, 1991,
2001). The three-body problem was already solved by Sundman (1912). The solutions
are given in terms of convergent power series.

Yet, to be practically applicable, the rate of convergence of the series must be com-
putable and even reasonably good. One might already expect from symbolic dynamics,
in particular, from chaotic motion, that these series solutions could converge very
slowly. Even the short-term prediction of future behaviors may require the summation
of a huge number of terms, making these series unusable for all practical purposes
(Diacu, 1996; Rousseau, 2004).

Alas, the complications regarding convergence may be more serious. Consider a
universal computer based on the n-body problem. This can, for instance, be achieved
by ballistic computation, such as the “Billiard Ball” model of computation (Fredkin,
and Toffoli, 1982; Margolus, 2002) that effectively embeds a universal computer into
an n-body system (Svozil, 2007). It follows by reduction that certain predictions, say,
for instance, the general halting problem, are impossible.

What are the consequences of this reduction for the convergence of the series so-
lutions? It can be expected that not only do the series converge very slowly, like in
deterministic chaos, but that, in general, there does not exist any computable rate of
convergence for the series solutions of particular observables. This is very similar
to the busy beaver function or to Chaitin’s Omega number (Calude, 2002; Chaitin,
1987a), representing the halting probability of a universal computer. The Omega num-
ber can be enumerated by series solutions from quasi-algorithms computing its very
first digits (Calude, and Dinneen, 2007). Yet, because of the incomputable growth of the
time required to determine whether certain summation terms corresponding to halting
programs possibly contribute, the series lack any computable rate of convergence.

Though it may be possible to evaluate the state of then bodies by Wang’s power series
solution for any finite time with a computable rate of convergence, global observables,
referring to (recursively) unbounded times, may be incomputable. Examples of global
observables correspond to solutions of certain decision problems such as the stability of
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some solar system (we do not claim that this is provable incomputable), or the halting
problem.

This, of course, stems from the metaphor and robustness of universal computation
and the capacity of the n-bodies to implement universality. It is no particularity or
peculiarity of Wang’s power series solution. Indeed, the troubles reside in the capacity
to implement substitution, self-reference, universal computation, and Peano arithmetic
by n-body problems. Because of this capacity, there cannot exist other formalizable
methods, analytic solutions, or approximations capable of deciding and computing
certain decision problems or observables for the n-body problem.

10.4 Quantum Unknowables

In addition to provable physical unknowables by reduction to recursion-theoretic ones,
and chaotic symbolic dynamic systems, a third group of physical unknowables resides
in the quantum domain. Although it has turned out to be a highly successful theory,
quantum mechanics, in particular, its interpretation and meaning, has been contro-
versially received within the physics community. Some of its founding fathers, like
Schrödinger and, in particular, Einstein, considered quantum mechanics to be an un-
satisfactory theory: Einstein, Podolsky and Rosen (1938; 1935) argued that there exist
counterfactual (Svozil, 2009d; Vaidman, 2007) ways to infer observables from exper-
iment that, according to quantum mechanics, cannot coexist simultaneously; hence
quantum mechanics cannot predict what experiment can (counterfactually) measure.
Thus quantum mechanics is incomplete and should eventually be substituted by a more
complete theory. Others, among them Born, Bohr, and Heisenberg, claimed that un-
knowability in quantum mechanics is irreducible, is ontic, and will remain so forever.
Over the years, the latter view seems to have prevailed (Bub, 1999; Fuchs, and Peres,
2000), although not totally unchallenged (Jammer, 1966, 1974, 1992). Already Som-
merfeld warned his students not to get into the meaning behind quantum mechanics,
and as mentioned by Clauser (2002), not long ago, scientists working in that field had
to be very careful not to become discredited as quacks. Richard Feynman (Feynman,
1965, 129) once mentioned the

perpetual torment that results from [the question], “But how can it be like that?” which is
a reflection of uncontrolled but utterly vain desire to see [quantum mechanics] in terms
of an analogy with something familiar. . . .Do not keep saying to yourself, if you can
possibly avoid it, “But how can it be like that?” because you will get “down the drain,”
into a blind alley from which nobody has yet escaped.

This antirationalistic postulate of irreducible indeterminism and meaninglessness came
after a period of fierce debate on the quantum foundations, followed by decades of vain
attempts to complete quantum mechanics in any operationally testable way, and after
the discovery of proofs of the incompatibility of local, realistic, context-independent
ways to complete quantum mechanics (Clauser, and Shimony, 1978; Mermin, 1993).

In what follows, we shall discuss three realms of quantum unknowables: (1) ran-
domness of single events, (2) complementarity, and (3) value indefiniteness.
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10.4.1 Random Individual Events

In 1926, Born (1926b, 866) [see an English translation in Wheeler, and Zurek (1983,
54)] postulated that

“from the standpoint of our quantum mechanics, there is no quantity which in any indi-
vidual case causally fixes the consequence of the collision; but also experimentally we
have so far no reason to believe that there are some inner properties of the atom which
condition a definite outcome for the collision. Ought we to hope later to discover such
properties . . . and determine them in individual cases? Or ought we to believe that the
agreement of theory and experiment – as to the impossibility of prescribing conditions? I
myself am inclined to give up determinism in the world of atoms.”

Furthermore, Born suggested that, though individual particles behave irreducibly in-
deterministic, the quantum state evolves deterministically in a strictly Laplacian causal
way. Indeed, between (supposedly irreversible) measurements the (unitary) quantum
state evolution is even reversible, that is, one-to-one, and amounts to a generalized
(distance preserving) rotation in complex Hilbert space. In Born’s (1926a, 804) [see an
English translation in Jammer (1989, 302)] own words,

the motion of particles conforms to the laws of probability, but the probability itself is
propagated in accordance with the law of causality. [This means that knowledge of a state
in all points in a given time determines the distribution of the state at all later times.]

This distinction between a reversible, deterministic evolution of the quantum state,
on one hand, and the irreversible measurement, on the other hand, has left some physi-
cists with an uneasy feeling; in particular, because of the possibility to erase (Chapman
et al., 1995; Greenberger, and YaSin, 1989; Herzog et al., 1995; Kwiat et al., 1992;
Peres, 1980; Pfau et al., 1994; Scully, and Drühl, 1982; Scully et al., 1991; Zajonc et al.,
1991) measurements by reconstructing the quantum state, accompanied by a complete
loss of the information obtained from the quantum state before the (undone) measure-
ment – unlike in classical reversible computation (Bennett, 1973, 1982; Leff, and Rex,
1990), which still allows copying, that is, one-to-many operations, the quantum state
evolution is strictly one-to-one. If the possibility to undo measurements on quantum
states is merely limited by the experimenter’s technological capacities (and not bound
by any fundamental principle), then, one could speculate, Born’s statement seems to
suggest that the deterministic state evolution uniformly prevails. Pointedly stated, if, at
least in principle, there is no such thing as an irreversible measurement, and the quan-
tum state evolves uniformly deterministically, why should there exist indeterministic
individual events? In this view, the insistence in irreversible measurements as well as
in an irreducible indeterminism associated with individual quantum events appears to
be an idealistic, subjective illusion – in fact, this kind of indeterminism depends on
measurement irreversibility and decays into thin air if the latter is denied.

Similar arguments have been brought forth by Everett (1957) and Schrödinger
(1995). Note that it is not entirely clear [and indeed remains conventional (Svozil,
2002a)] where exactly the measurement cut (Rössler, 1998; Wigner, 1961) between the
observer and the object is located. By assuming the universal applicability of quantum
mechanics, the object and the measurement apparatus could be uniformly combined
into a larger system whose quantum mechanical evolution should be deterministic;
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otherwise quantum mechanics would not be universally valid. Such frameworks hardly
offer objective opportunities for indeterminism besides subjective ones – in the many
worlds resolution (Everett, 1957), every one of many simultaneous observers branching
off to different universes subjectively experiences the arbitrariness of the occurrence
of events as indeterminism. (This resembles the perception of a particular sequence of
bits as compared to all possible ones.)

Alas, the deterministic evolution of the quantum state could result in the super-
position of classically contradictory states. One of the mind-boggling, perplexing and
counterintuitive consequences associated with this coexistence of classical contradic-
tions is Schrödinger’s (1935a, 812) cat paradox implying the simultaneous coexistence
of death and life of a macroscopic object such as a mammal. Another one is Ev-
erett’s (1957) aforementioned many-worlds interpretation suggesting that our universe
perpetually branches off into zillions of consistent alternatives.

Thus one is faced with a dilemma: either to accept a somehow spurious nonuni-
formity in the evolution of the quantum state during (irreversible) measurement pro-
cesses – an ad hoc assumption challenged by quantum erasure experiments – or being
confronted with the counterintuitive decay of quantum states into superpositions of
classically mutually exclusive states – a sort of jelly – not backed by our everday expe-
rience as conscious beings (although often ambivalent we usually dont reside in mental
ambiguity for too long). Schrödinger (1995, 19–20) sharply addressed the difficulties
of a quantum theorist coping with this aspect of the quantum formalism:

The idea that [the alternate measurement outcomes] be not alternatives but all really
happening simultaneously seems lunatic to [the quantum theorist], just impossible. He
thinks that if the laws of nature took this form for, let me say, a quarter of an hour, we
should find our surroundings rapidly turning into a quagmire, a sort of a featureless jelly
or plasma, all contours becoming blurred, we ourselves probably becoming jelly fish. It
is strange that he should believe this. For I understand he grants that unobserved nature
does behave this way – namely according to the wave equation. . . . according to the
quantum theorist, nature is prevented from rapid jellification only by our perceiving or
observing it.

If, however, an additional irreducible irreversible evolution or some other, possibly
environmental (Peres, 1980; Zurek, 2003), effect associated with measurements (and
the collapse of the quantum wave function) is postulated or somehow emerges, indi-
vidual events may occur indeterministically. The considerations might appear to be
sophistries, but they have direct consequences for the supposedly most advanced ran-
dom number generators of our time. These devices operate with beam splitters (Calude
et al., 2010; Jennewein et al., 2000; Rarity et al., 1994; Stefanov et al., 2000; Svozil,
1990; Wang et al., 2006), which are strictly reversible (Greenberger et al., 1993; Ou
et al., 1987; Svozil, 2005c; Zeilinger, 1981) – one could demonstrate reversibility on
beam splitters by forming a Mach-Zehnder interforemeter with two serially connected
ones – or parametric down-conversions and entanglement (Fiorentino et al., 2007;
Hai-Qiang et al., 2004; Pironio et al., 2010).

Born did not address these questions, nor did he specify the formal notion of
indeterminism to which he was relating. So far, no mathematical characterization of
quantum randomness has been proved (Calude, and Svozil, 2008). In the absence of any
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indication to the contrary, it is mostly implicitly assumed that quantum randomness is of
the strongest possible kind, which amounts to postulating that the symbolic sequences
associated with measurement outcomes are uncomputable or even algorithmically
incompressible.

Indeed, the quantum formalism does not predict the outcome of single events when
there is a mismatch between the context in which a state was prepared, and the
context in which it is measured. Here, the term context (Svozil, 2009a,d) denotes a
maximal collection of comeasurable observables, or, more technically, the maximal
operator from which all commuting operators can be functionally derived (Halmos,
1974, sect. 84). Ideally, a quantized system can be prepared to yield exactly one
answer in exactly one context (Donath, and Svozil, 2002; Svozil, 2002b; Zeilinger,
1999). Other outcomes associated with other contexts occur indeterministically
(Calude, and Svozil, 2008).

Furthermore, the quantum formalism is incapable of predicting deterministically the
radioactive decay of individual particles. Attempts to find causal laws lost steam (Kragh,
1997, 2009) at the time of Born’s suggestion of the indeterministic interpretation of
individual measurement outcomes, and nobody has come up with a operationally
satisfactory deterministic prediction since then.

In the absence of other explanations, it is not too unreasonable to pragmatically
presume that these single events occur without any causation and thus at random.
Presently, this appears to be the prevalent opinion among physicists. Such random
quantum coin tosses (Fiorentino et al., 2007; Hai-Qiang et al., 2004; Jennewein et al.,
2000; Pironio et al., 2010; Rarity et al., 1994; Stefanov et al., 2000; Svozil, 1990,
2009e; Wang et al., 2006) have been used for various purposes, such as delayed choice
experiments (Jennewein et al., 2000; Weihs et al., 1998a).

Note that randomness of this type (Calude, 2005; Calude, and Dinneen, 2005) is
postulated rather than proved and thus, unless disproved, remains conjectural. This
is necessarily so, for any claim of randomness can only be corroborated relative to,
and with respect to, a more or less large class of laws or behaviors; it is impossible to
inspect the hypothesis against an infinity of – and even less so all – conceivable laws. To
rephrase a statement about computability (Davis, 1958, 11), how can we ever exclude
the possibility of our presented, some day (perhaps by some extraterrestrial visitors),
with a (perhaps extremely complex) device that computes and predicts a certain type
of hitherto random physical phenomenon?

10.4.2 Complementarity

Complementarity is the impossibility of measuring two or more complementary ob-
servables with arbitrary precision simultaneously. In 1933, Pauli (1958, 7) gave the first
explicit definition of complementarity stating that [see the partial English translation
in (Jammer, 1989, 369)]

in the case of an indeterminacy of a property of a system at a certain configuration (at a
certain state of a system), any attempt to measure the respective property (at least par-
tially) annihilates the influence of the previous knowledge of the system on the (possibly
statistical) propositions about possible later measurement results. . . . The impact on the
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system by the measurement apparatus for momentum (position) is such that within the
limits of the uncertainty relations the value of the knowledge of the previous position
(momentum) for the prediction of later measurements of position and momentum is lost.

Einstein, Podolsky, and Rosen (1935) challenged quantum complementarity (and
doubted the completeness of quantum theory) by utilizing a configuration of two en-
tangled (Schrödinger, 1935a,b, 1936) particles. They claimed to be able to empirically
infer two different complementary contexts counterfactually simultaneously, thus cir-
cumventing quantum complementarity. Thereby, one context is measured on one side
of the setup, whereas the other context is measured on the other side of it. By the
uniqueness property (Svozil, 2006a) of certain two-particle states, knowledge of a
property of one particle entails the certainty that, if this property were measured on the
other particle as well, the outcome of the measurement would be a unique function of
the outcome of the measurement performed.

This makes possible the measurement of one context as well as the simultaneous
counterfactual inference of a different complementary context. Because, one could
argue, although one has actually measured on one side a different, incompatible context
compared to the context measured on the other side, if, on both sides, the same context
would be measured, the outcomes on both sides would be uniquely correlated. (This
can indeed be verified in another experiment.) Hence, the Einstein, Podolsky, and
Rosen argument continues, measurement of one context per side is sufficient, for the
outcome could be counterfactually inferred on the other side. Thus, effectively two
complementary contexts are knowable. Based on this argument, Einstein, Podolsky,
and Rosen suggested that quantum mechanics must be considered incomplete, because
it cannot predict what can be measured; thus a more complete theory is needed.

Complementarity was first encountered in quantum mechanics, but it is a phe-
nomenon also observable in the classical world. To get better intuition of complemen-
tarity, we shall consider generalized urn models (Wright, 1978, 1990) or, equivalently
(Svozil, 2005b), finite deterministic automata (Calude et al., 1997; Dvurečenskij et al.,
1995; Moore, 1956; Schaller, and Svozil, 1996; Svozil, 1993) in an unknown ini-
tial state. Both quasi-classic examples mimic complementarity to the extent that even
quasi-quantum cryptography can be performed with them (Svozil, 2006c) as long as
value indefiniteness is not a feature of the protocol (Bechmann-Pasquinucci, and Peres,
2000; Svozil, 2010a), that is, for instance, the Bennett and Brassard (1984) protocol
(Bennett et al., 1992) can be implemented with generalized urn models, whereas the
Ekert protocol (Ekert, 1991) cannot.

A generalized urn model is characterized by an ensemble of balls with black back-
ground color. Printed on these balls are some color symbols. Every ball contains just
one symbol per color. Further assume some filters or eyeglasses that are perfect because
they totally absorb light of all other colors but a particular one. In that way, every color
can be associated with a particular pair of eyeglasses and vice versa.

When a spectator looks at a ball through such a particular pair of eyeglasses, the
only operationally recognizable symbol will be the one in the particular color that is
transmitted through the eyeglasses. All other colors are absorbed, and the symbols
printed on them will appear black and therefore will not be differentiable from the
black background. Hence the ball will appear to carry a different message or symbol,
depending on the color with which it is viewed.
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For the sake of demonstration, let us consider a generalized urn model with four ball
types, two colors, say red and green, and two symbols, say “0” and “1,” per color, that
is, ball type 1: (red 0 green 0), ball type 2: (red 0 green 1), ball type 3: (red 1 green 0),
and ball type 4: (red 1 green 1). The green pair of eyeglasses associated with the green
observable allows the observer to differentiate between ball types 1 or 3 (associated
with the green symbol “0”), and ball types 2 or 4 (associated with the green symbol
“1”). The red pair of eyeglasses associated with the red observable allows the observer
to differentiate between ball types 1 or 2 (associated with the green symbol “0”), and
ball types 3 or 4 (associated with the green symbol “1”). [Without going into details in
general this yields sets of partitions of the set of ball types resulting in partition logics
(Svozil, 1993, chapt. 10).]

The difference between the balls and the quanta is the possibility of viewing all
the different symbols on the balls in all different colors by taking off the eyeglasses;
also, one can consecutively look at one and the same ball with differently colored pair
of eyeglasses, thereby identifying the ball completely. Quantum mechanics does not
provide us with a possibility to look across the quantum veil, as it allows neither a global,
simultaneous measurement of all complementary observables nor a measurement of one
observable without disturbing the measurement of another complimentary observable
(with the exception of Einstein, Podolsky, and Rosen counterfactual measurements
discussed earlier). On the contrary, there are strong formal arguments suggesting that the
assumption of a simultaneous physical coexistence of such complementary observables
yields a complete contradiction. These issues will be discussed next.

10.4.3 Value Indefiniteness versus Omniscience

Still another quantum unknowable results from the fact that no global (in the sense of all
or at least certain finite sets of complementary observables) classical truth assignment
exists which is consistent with even a finite number of local (in the sense of comeasur-
able) ones, that is, no consistent classical truth table can be given by pasting together
the possible outcomes of measurements of certain complementary observables. This
phenomenon is also known as value indefiniteness or, by an option to interpret this
result, contextuality (see later). Here the term local refers to a particular context (Svozil,
2009a) that, operationally, should be thought of as the collection of all comeasurable
or copreparable (Zeilinger, 1999) observables. The structure of quantum propositions
(Birkhoff, and von Neumann, 1936; Kalmbach, 1983, 1986; Kochen, and Specker,
1965; Navara, and Rogalewicz, 1991; Pták, and Pulmannová, 1991; Svozil, 1998) can
be obtained by pasting contexts together.

As by definition, only one such context is directly measurable, arguments based
on more than one context must necessarily involve counterfactuals (Svozil, 2009d;
Vaidman, 2007). A counterfactual is a would-be-observable or contrary-to-fact condi-
tional (Chisholm, 1946) which has not been measured but potentially could have been
measured if an observer would have decided to do so; alas the observer decided to
measure a different, presumably complementary, observable.

Already scholastic philosophy, for instance, Thomas Aquinas, considered similar
questions such as whether God has knowledge of non-existing things (Aquinas, 1981,
part one, question 14, article 9) or things that are not yet (Aquinas, 1981, part one,
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question 14, article 13); see also Specker’s (1960, 243) reference to infuturabilities.
Classical omniscience, at least its naive expression that, if a proposition is true, then
an omniscient agent (such as God) knows that it is true, is plagued by controversies
and paradoxes. Even without evoking quantum mechanics, there exist bounds on omni-
science because of the self-referential perception of intrinsic observers endowed with
free will; if such an observer is omniscient and has absolute predictive power, then free
will could counteract omniscience and, in particular, the observer’s own predictions.
Within a consistent formal framework, the only alternative is to either abandon free
will, stating that it is an idealistic illusion, or accept that omniscience and absolute
predictive power is bound by paradoxical self-reference.

The empirical sciences implement classical omniscience by assuming that in prin-
ciple, all observables of classical physics are comeasurable without any restrictions,
regardless of whether they are actually measured. No ontological distinction is made
between an observable obtained by an actual and a potential or counterfactual mea-
surement. [In contrast, compare Schrödinger’s (1935a, sect. 7) own epistemological
interpretation of the wave function as a catalog of expectations.] Classically, precision
and comeasurability are limited only by the technical capacities of the experimenter.
The principle of empirical classical omniscience has given rise to the realistic be-
lieve that all observables exist regardless of their observation, that is, regardless and
independent of any particular measurement.

Physical (co-)existence is thereby related to the realistic assumption [sometimes
referred to as the “ontic” (Atmanspacher, and Primas, 2005) viewpoint] that (Stace,
1934) “some entities sometimes exist without being experienced by any finite mind.”
With regards to such unexperienced counterfactual entities, Stace (1934, 364, 365, 368)
questions their existence (compare also Schrödinger’s remark quoted earlier):

In front of me is a piece of paper. I assume that the realist believes that this paper will
continue to exist when it is put away in my desk for the night, and when no finite mind is
experiencing it. . . . I will state clearly at the outset that I cannot prove that no entities exist
without being experienced by minds. For all I know completely unexperienced entities
may exist, but what I shall assert is that . . . there is absolutely no reason for asserting that
these non-mental, or physical, entities ever exist except when they are being experienced,
and the proposition that they do so exist is utterly groundless and gratuitous, and one
which ought not to be believed. . . . As regards [a] unicorn on Mars, the correct position,
as far as logic is concerned, is obviously that if anyone asserts that there is a unicorn there,
the onus is on him to prove it; and that until they do prove it, we ought not to believe that
they exist.

One might criticize Stace’s idealistic position by responding that suppose an ex-
perimenter can choose which observable among a collection of different, complemen-
tary, observables is actually measured. Regardless of this choice, a measurement of
any observable that could be measured would produce some result. This contrary-
to-fact conditional could be interpreted as an existing element of physical reality.
Furthermore, according to the argument of Einstein, Podolsky and Rosen (1935, 777),
even certain sets of complementary counterfactual elements of physical reality coex-
ist “if, without in any way disturbing a system, we can predict with certainty (i.e.,
with probability equal to unity) the value of [these] physical quantit[ies].” The idealist
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might repond that these arguments are unconvincing because they are merely based on
conterfactual inference and are thus empirically “utterly groundless and gratuitous.”

The formal expression of classical omniscience is the Boolean algebra of observ-
able propositions (Boole, 1958), in particular the abundance of two-valued states in-
terpretable as omniscience about the system. Thereby, any such dispersionless quasi-
classical two-valued state – associated with a truth assignment – can be defined for all
observables, regardless of whether they have been actually observed.

After the discovery of complementarity, a further indication against quantum omni-
science came from Boole’s (1862) conditions of possible (classical) experience which
are bounds for the occurrence of (classical) events that are derivable within classical
probability theory (Pitowsky, 1989a,b, 1994; Pitowsky, and Svozil, 2001) for quantum
probabilities and quantum expectation functions. Bell (1966) pointed out that experi-
ments based on counterfactually inferred observables discussed by Einstein, Podolsky
and Rosen (1935) discussed earlier violate these conditions of possible (classical)
experience and thus seem to indicate the impossibility of a faithful embedding (i.e.,
preserving the logical structure) of quantum observables into classical Boolean alge-
bras. Stated pointedly, under some (presumably mild) side assumptions, unperformed
experiments have no results (Peres, 1978); that is, there cannot exist a table enumerat-
ing all actual and hypothetical context independent (see later) experimental outcomes
consistent with the observed quantum frequencies (Svozil, 2010b; Weihs et al., 1998b).
As any such table could be interpreted as omniscience with respect to the observables in
the Boole-Bell-Einstein-Podolsky-Rosen-type experiments, the impossibility to con-
sistently enumerate such tables (under the noncontextual assumption) appears to be a
very serious indication against omniscience in the quantum domain.

The quantum nonlocal (i.e., the particles are spatially separated) correlations among
observables in the Boole-Bell-Einstein-Podolsky-Rosen-type experiments are stronger
than classical in the sense that ex post facto, when the two outcomes are communicated
and compared, in the case of dichotomic observables, say “0” and “1,” for some mea-
surement parameter regions, there appear to be more equal occurrences “00” or “11”
and thus fewer unequal occurrences “01” or “10” than could be classically accounted
for; likewise, for other measurement parameter regions, there appear to be fewer equal
occurrences “00” or “11” and thus more unequal occurrences “01” or “10” than could
be classically accounted for. These conclusions can only be drawn in retrospect, that is,
after bringing together and comparing the outcomes. Individual outcomes occur inde-
terministically and, in particular, independently of the measurement parameter regions
[but not of outcomes (Shimony, 1984)] of other distant, measurements. No faster-than-
light signaling can occur. Indeed, even stronger-than-quantum correlations would, in
this scenario, not violate relativistic causality (Krenn, and Svozil, 1998; Popescu, and
Rohrlich, 1994, 1997; Svozil, 2005a).

The reason that it is impossible to describe all quantum observables simultaneously
by classical tables of experimental outcomes can be understood in terms of a stronger
conclusion that, for quantum systems whose Hilbert space is of dimension greater
than two, there does not exist any dispersionless quasi-classical, two-valued state inter-
pretable as truth assignment. This conclusion, which is known as the Kochen-Specker
theorem (Alda, 1980, 1981; Cabello et al., 1996; Kamber, 1964, 1965; Kochen,
and Specker, 1967; Mermin, 1993; Specker, 1960; Svozil, 1998, 2009a; Svozil, and
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Tkadlec, 1996); Zierler, and Schlessinger, 1965), has a finitistic proof by contradiction.
Proofs of the Kochen-Specker theorem amount to brain teasers in graph coloring re-
sulting in the fact that, for the geometric configurations considered, there does not exist
any possibility to consistently and context independently enumerate and tabulate the
values of all the observables occurring in a Kochen-Specker-type argument (Cabello
et al., 1996).

The violations of conditions of possible classical experience in Boole-Bell-type
experiments or the Kochen-Specker theorem do not exclude realism restricted to a
single context but (noncontextual) realistic omniscience beyond it. It may thus not be
totally unreasonable to suspect that the assumption of (pre-)determined observables
outside a single context may be unjustified (Svozil, 2004).

If one nevertheless insists in the simultaneous physical coexistence of counterfac-
tual observables, any forced tabulation (Peres, 1978; Svozil, 2010b) of truth values
for Boole-Bell-type or Kochen-Specker-type configurations would either result in a
complete contradiction or in context dependence, also termed contextuality, that is, the
outcome of a measurement of an observable would depend on what other comeasur-
able observables are measured alongside it (Bell, 1966; Bohr, 1949; Heywood, and
Redhead, 1983; Redhead, 1990; Svozil, 2009a).

Indeed, the current mainstream interpretation of the Boole-Bell-type or Kochen-
Specker-type theorems is in terms of contextuality, that is, by assuming a dependence
of the outcome of a single observable on what other observables are actually measured
or at least what could have been consistently known alongside it. This insistence
in the coexistence of complementary observables could be interpreted as an attempt
to rescue classical omniscience accompanied by ontological realism at the price of
accepting contextuality. The realist Bell (1966, 451) suggested that “the result of an
observation may reasonably depend . . . on the complete disposition of the apparatus.”
(Already Bohr (1949) mentioned “the impossibility of any sharp separation between
the behaviour of atomic objects and the interaction with the measuring instruments
which serve to define the conditions under which the phenomena appear.”)

For the sake of demonstrating contextuality (Svozil, 2010b) consider a dichotomic
observable (with outcomes “0” or “1”). Contextuality predicts that, when measured
together with some particular set of observables, this observable yields a certain out-
come, say “0,” whereas when measured together with another, complementary, set of
other observables, the observable may yield a different outcome, say “1.”

However, statistically the quantum probability and expectation value of this ob-
servable is noncontextual and thus independent of the set of co-observables. Thus
contextuality is a hypothetical (counterfactual) phenomenon regarding complementary
measurements on an individual particle, making it inaccessible for direct tests. Alas,
as far as Einstein-Podolsky-Rosen-type measurements might reproduce such contex-
tual behavior for individual particles, quantum mechanics predicts noncontextuality
(Svozil, 2009c) and thus contradicts the assumption of quantum contextuality. (Of-
ten claims of experimental evidence of quantum contextuality do not deal with its
individual particle character but deal with statistical violations of Boole-Bell-type or
Kochen-Specker-type configurations. The terms which contribute to (in)equalities are
not measured on one and the same particle; operationally they even originate in very
different measurement setups.) One may argue that contextuality occurs only when
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absolutely necessary, that is, when the set of observables allows only an insufficient
number of two-valued states for a homeomorphic embedding into (classical) Boolean
algebras; but in view of the fact that quantum noncontextuality for single events occurs
for configurations which can be pasted together to construct a Kochen-Specker-type
scheme, any such argument might appear ad hoc.

On the basis of the aforementioned lack of quantum omniscience, it is possible to pos-
tulate the existence of absolute sources of indeterminism; if there are no (preexisting)
observables, and no causal laws yielding individual outcomes, the occurrence of any
such outcome can only be unpredictable and incomputable (Calude, and Svozil, 2008).
This quantum dice approach has first been proposed (Rarity et al., 1994; Svozil, 1990;
Zeilinger, 1999) and realized (Hai-Qiang et al., 2004; Jennewein et al., 2000; Stefanov
et al., 2000; Wang et al., 2006) in setups which utilize complementarity, yet still allow
omniscience. More recently, it was suggested (Pironio et al., 2010; Svozil, 2009e) to
utilize quantum systems with more than two exclusive outcomes that are are subject to
value indefiniteness (two-dimensional systems cannot be proven to be value indefinite).
The additional advantage over devices utilizing merely complementarity is that these
new type of quantum oracles (Fiorentino et al., 2007; Paterek et al., 2010; Pironio et al.,
2010) are “quantum mechanically certified” by Boole-Bell-type, Kochen-Specker-type,
and Greenberger-Horne-Zeilinger-type (Greenberger et al., 1990) theorems not to al-
low omniscience. Of course, all these devices operate under the assumption that there
are no hidden variables that could complete the quantum mechanical description of
nature, especially no contextual ones, as well as no quasi-indeterminism caused by
environmental influences [such as in the context translation principle (Svozil, 2004)].
Thus, ultimately, these sources of quantum randomness are grounded in our belief that
quantum mechanics is the most complete representation of physical phenomenology.

10.5 Miracles Due to Gaps in Causal Description

A different issue, discussed by Frank (1932), is the possible occurrence of miracles
in the presence of gaps of physical determinism. Already Maxwell has considered
singular points (Campbell, and Garnett, 1882, 212–213), “where prediction, except
from absolutely perfect data, and guided by the omniscience of contingency, becomes
impossible.” One might perceive individual events occurring outside the validity of
classical and quantum physics without any apparent cause as miracles. For if there is
no cause to an event, why should such an event occur altogether rather than not occur?

Although such thoughts remain highly speculative, miracles could be the basis for an
operator-directed evolution in otherwise deterministic physical systems. Similar mod-
els have been applied to dualistic models of the mind (Eccles, 1986, 1990; Popper, and
Eccles, 1977). The objection that this scenario is unnecessarily complicating an oth-
erwise monistic model should be carefully reevaluated in view of computer-generated
virtual realities (Descartes, 1641; Putnam, 1981; Svozil, 1995a). In such algorithmic
universes, there are computable evolution laws as well as inputs from interfaces. From
the intrinsic perspective (Svozil, 1994), the inputs cannot be causally accounted for, and
hence they remain irreducibly transcendental with respect to the otherwise algorithmic
universe.
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10.6 Concluding Thoughts

10.6.1 Metaphysical Status of (In)determinism

Hilbert’s (1902) sixth problem is about the axiomatization of physics. Regardless of
whether this goal is achievable, omniscience cannot be gained via the formalized,
syntactic route, which will remain blocked forever by the paradoxical self-reference
to which intrinsic observers and operational methods are bound. Even if the universe
were a computer (Fredkin, 1990; Svozil, 2006b; Wolfram, 2002; Zuse, 1970), we would
intrinsically experience unpredictability and complementarity.

With regard to conjectures about the (in)deterministic evolution of physical events,
the situation is unsettled and can be expected to remain unsettled forever. The reason for
this is the provable impossibility to formally prove (in)determinism: it is not possible
to ensure that physical behaviors are causal and will remain so forever, nor is it possible
to exclude all causal behaviors.

The postulate of indeterministic behavior in physics or elsewhere is impossible to
prove by considering a finite operationally obtained encoded phenotype such as a finite
sequence of (supposedly random) bits from physical experiments alone. Furthermore,
recursion theory and algorithmic information theory (Calude, 2002; Chaitin, 1987a;
Grünwald, and Vitányi, 1987) imply that an unbounded system of axioms is required
to prove the unbounded algorithmic information content of an unbounded symbolic
sequence. There also exist irreducible complexities in pure mathematics (Chaitin, 2004,
2007).

The opportunistic approach that (as historically, many ingenious scientists have
failed to come up with a causal description) indeterminism will prevail appears to
be anecdotal, at best, and misleading, at worst. Likewise, the advice of authoritative
researchers to avoid asking questions related to completing a theory, or to avoid thinking
about the meaning of quantum mechanics or any kind of rational interpretation, and to
avoid searching for causal laws for phenomena which are, at the same time, postulated
to occur indeterministically by the same authorities – even wisely and benevolently
posted – hardly qualify as proof.

Any kind of lawlessness can thus be claimed only with reference to, and relative
to, certain criteria, laws, or quantitative statistical or algorithmic tests. For instance,
randomness could be established merely with respect to certain tests, such as some bat-
teries of tests of randomness, for instance, diehard (Marsaglia, 1995), NIST (Rukhin
et al., 2001), TestU01 (L’Ecuyer, and Simard, 2007), or algorithmic (Calude, and
Dinneen, 2005; Calude et al., 2010) tests. Note, however, that even the decimal ex-
pansion of π , the ratio between the circumference and the diameter of an ideal circle
(Bailey et al., 1997; Bailey, and Borwein, 2005), behaves reasonably random (Calude
et al., 2010); π might even be a good source of randomness for many Monte Carlo
calculations.

Thus, both from a formal as well as from an operational point of view, any rational
investigation into, or claim of, absolute (in)determinism is metaphysical and can only
be proved relative to a limited number of statistical or algorithmic tests which some
specialists happen to choose; with very limited validity for the formal and the natural
sciences.
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10.6.2 Harnessing Unknowables and Indeterminism

Physical indeterminism need not necessarily be perceived negatively as the absence
of causal laws but rather as a valuable resource. Indeed, ingenious quasi-programs
to compute the halting probability (Calude, and Chaitin, 2007; Calude, and Dinneen,
2007; Chaitin, 1987a) through summation of series without any computable rate of
convergence could, at least in principle, and in the limit of unbounded computational
resources, be interpreted as generating provable random sequences. However, as has
already been expressed by von Neumann (1951, 768), “anyone who considers arith-
metical methods of producing random digits is, of course, in a state of sin.”

Besides recursion-theoretic undecidability, there appear to be at least two principal
sources of indeterminism and randomness in physics: (1) one scenario is associated
with instabilities of classical physical systems and with a strong dependence of fu-
ture behaviors on the initial value, and (2) quantum indeterminism, which can be
subdivided into three subcategories, including random outcomes of individual events,
complementarity, and value indefiniteness.

The production of random numbers by physical generators has a long history (The
RAND Corporation, 1955). The similarities and differences between classical and
quantum randomness can be conceptualized in terms of two black boxes: the first of
them, called the “Poincaré box,” containing a classical, deterministic, chaotic source
of randomness and the second, called the “Born box,” containing a quantum source of
randomness.

A Poincaré box could be realized by operating a classical dynamical system in the
shift map region. Major principles for Born boxes utilizing beam splitters or parametric
down conversion include the following: (1) there should be at least three mutually
exclusive outcomes to ensure value indefiniteness (Bechmann-Pasquinucci, and Peres,
2000; Calude, and Svozil, 2008; Paterek et al., 2010; Pironio et al., 2010; Svozil,
2009e); (2) the states prepared and measured should be pure and in mutually [possibly
interlinked (Svozil, 2009c)] unbiased bases or contexts; and (3) events should be
independent to be able to apply proper normalization procedures (Samuelson, 1968;
von Neumann, 1951).

Suppose an agent is being presented with both boxes without any label on, or hint
about, them; that is, the origin of indeterminism is unknown to the agent. In a modified
Turing test, an agent’s task would be to find out which is the Born and which is the
Poincaré box solely by observing their output. In the absence of any criteria, there
should not exist any operational method or procedure capable of discriminating among
these boxes. Moreover, both types of indeterminism appear to be based on speculative
assumptions: in the classical case, it is the existence of continua and the possibility to
randomly choose elements thereof, representing the initial values; in the quantum case,
it is the irreducible indeterminism of single events.

10.6.3 Personal Remarks

It is perpetually amazing, perplexing and mind-boggling how many laws and mathe-
matical formæ can be found to express and program or induce physical behavior with
high precision. There definitely is substance to the Pythagorean belief that, at least in
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a restricted manner, nature is numbers and God computes; maybe also throwing dice
sometimes.

The apparent impossibility to explain certain phenomena by any causal law should
be perceived carefully and cautiously in a historic, transient perspective. The author has
the impression that in their attempts to canonize beliefs in the irreducible randomness
of (quantum) mechanics, many physicists, philosophers, and communicators may have
prematurely thrown out a thorough rationalistic worldview with the provably unfounded
claims of total omniscience and omnipotence.

Let me sketch some very speculative attempts to undo the Goridan Knot that haunts
the perception of randomness in the classical and quantum domains in recent times.
(1) Gödel-Turing-Tarski-type undecidability will remain with us forever, at least as
long one allows substitution, self-reference, and universal computation. (2) Most clas-
sical as well quantum unknowables might be epistemic and not ontic. (3) The classical
continua might be convenient abstractions that will have to be abandoned in favor of
granular, course-graining structures eventually. As a consequence, classical random-
ness originating from deterministic chaos might turn out to be formally computable
but for all practical purposes impossible to predict. (4) Space and time might turn out
to be intrinsic constructions to represent dichotomic events in a world dominated by
one-to-one state evolution. (5) There might only exist pure quantum states that can
be associated with a unique (measurement and preparation) context. Mixed quantum
states might turn out to be purely epistemic, that is, based on our ignorance of the
pure state we are dealing with. (6) Kochen-Specker and Boole-Bell-type arguments
should be interpreted to indicate value indefiniteness beyond a single context. The
idea that there is physical existence beyond a single context at a time (and, associated
with it, contextuality) might be misleading. (7) Quantum randomness originate in the
process of context translation between different, mismatching preparation and mea-
surement contexts. It might thus be induced by the environment of the measurement
apparatus and our technologic inability to maintain universal coherence. (8) Dualistic
operator controlled scenarios might present an option that are consistent or at least in
peaceful coexistence with a certain type of determinism (leaving room for miracles or
gaps of causality). The information flow from and through the interface might either
be experienced as miracle, or, within the statistical bounds, as incomputable event or
input. Whether these specutations and feelings are justified only generations to come
will know.
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der Physik. Band V, Teil 1. Prinzipien der Quantentheorie I (pp. 1–168). Berlin, Göttingen and
Heidelberg: Springer.

Peres, A. (1978). Unperformed experiments have no results. American Journal of Physics, 46, 745–
747.

Peres, A. (1980). Can we undo quantum measurements? Physical Review D, 22(4), 879–883.
Peterson, I. (1993). Chaos in the Solar System. New York: W. H. Freeman and Company.
Pfau, T., Spälter, S., Kurtsiefer, C., Ekstrom, C. R., and Mlynek, J. (1994). Loss of spatial coherence

by a single spontaneous emission. Physical Review Letters, 73(9), 1223–1226.
Pironio, S., Acı́n, A., Massar, S., Boyer de la Giroday, A., Matsukevich, D. N., Maunz, P., Olmschenk,

S., Hayes, D., Luo, L., Manning, T. A., and Monroe, C. (2010). Random numbers certified by Bell’s
theorem. Nature, 464, 1021–1024.

Pitowsky, I. (1989a). From George Boole to John Bell: The origin of Bell’s inequality. In M. Kafatos
(Ed.), Bell’s Theorem, Quantum Theory and the Conceptions of the Universe (pp. 37–49).
Dordrecht: Kluwer.

Pitowsky, I. (1989b). Quantum Probability – Quantum Logic. Berlin: Springer.
Pitowsky, I. (1994). George Boole’s ‘conditions of possible experience’ and the quantum puzzle. The

British Journal for the Philosophy of Science, 45, 95–125.
Pitowsky, I., and Svozil, K. (2001). New optimal tests of quantum nonlocality. Physical Review A,

64, 014102.
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