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I. INTRODUCTION

Proving that a dynamical system is chaotic is an important problem in chaos theory1. De-

spite causality2, virtually any “interesting” question about non-trivial dynamical systems ap-

pears to be undecidable3, but is there a way to mathematically prove this statement? Closely

related is the question: Is there a way to measure the difficulty of proving the chaoticity of

a dynamical system? There are only few “bridges” between chaotic dynamical systems and

complexity theories, in particular algorithmic information theory4–7. The unpredictability

of the systems studied in this article comes from a combination of chaoticity and a “decision

problem” embedded in the system; the complexity of the “decision problem” (in the sense

to be precisely described in the following section) may be arbitrarily large, including high

incomputability. We shall show that “proving the chaoticity of some dynamical systems”

amounts to “solving the hardest problems in mathematics” and vice versa.

We will study a class of mathematical sentences called Π1–statements. A sentence of the

form π = ∀nPred(n), where Pred is a computable predicate (n is always a non-negative

integer) is called a Π1–statement. The Greek letter π is used as a generic notation for

such a statement; it has no relation with the famous constant 3.145 · · ·. Clearly, π is true

if and only if all instances of Pred, Pred(0),Pred(1), . . . ,Pred(n), . . . are true. Every Π1–

statement is finitely refutable because a single false instance of Pred makes π false. For

example, ∀n[n2 + 1 > 0] is true, but ∀n[2n + 3 is prime] is false.

We deal with formal proofs by using the Zermelo-Fraenkel set theory with the Axiom of

Choice (ZFC), the standard system for doing mathematics. So, we say that “ZFC proves

π” in case there is a proof in ZFC for π.

Da Costa, Doria8 and da Costa, Doria and Amaral9 have constructed a two-dimensional

Hamiltonian system H — a system of first-order differential equations which can be written

in the form of Hamilton’s equations, in which the Hamiltonian function represents the total

energy of the system — with the property that (formally) proving the existence of a Smale

horseshoe in H is equivalent to (formally) proving Fermat’s last theorem. Contrary to the

opinion expressed in the above articles, it was shown that proving that the two-dimensional

Hamiltonian system H has a Smale horseshoe has low complexity10 because Fermat’s last

theorem has a low complexity.

As Fermat’s last theorem is a Π1–statement, it is natural to ask whether the above results
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can be extended to any Π1–statement. In this note we show that to every Π1–statement

π one can associate a dynamical system Hπ such that proving in ZFC the chaoticity of

Hπ is equivalent to proving π in ZFC. By applying the computational method11–13 to Π1–

statements we show that there are dynamical systems whose ZFC proofs of their chaoticity

are arbitrarily complex and there are chaotic systems for which ZFC cannot prove their

chaoticity. The techniques are related to (i) the construction of a Poincaré box as a classical

physical random number generator (akin to a quantum Born box), and (ii) the conceivable

capability of classical physical systems to “compute the hard or even the incomputable”

by measuring observables which correspond to computationally hard or even incomputable

problems.

II. Π1–STATEMENTS AND THE COMPLEXITY MEASURE

In this section we present a complexity measure11–13 for Π1–statements defined by means

of register machine programs.

We use a fixed “universal formalism” for programs, more precisely, a universal self-

delimiting Turing machine U . The machine U (which is fully described below) has to be

minimal in the sense that none of its instructions can be simulated by a program for U

written with the remaining instructions.

To every Π1–statement π = ∀mPred(m) we associate the algorithm ΠPred = inf{n :

Pred(n) = false} which systematically searches for a counter-example for π. There are

many programs (for U) which implement ΠPred; without loss of generality, any such program

will be denoted also by ΠPred. Note that π is true iff U(ΠPred) never halts.

The complexity (with respect to U) of a Π1–statement π is defined by the length of

the smallest-length program (for U) ΠPred—defined as above—where minimization is calcu-

lated for all possible representations of π as π = ∀nPred(n): CU(π) = min{|ΠPred| : π =

∀nPred(n)}.

For CU it is irrelevant whether π is known to be true or false. In particular, the

program containing the single instruction halt is not a ΠPred program, for any Pred.

As the exact value of CU is not important (CU is incomputable), following a previ-

ous article by two of the Authors13 we classify Π1–statements into the following classes:

CU,n = {π : π is a Π1–statement, CU(π) ≤ n kbit}. (Recall that a kilobit (kbit or kb) is
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equal to 210 bits.)

We briefly describe the syntax and the semantics of a register machine language which

implements a (natural) minimal universal prefix-free binary Turing machine U . Any register

program (machine) uses a finite number of registers, each of which may contain an arbitrarily

large non-negative integer. By default, all registers, named with a string of lower or upper

case letters, are initialized to 0. Instructions are labeled by default with 0,1,2,. . .

The register machine instructions are listed below. Note that in all cases R2 and R3

denote either a register or a non-negative integer, while R1 must be a register. When

referring to R we use, depending upon the context, either the name of register R or the

non-negative integer stored in R.

=R1,R2,R3: if the contents of R1 and R2 are equal, then the execution continues at the

R3-th instruction of the program; if the contents of R1 and R2 are not equal, then execution

continues with the next instruction in sequence, and, if the content of R3 is outside the

scope of the program, then we have an illegal branch error.

&R1,R2: the contents of register R1 is replaced by R2.

+R1,R2: the contents of register R1 is replaced by the sum of the contents of R1 and

R2.

!R1: one bit is read into the register R1, so the contents of R1 becomes either 0 or 1;

any attempt to read past the last data-bit results in a run-time error.

%: this is the last instruction for each register machine program before the input data;

it halts the execution in two possible states: either successfully halts or it halts with an

under-read error.

A register machine program consists of a finite list of labeled instructions from the above

list, with the restriction that the halt instruction appears only once, as the last instruction

of the list.

To compute an upper bound on the complexity of a Π1–statement π we need to compute

the size in bits of the program Ππ, so we need to uniquely code in binary the programs for

U . To this aim we use a prefix-free coding as follows.

Table I enumerates the binary coding of special characters. For registers we use the

prefix-free regular code code1 = {0|x|1x | x ∈ {0, 1}∗}. The register names are chosen to

optimize the length of the program, i.e. the most frequent registers have the smallest code1

length.
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TABLE I. Binary encoding of special characters (instructions and comma); ε is the empty string.

special characters code instruction code

, ε + 111

& 01 ! 110

= 00 % 100

For non-negative integers we use the prefix-free regular code code2 = {1|x|0x | x ∈

{0, 1}∗}. The instructions are coded by self-delimiting binary strings as follows (see more

details in Refs.11–13):

(i) &R1,R2 is coded in two different ways, depending on R2 (we omit ε):

01code1(R1)codei(R2), where i = 1 if R2 is a register and i = 2 if R2 is a non-negative

integer.

(ii) +R1,R2 is coded in two different ways depending on R2: 111code1(R1)codei(R2), where

i = 1 if R2 is a register and i = 2 if R2 is a non-negative integer.

(iii) =R1,R2,R3 is coded in four different ways depending on the data types of R2 and R3:

00code1(R1)codei(R2)codej(R3), where i = 1 if R2 is a register and i = 2 if R2 is a

non-negative integer, j = 1 if R3 is a register and j = 2 if R3 is a non-negative integer.

(iv) !R1 is coded by 110code1(R1).

(v) % is coded by 100.

For example, Goldbach’s conjecture (included in Hilbert’s eighth problem14) states that

all positive even integers greater than two can be expressed as the sum of two primes. The

program ΠGoldbach listed in Table II gives the upper bound CU(Goldbach) ≤ 540 which

proves that the Goldbach conjecture is in the lowest class CU,1.

III. MAIN RESULTS

We start with a result relating Π1–statements and Hamiltonians.
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00: = a a 16 11: & d 0 22: = d 0 35 33: + g 2

01: & e 2 12: = a a 6 23: & i 0 34: = a a 17

02: & d 1 13: = d 0 c 24: & k h 35: + h 1

03: = a e c 14: + e 1 25: = k g 29 36: = a a 18

04: & d 0 15: = a a 2 26: + i 1 37: & d 0

05: & f e 16: & g 4 27: + k 1 38: %

06: = f a 13 17: & h 2 28: = a a 25

07: + f 1 18: = g h 38 29: & c 32

08: + d 1 19: & c 22 30: & a i

09: = d e 11 20: & a h 31: = a a 1

10: = a a 6 21: = a a 1 32: = d 0 35

TABLE II. Program ΠGoldbach for the Goldbach conjecture.

Theorem 1 Assume ZFC is arithmetically sound, i.e. every statement ZFC proves is true.

Then, to each Π1–statement π = ∀mPred(m) one can effectively construct in the formal

language of ZFC a Hamiltonian system Hπ such that ZFC proves that the system Hπ has a

Smale horseshoe iff ZFC proves π.

We denote by h and k the Hamiltonian for the two-dimensional system with a Smale

horseshoe as defined by Holmes and Marsden15 (their Example 4) and the Hamiltonian for

the free particle, respectively. Clearly, the systems h and k can be represented in the formal

language of ZFC. Define the Hamiltonian Hm
π as a linear combination of h, k:

Hm
π (q1, . . . , qn, p1, . . . , pn) = Pred(m) · h(q1, . . . , qn, p1, . . . , pn) (1)

+(1− Pred(m)) · k(q1, . . . , qn, p1, . . . , pn).

Fix a positive integer i. In view of (1), Hi
π can be represented in the formal language of

ZFC and Hi
π(q1, . . . , qn, p1, . . . , pn) = h(q1, . . . , qn, p1, . . . , pn) iff ZFC proves π. In case the

above equivalence holds true, Hi
π(q1, . . . , qn, p1, . . . , pn) = Hj

π(q1, . . . , qn, p1, . . . , pn), for all

non-negative integers i, j, hence we can name each Ht
π by Hπ.

We have shown that

6



ZFC proves π iff ZFC proves that Hπ has a Smale horseshoe,

hence ending the proof of Theorem 1.

If π is true but unprovable in ZFC, then the equality Hi
π(q1, . . . , qn, p1, . . . , pn) =

h(q1, . . . , qn, p1, . . . , pn) is true but unprovable in ZFC.

In case π is the Fermat’s last theorem, Theorem 1 is exactly the result proved8,9; our

direct proof does not need the machinery involving Richardson lemma used in Ref.8,9.

Theorem 1 can be applied to a variety of Π1–statements including Goldbach’s conjecture,

Riemann’s hypothesis, the four color theorem, and many others.

We address now the complexity issue: How difficult is it to prove in ZFC that the system

Hπ in Equation (1) is chaotic? Using the complexity CU we can show that Fermat’s last

theorem and Goldbach’s conjecture are in CU,1, the Riemann hypothesis is in CU,3, and the

four color theorem is in CU,4
13,16,17; their corresponding dynamical systems produced by The-

orem 1 have the property that the complexity of its chaoticity proof is in the corresponding

class.

As for every natural n there exists a natural mn such that CU,n ⊂ CU,mn
, it follows that,

according to CU , there exist arbitrarily complex Π1–statements; hence proving the chaoticity

of the system Hπ can be arbitrarily complex.

Finally, there are infinitely many true, but unprovable in ZFC, Π1–statements π18, such

that the corresponding systemsHi
π are chaotic but ZFC cannot prove their chaoticity. For ex-

ample, from the negation of the halting problem for U we get infinitely many Π1-statements

πx = “∀n (U(x) does not stop in time n)” which are undecidable in ZFC.

IV. COMPUTATIONAL CAPABILITIES OF CHAOTIC MOTION

One of the intriguing possibilities of the aforementioned equivalences between certain

statements in ZFC and chaotic motion is the hypothetical possibility to “decide” hard prob-

lems in ZFC or “perform incomputable tasks” by observing the corresponding chaos3,9,19–21.

Indeed, if such methods and procedures have an “effective” physical implementation, then,

strictly speaking, the Church-Turing thesis identifying the informal notion of computable

algorithm with Turing computability, or, equivalently, recursive functions, is too restricted

and has to be adapted to the physical capacities22–24 (for a converse viewpoint restricting

operations to strictly finitistic means, see Refs.25–27).
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It is rather intriguing that, at least in this respect, the situation resembles the famous

Einstein, Podolski and Rosen (EPR) argument28 for a possible “incompleteness” of quantum

mechanics. According to EPR, whereas quantum theory does not allow complementary

physical observables to simultaneously “exist,” experiment (augmented with counterfactual

reasoning) allows for such “elements of physical reality.”

In the case of chaotic systems, our present theory of computability, formalized by recursion

theory, does not allow the “execution” of certain “hard” tasks; but the equivalent chaotic

systems would perform just such tasks, sometimes with relative ease on the side of the

experimenter. One example of such seemingly mismatch — in the sense of EPR — of

computability theory and physical computation is the construction of “oracles producing

random bits,” as discussed in the next section.

V. POINCARÉ BOX AS PHYSICAL RANDOM NUMBER GENERATOR

Chaotic systems can be used as a physical device for incomputability. In the “extreme”

algorithmically incompressible case, a chaotic dynamical system can serve as a source of

random bits; i.e., as a physical random number generator (RNG). This RNG can be con-

ceptualized by enclosing a chaotic system in a “black box” with an output interface which

communicates the consecutive physical states of the chaotic evolution29 in a properly en-

coded symbolic form. In order for these, say, strings of bits, to be physically certified random,

it is necessary to ascertain chaoticity; a property which relates to the proofs of chaoticity

discussed above.

This scenario can be elucidated by considering the shift map σ (a form of generalized

shift studied by Moore6) which “pushes” up successive bits of the sequence s = 0.s1s2s3 · · ·;

i.e., σ(s) = 0.s2s3s4 · · ·, σ(σ(s)) = 0.s3s4s5 · · ·, and so on. Suppose one starts with an initial

“measurement” precision of, say, just one bit after the comma, indicated by a “window of

measurability;” all other information “beyond the first bit after the comma” is hidden to

the experimenter at this point. Consider an initial state represented by an algorithmically

random real s. At first the experimenter records the first position s1 of s, symbolized by

0.[[s1]]s2s3 · · ·, where the square brackets “[[ · · · ]]” indicate the boundaries of the exper-

imenter’s sliding “window of measurability.” Successive iterations of the shift map “bring

up” more and more bits of the initial sequence of s; i.e., σ(s) yields 0.s1[[s2]]s3s4 · · ·, σ(σ(s))
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yields 0.s1s2[[s3]]s4s5 · · ·, and in general σ(i)(s) yields 0. · · · si−1si[[si+1]]si+2si+3 · · · after i

iterations of the shift map. Thus effectively, the algorithmic information content of s “un-

folds” at a rate of one bit per time cycle. If s is algorithmically random, then (at least

ideally) the empirical recording of its successive bits generates a random sequence (in the

asymptotic limit).

It is not totally unreasonable to conjecture that, with respect to algorithmic (hence also

statistical) tests of randomness, Poincaré boxes cannot be differentiated from another type

of physical RNGs termed Born boxes, which are based on quantum indeterminism (e.g.,

photons impinging on beam splitters and detectors30–37). Considering the different physi-

cal origins of physical indeterminism exploited by the Poincaré and Born boxes — in the

first, classical case, indeterminism resides in the continuum, whereas in the second, quantum

case, in the postulated38–41 irreducible randomness of certain individual outcomes involving

photons — why should the two physical RNG’s perform equally from an algorithmic infor-

mation theoretic42,43 point of view? Because, one could argue, both would produce (in the

asymptotic regime) random strings with high probability.

The Poincare box derives its random behavior from a single, individual initial value

containing incompressible algorithmic information with probability one4,5, whereas the Born

box utilizes successive, independent ideal coin tosses. Whether or not these speculations are

justified or not only experiment can tell. So far, no empirical evidence either for or against

the conjectured equivalence of Poincaré and Born boxes exist.

It is not too difficult to “construct” a Poincaré box by utilizing a shift map which “pumps”

up the bits of the binary representation of the initial value by one bit per (discrete iteration)

cycle. Of course, assuring the physical representability of this extreme chaotic regime for

concrete classical chaotic systems, might turn out to be a “hard” task; as has been argued

above. With this proviso, and by further assuming that the initial value is some element

of the continuum (in ZFC the “selection” of an initial value is guaranteed by the Axiom of

Choice), the shift map is, at least asymptotically, capable of yielding a random number with

probability one.
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VI. SUMMARY AND OUTLOOK

We have argued that every Π1–statement π can be associated with a dynamical systemHπ

such that ZFC proves the chaoticity of Hπ iff ZFC proves π. Many “hard”problems, such as,

for example, the Riemann hypothesis and the four color theorem, are Π1–statements. The

computational method11–13 has been applied to Π1–statements, resulting in a complexity

measure for proving the chaoticity of some dynamical systems. Consequently, there are

dynamical systems for which the ZFC proofs of their chaoticity are arbitrarily complex

according to the above complexity measure. Furthermore, there are infinitely many chaotic

systems for which ZFC cannot prove their chaoticity.

One of the challenging conceptual questions which is motivated by these results is the

issue of relating physical entities to formal ones. In particular at stake is the Church-

Turing thesis, which is challenged from a classical physical perspective. As classical chaotic

motion seems to be capable to “perform” incomputable tasks — a criterion which might,

as we argue, be “hard” to certify for a wide variety of Hamiltonian systems, but which

nevertheless is a feasible scenario — it might not be too unreasonable to speculate that the

present formal theories of computability would have to be adapted in accordance with our

physical capabilities originating from chaotic motion.
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