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We propose to “boost” the speed of communication and computation
by immersing the computing environment into a medium whose index
of refraction is smaller than one, thereby trespassing the speed-of-light
barrier.
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The Church-Turing and the Cook-Karp theses, as well as other, more
general limits on computation, are under permanent “scrutiny” (cf., e.g.,
Ref. [9, p 11] or Ref. [11, p. 5]) by the physical sciences. Some recent
issues which have been raised comprise Zeno-squeezed accelerated time
scales [57, 26, 16, 34, 51] enabling the construction of “infinity machines”
capable of hypercomputation [10, 15, 36], counterfactual computation [32]
and cryptography [35] based on quantum counterfactuals [17, 56], as well as
the dissipation limits to computation [27]. Here we shall consider the possibil-
ity to speed up optical [8] computations and communication by transgressing
the speed of light barrier in vacuum. Note that, although the speed of light
barrier appears to be a fundamental limit for the transfer of “freely willable”
information [40], several ways for “signals” trespassing the relativistic light
cone [2], even to the extent of time travel [23, 33, 58, 12, 25], have been
proposed. There appears to be a consensus that, just as for quantum corre-
lations featuring (un)controllable non-locality [46]via outcome dependence
but parameter independence, “signal” signatures beyond the velocity of light
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limit [31] could be tolerated at the kinematical level [28] as long as they
are “benign” and thus incapable of rendering diagonalization-type [9, 48]
paradoxes. This means that no paradoxes of self-referentiality, such as the
“grandfather paradox” (e.g., by travelling back in time and killing one’s own
biological grandfather before the latter has met one’s grandmother), should
occur [5].

In what follows we propose to “boost” the speed of communication and
computation by “pushing” the computer into a medium whose index of refrac-
tion is smaller than one. The speed of communication by light signals varies
indirectly proportional to the index of refraction, differing greatly for vari-
ous forms of media, substrata or “ethers” susceptible of the traversal of light.
Quantum field theory allows the index of refraction to become smaller than
one, thereby formally indicating a speed of photons exceeding the classical
speed of light limit in vacuum.

How can one envisage such a computational substratum? One concrete
realization would be the construction of an universal optical computer based
on beam splitters [59] capable of rendering arbitrary discrete unitary transfor-
mations [41, 63, 50] immersed in a transparent medium occupied by charged
fermions. Note that, as optical computers are far more than just photons or
beams of light, a necessary requirement for any such computer to properly
function would be that the optical components of the computer, such as in
particular beam splitters and phase shifters, would work as expected in such
a medium.

“Diagrammatically speaking” [21, 44, 52], i.e., in terms of perturbative
quantum field theory, a photon, i.e., the “unit quantum of light” associated
with a particular mode of the electromagnetic field, travels through the vac-
uum ether medium [14] by polarizing it through partly “splitting up” into
an electron-positron pair and recombining. In solid state physics, this phe-
nomenon gives rise to lattice excitations calledphonons [49]. The electrons
and positrons are themselves subject to higher order radiative corrections
involving photons.

Thus, any change of vacuum polarization, such as finite boundary condi-
tions, or increased or decreased pair production, alters the susceptibility of the
vacuum ether medium for carrying electromagnetic waves, and thus results in
a change of the velocity of light. Historically, this effect has first been studied
for magnetic fields [18, 19, 1] and finite temperatures [22]. The first indication
of a vacuum polarization-induced index of refractionsmaller than one was
reported by Scharnhorst [42, 29, 43] and Barton [3, 4] in an attempt to utilize
the reduced vacuum polarization in the “Casimir vacuum” [30] between two
conducting parallel plates. More recently, trans-vacuum-speed metamateri-
als [60, 62, 53, 61, 47] as well as negative refractive indices in gyrotropically
magnetoelectric media [39] have been suggested. It would be interesting to
extend these calculations to the squeezed vacuum state by computing the
polarization in such an “exotic” vacuum [38].
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FIGURE 1
Lowest order vacuum polarization diagram.

One of the possibilities which have not been discussed so far is the immer-
sion of the computing environment into a vacuum ether medium “filled” with
electrons or positrons. In such an environment, the Pauli exclusion princi-
ple would “attenuate” pair creation, thereby reducing the polarization of the
medium, resulting in a reduced index of refraction as well as in an increase
of the velocity of light.

After regularization and renormalization, the lowest order change to the
radiative correction associated with the vacuum polarization (whose Feynman
diagram is depicted in Fig. 1) can be written as [37, 20, 44]

��µν(k2) = − (
gµνk2 − kµkν

) 2α
3π

log
εF
m , (1)

wherem stands for the electron rest mass andεF denotes the cutoff associated
with the filled electron or positron modes; the calculation assumedk2 < m.
Let εµ stand for the vacuum polarization. Then we can introduce an effective
mass term [45, 54, 55]

M(k) = εµ�µν(k)εν (2)

such that the eigenvalue equation is

k2 + M(k) = (k0)2, (3)

wherekµ = (k, k0 = ω); and

|k| ≈ ω − 1
2ω

M(k). (4)

Thus the index of refraction can be defined by

n(ω) = |k|
ω

≈ 1 − 1
2ω2 M(k). (5)
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Hence the change of the refractive index is given by

�n(ω) ≈ − α

3πω2 (εµkµ)2 log
εF
m . (6)

The group velocity is given by [43, Equ. (2)]vgr = c/ngr with ngr(ω) =
n(ω) + ω [∂n(ω)/∂ω], which, for transversal waves, turns out to ben(ω). As
a result, the speed of lightc/(1 − �n) ≈ c + �c is changed by�c = c�n.

Note that group velocities, like phase velocities and energy velocities, are
not in general signal velocities. Thus a group velocity exceeding the vacuum
speed of lightc does not contradict relativity [7, 13, 8].

Nevertheless, as has already pointed out, this effect can be used to “push”
the computer into a domain of faster-than-light computation; with the pos-
sibility to decrease its time cycles accordingly. One should keep in mind
that at present such a possibility merely remains a theoretical speculation;
this hypothetical character being shared with some relativistic “realizations”
of hypercomputers. Nevertheless it might be interesting to pursue the possi-
bilities related to temporal quantum field theoretical speedup further, for in
principle nothing prevents�n in Eq. (6) or in other “exotic” vacuum states
from approaching one, yielding an unbounded cycle speed, associated with
expanding memory requirements [6].

In summary we have discussed field theoretic options for the “speedup”
of communication and computation. These are based on the alteration of the
polarization of “exotic vacua” and the respective changes of the index of
refraction. The speed of light is modified in indirect proportion to the refrac-
tive index of the medium it is travelling through. Thus for materials with a
refractive index smaller than unity, light travels faster than it does in “normal”
vacuum whose index of refraction is associated with unity. Hence, optical
computers operating in such an “exotic” medium, if they existed, could com-
pute faster than computers in “normal” vacuum or ordinary materials which
have refractive indices equal to or greater than unity. Feasible realization
of universal computers utilizing this effect could employ generalized beam
splitters capable of realizing arbitrary discrete unitary operators.

We have discussed a general physical framework for “exotic” vacua with
indices of refraction strictly smaller than unity. One such vacuum state is
responsible for the hypothetical Scharnhorst effect, for which the polarizabil-
ity of the vacuum “medium” is effectively reduced by the boundary conditions
of the electromagnetic field between two conductors (e.g., parallel plates).
Another possibility which is introduced here is the occupancy of charged
fermionic, in particular electronic, states, which would partially inhibit the
pair production of fermion-antifermion (electron-positron) pairs contributing
to the vacuum polarization even in lowest nontrivial order of the perturba-
tion series. It should be emphasized that these findings do not represent the
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possibility to circumvent relativistic causality, nor are they inconsistent with
the present formalism of relativity theory or the theory of quantized fields.
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