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Abstract

As quantum parallelism allows the effective co-representation of classical mutually exclusive states, the

diagonalization method of classical recursion theory has to be modified. Quantum diagonalization involves

unitary operators whose eigenvalues are different from one.
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INTRODUCTION

The reasoning in formal logic and the theory of recursive functions and effective computabil-

ity [1–6], at least insofar as their applicability to worldly things is concerned [7], makes implicit

assumptions about the physical meaningfulness of the entities of discourse; e.g., their actual physi-

cal representability and operationalizability [8]. It is this isomorphism or correspondence between

the phenomena and theory and vice versa — postulated by the Church-Turing thesis [9] — which

confers power to the formal methods. Therefore, any finding in physics presents a challenge to

the formal sciences; at least insofar as they claim to be relevant to the physical universe, although

history shows that the basic postulates have to be re-considered very rarely.

For example, the fundamental atom of classical information, the bit, is usually assumed to be

in one of two possible mutually exclusive states, which can be represented by two distinct states of

a classical physical system. These issues have been extensively discussed in the context of energy

dissipation associated with certain logical operations and universal (ir)reversible computation [10–

13].

In general, all varieties of physical states, as well as their evolution and transformations,

are relevant for propositional logic as well as for a generalized theory of information. Quan-

tum logic [14], partial algebras [15, 16], empirical logic [17, 18] and continuous time computa-

tions [19] are endeavors in this direction. These states need not necessarily be mapped into or

bounded by classical information. Likewise, physical transformations and manipulations avail-

able, for instance, in quantum information and classical continuum theory, may differ from the

classical paper-and-pencil operations modeled by universal Turing machines. Hence, the computa-

tional methods available as “elementary operations” have to be adapted to cope with the additional

physical capabilities [20].

Indeed, in what follows it is argued that, as quantum theory offers nonclassical states and oper-

ators available in quantum information theory, several long-held assumptions on the character and

transformation of classical information have to be adapted. As a consequence, the formal tech-

niques in manipulating information in the theory of recursive functions and effective computability

have to be revised. Particular emphasis is given to undecidability and the diagonalization method.
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QUANTUM INFORMATION THEORY

As several fine presentations of quantum information and computation theory exist (cf.

Refs. [21–29] for a few of them), there is no need of an extended exposition. In what follows,

we shall mainly follow Mermin’s notation [29, 30]. For the representation of both a single clas-

sical and quantum bit, suppose a two-dimensional Hilbert space. (For physical purposes a linear

vector space endowed with a scalar product will be sufficient.) Let the superscript “T ” indicate

transposition, and let |0〉 ≡ (1,0)T and |1〉 ≡ (0,1)T be the orthogonal vector representations of

the classical states associated with “falsity” and “truth,” or “0” and “1,” respectively.

From the varieties of properties featured by quantum information, one is of particular impor-

tance for quantum recursion theory: the ability to co-represent classically distinct, contradictory

states of information via the generalized quantum bit state

|ψ〉= α0|0〉+α1|1〉 ≡

 α0

α1


 , (1)

with the normalization |α0|2 + |α1|2 = 1. This feature is also known as quantum parallelism,

alluding to the fact that n quantum bits can co-represent 2n classical mutually exclusive states
{|i1i2 · · · in〉 | i j ∈ {0,1}, j = 1, . . . ,n

}
of n classical bits.

As will be argued below, recursion theoretic diagonalization can be symbolized by the diagonal-

ization or “not” operator X =


 0 1

1 0


, transforming |0〉 into |1〉, and vice versa. The eigensystem

of the diagonalization operator X is given by the two 50:50 mixtures of |0〉 and |1〉 with the two

eigenvalues 1 and −1; i.e.,

X
1√
2

(|0〉± |1〉) =± 1√
2

(|0〉± |1〉) =±|ψ±〉. (2)

In particular, the state |ψ+〉 associated with the eigenvalue +1 is a fixed point of the operator X.

Note that, provided that |ψ〉 6∈ {|0〉, |1〉}, a quantum bit is not in a pure classical state “relative

to” the propositions corresponding to the projectors |0〈〉0| and |1〈〉1|. Any practical determination

of the quantum bit amounts to a measurement of the state “along” one context [31] or base, such as

the base “spanned” by {|0〉, |1〉}. Any such single measurement will be indeterministic (provided

that the basis does not coincide with {|ψ+〉, |ψ−〉}); in particular, |〈ψ±|0〉|2 = |〈ψ±|1〉|2 = 1/2.

That is, if the fixed point state and the measurement context mismatch, by Born’s postulate [32,

33], the outcome of a single measurement occurs indeterministically, unpredictably and at random.
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Hence, in terms of the quantum states |0〉 and |1〉 corresponding to the classical states, the fixed

point remains indeterminate.

In what follows it is argued that, due to the superposition principle, the quantum recursion

theoretic diagonalization method has to be reformulated as a fixed point argument. Application of

the diagonal operator X yields no reductio ad absurdum. Instead, undecidability is recovered as a

natural consequence of quantum coherence and of the unpredictability of certain quantum events.

DIAGONALIZATION

For comprehensive reviews of recursion theory and the diagonalization method the reader is

referred to Refs. [1–6]. Therefore, only a few hallmarks will be stated. As already pointed out by

Gödel in his classical paper on the incompleteness of arithmetic [34], the undecidability theorems

of formal logic [2] are based on semantical paradoxes such as the liar [35] or Richard’s paradox.

A proper translation of the semantic paradoxes into formal proofs results in the diagonalization

method. Diagonalization has apparently first been applied by Cantor to demonstrate the unde-

numerability of real numbers [36]. It has also been used by Turing for a proof of the recursive

undecidability of the halting problem [37].

A brief review of the classical algorithmic argument will be given first. Consider a universal

computer C. For the sake of contradiction, consider an arbitrary algorithm B(X) whose input is a

string of symbols X . Assume that there exists a “halting algorithm” HALT which is able to decide

whether B terminates on X or not. The domain of HALT is the set of legal programs. The range of

HALT are classical bits (classical case) and quantum bits (quantum mechanical case).

Using HALT(B(X)) we shall construct another deterministic computing agent A, which has as

input any effective program B and which proceeds as follows: Upon reading the program B as

input, A makes a copy of it. This can be readily achieved, since the program B is presented to A

in some encoded form pBq, i.e., as a string of symbols. In the next step, the agent uses the code

pBq as input string for B itself; i.e., A forms B(pBq), henceforth denoted by B(B). The agent now

hands B(B) over to its subroutine HALT. Then, A proceeds as follows: if HALT(B(B)) decides that

B(B) halts, then the agent A does not halt; this can for instance be realized by an infinite DO-loop;

if HALT(B(B)) decides that B(B) does not halt, then A halts.

The agent A will now be confronted with the following paradoxical task: take the own code as

input and proceed.
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Classical case

Assume that A is restricted to classical bits of information. To be more specific, assume that

HALT outputs the code of a classical bit as follows (↑ and ↓ stands for divergence and convergence,

respectively):

HALT(B(X)) =




|0〉 if B(X) ↑
|1〉 if B(X) ↓

. (3)

Then, whenever A(A) halts, HALT(A(A)) outputs |1〉 and forces A(A) not to halt. Conversely,

whenever A(A) does not halt, then HALT(A(A)) outputs |0〉 and steers A(A) into the halting mode.

In both cases one arrives at a complete contradiction. Classically, this contradiction can only be

consistently avoided by assuming the nonexistence of A and, since the only nontrivial feature of A

is the use of the peculiar halting algorithm HALT, the impossibility of any such halting algorithm.

Quantum mechanical case

As has been argued above, in quantum information theory a quantum bit may be in a linear

coherent superposition of the two classical states |0〉 and |1〉. Due to the superposition of classical

bit states, the usual reductio ad absurdum argument breaks down. Instead, diagonalization pro-

cedures in quantum information theory yield quantum bit solutions which are fixed points of the

associated unitary operators.

In what follows it will be demonstrated how the task of the agent A can be performed consis-

tently if A is allowed to process quantum information. To be more specific, assume that the output

of the hypothetical “halting algorithm” is a quantum bit

HALT(B(X)) = |ψ〉 . (4)

We may think of HALT(B(X)) as a universal computer C′ simulating C and containing a dedicated

halting bit, which it the output of C′ at every (discrete) time cycle. Initially (at time zero), this

halting bit is prepared to be a 50:50 mixture of the classical halting and non-halting states |0〉 and

|1〉 with equal phase; i.e., |ψ+〉. If later C′ finds that C converges (diverges) on B(X), then the

halting bit of C′ is set to the “classical” values |1〉 or |0〉.
The emergence of fixed points can be demonstrated by a simple example. Agent A’s diagonal-

ization task can be formalized as follows. Consider for the moment the action of diagonalization

on the classical bit states. (Since the quantum bit states are merely a linear coherent superposition
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thereof, the action of diagonalization on quantum bits is straightforward.) Diagonalization effec-

tively transforms the classical bit value |0〉 into |1〉 and vice versa. Recall that in equation (3), the

state |1〉 has been identified with the halting state and the state |0〉 with the non-halting state.

The evolution representing diagonalization (effectively, agent A’s task) can be expressed by the

unitary operator D as

D|0〉= |1〉 and D|1〉= |0〉 . (5)

Thus, D acts essentially as a not-gate corresponding to the operator X. In the above state basis, D

can be represented by

D = X =


 0 1

1 0


 . (6)

D will be called diagonalization operator, despite the fact that the only nonvanishing components

are off-diagonal.

As has been pointed out earlier, quantum information theory allows a linear coherent superpo-

sition |ψ〉 of the “classical” bit states |0〉 and |1〉. D has a fixed point at the quantum bit state

|ψ+〉=
1√
2

(|0〉+ |1〉)≡ 1√
2


 1

1


 . (7)

|ψ+〉 does not give rise to inconsistencies [38]: If agent A hands over the fixed point state |ψ+〉 to

the diagonalization operator D, the same state |ψ+〉 is recovered. Stated differently, as long as the

output of the “halting algorithm” to input A(A) is |ψ+〉, i.e., HALT(A(A)) = |ψ+〉, diagonalization

does not change it. Hence, even if the (classically) “paradoxical” construction of diagonalization

is maintained, quantum theory does not give rise to a paradox, because the quantum range of

solutions is larger than the classical one. Therefore, standard proofs of the recursive unsolvability

of the halting problem do not apply if agent A is allowed a quantum bit. The consequences for

quantum recursion theory are discussed below.

CONSEQUENCES FOR QUANTUM RECURSION THEORY

Several critical remarks are in order. It should be noted that the fixed point quantum bit “solu-

tion” of the above halting problem is of not much practical help. In particular, if one is interested

in the “classical” answer whether or not A(A) halts, then one ultimately has to perform an irre-

versible measurement on the fixed point state. This causes a state reduction into the classical states
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corresponding to |0〉 and |1〉. Any single measurement will yield an indeterministic result. There

is a 50:50 chance that the fixed point state will be either in |0〉 or |1〉, since as has been argued

before, |〈ψ+|0〉|2 = |〈ψ+|1〉|2 = 1/2. Thereby, classical undecidability is recovered.

Thus, as far as problem solving is concerned, classical bits are not much of an advance. If a

classical information is required, then quantum bits are not better than probabilistic knowledge.

With regards to the question of whether or not a computer halts, the “solution” is effectively equiv-

alent to the throwing of a fair coin [39]. Therefore, the advance of quantum recursion theory over

classical recursion theory is not so much classical problem solving but the consistent representa-

tion of statements which would give rise to classical paradoxes.

The above argument used the continuity of quantum bit states as compared to the two discrete

classical bit states for a construction of fixed points of the diagonalization operator. One could pro-

ceed a step further and allow nonclassical diagonalization procedures. Thereby, one could extend

diagonalization to the entire range of two-dimensional unitary transformations [40], which need

not have fixed points corresponding to eigenvalues of exactly one. Note that the general diagonal

form of finite-dimensional unitary transformations in matrix notation is diag(eiϕ1,eiϕ2 , . . . ,eiϕn);

i.e., the eigenvalues of a unitary operator are complex numbers of unit modulus (e.g., Ref. [41,

p. 39], or Ref. [42, p. 161]). Fixed points only occur if at least one of the phases ϕi, i∈ {1,2, . . . ,n}
is a multiple of 2π. In what follows, we shall study the physical realizability of general unitary

operators associated with generalized beam splitters [43–46]. We will be particularly interested

in those transformations whose spectra do not contain the eigenvalue one and thus do not allow a

fixed point eigenvector.

In what follows, lossless devices will be considered. In order to be able to realize a universal

unitary transformation in two-dimensional Hilbert space, one needs to consider gates with two in-

put und two output ports representing beam splitters and Mach-Zehnder interferometers equipped

with an appropriate number of phase shifters. For the sake of demonstration, consider the two

realizations depicted in Fig. 1. The elementary quantum interference device Tbs in Fig. 1a) is a

unit consisting of two phase shifters P1 and P2 in the input ports, followed by a beam splitter S,

which is followed by a phase shifter P3 in one of the output ports. The device can be quantum
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P3,ϕ

S(T )

|0〉 |0〉′

|1〉′|1〉

Tbs(ω,α,β,ϕ)

-

-

-

-

P4,ϕ
M

M

S1 S2

|0〉 |0〉′

|1〉′|1〉 c

b

TMZ(α,β,ω,ϕ)

-

-

-

-

P3,ω

a)

b)

P1,α+β

P1,α+β

P2,β

P2,β

FIG. 1: A universal quantum interference device operating on a qubit can be realized by a 4-port interferom-

eter with two input ports |0〉, |1〉 and two output ports |0〉′, |1〉′; a) realization by a single beam splitter S(T )

with variable transmission T and three phase shifters P1,P2,P3; b) realization by two 50:50 beam splitters

S1 and S2 and four phase shifters P1,P2,P3,P4.

mechanically represented by [47]

P1 : |0〉 → |0〉ei(α+β),

P2 : |1〉 → |1〉eiβ,

S : |0〉 → √
T |1′〉+ i

√
R |0′〉,

S : |1〉 → √
T |0′〉+ i

√
R |1′〉,

P3 : |0′〉 → |0′〉eiϕ,

(8)

where every reflection by a beam splitter S contributes a phase π/2 and thus a factor of eiπ/2 = i to

the state evolution. Transmitted beams remain unchanged; i.e., there are no phase changes. Global

phase shifts from mirror reflections are omitted. With
√

T (ω) = cosω and
√

R(ω) = sinω, the
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corresponding unitary evolution matrix is given by

Tbs(ω,α,β,ϕ) =


 i ei(α+β+ϕ) sinω ei(β+ϕ) cosω

ei(α+β) cosω i eiβ sinω


 . (9)

Alternatively, the action of a lossless beam splitter may be described by the matrix [54]

 i

√
R(ω)

√
T (ω)

√
T (ω) i

√
R(ω)


 =


 i sinω cosω

cosω i sinω


 .

A phase shifter in two-dimensional Hilbert space is represented by either diag
(
eiϕ,1

)
or

diag
(
1,eiϕ)

. The action of the entire device consisting of such elements is calculated by mul-

tiplying the matrices in reverse order in which the quanta pass these elements [48, 49]; i.e.,

Tbs(ω,α,β,ϕ) =


 eiϕ 0

0 1





 i sinω cosω

cosω i sinω





 ei(α+β) 0

0 1





 1 0

0 eiβ


 . (10)

The elementary quantum interference device TMZ depicted in Fig. 1b) is a Mach-Zehnder in-

terferometer with two input and output ports and four phase shifters. The process can be quantum

mechanically described by

P1 : |0〉 → |0〉ei(α+β),

P2 : |1〉 → |1〉eiβ,

S1 : |1〉 → (|b〉+ i |c〉)/√2,

S1 : |0〉 → (|c〉+ i |b〉)/√2,

P3 : |b〉 → |b〉eiω,

S2 : |b〉 → (|1′〉+ i |0′〉)/√2,

S2 : |c〉 → (|0′〉+ i |1′〉)/√2,

P4 : |0′〉 → |0′〉eiϕ.

(11)

The corresponding unitary evolution matrix is given by

TMZ(α,β,ω,ϕ) = i ei(β+ ω
2 )


 −ei(α+ϕ) sin ω

2 eiϕ cos ω
2

eiα cos ω
2 sin ω

2


 . (12)

Alternatively, TMZ can be computed by matrix multiplication; i.e.,

TMZ(α,β,ω,ϕ) =

i ei(β+ ω
2 )


 eiϕ 0

0 1


 1√

2


 i 1

1 i





 eiω 0

0 1


 1√

2


 i 1

1 i





 ei(α+β) 0

0 1





 1 0

0 eiβ


 .

(13)
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Both elementary quantum interference devices Tbs and TMZ are universal in the sense that every

unitary quantum evolution operator in two-dimensional Hilbert space

U2(ω,α,β,ϕ) = e−iβ


 eiα cosω −e−iϕ sinω

eiϕ sinω e−iα cosω


 , (14)

where −π ≤ β,ω ≤ π, − π
2 ≤ α,ϕ ≤ π

2 [40] corresponds to Tbs (ω′,α′,β′,ϕ′) and

TMZ (ω′′,α′′,β′′,ϕ′′), where ω,α,β,ϕ are arguments of the (double) primed parameters [46].

A typical example of a nonclassical operation on a quantum bit is the “square root of not” gate

(
√
not

√
not = X)

√
not =

1
2


 1+ i 1− i

1− i 1+ i


 . (15)

Although
√
not still has a eigenstate associated with a fixed point of unit eigenvalue, not all

of these unitary transformations have eigenvectors associated with eigenvalues one that can be

identified with fixed points. Indeed, only unitary transformations of the form

[U2(ω,α,β,ϕ)]−1 diag(1,eiλ)U2(ω,α,β,ϕ) =
 cosω2 + eiλ sinω2 −1+eiλ

2 e−i(α+ϕ) sin(2ω)
−1+eiλ

2 ei(α+ϕ) sin(2ω) eiλ cosω2 + sinω2


 (16)

have fixed points.

Applying nonclassical operations on quantum bits with no fixed points

D∗ = [U2(ω,α,β,ϕ)]−1 diag(eiµ,eiλ)U2(ω,α,β,ϕ) =
 eiµ cos(ω)2 + eiλ sin(ω)2 e−i(α+p)

2

(
eiλ− eiµ

)
sin(2ω)

ei(α+p)

2

(
eiλ− eiµ

)
sin(2ω) eiλ cos(ω)2 + eiµ sin(ω)2


 ,

(17)

with µ,λ 6= 2nπ, n ∈ N0 gives rise to eigenvectors which are not fixed points, but which acquire

nonvanishing phases µ,λ in the generalized diagonalization process.

SUMMARY

It has been argued that, because of quantum parallelism, i.e., the effective co-representation of

classical mutually exclusive states, the diagonalization method of classical recursion theory has to

be modified. Quantum diagonalization involves unitary operators whose eigenvalues carry phases

strictly different from multiples of 2π. The quantum fixed point “solutions” of halting problems
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can be 50:50 mixtures of the classical halting and nonhalting states, and therefore do not contribute

to classical deterministic solutions of the associated decision problems.

Another, less abstract, application for quantum information theory is the handling of inconsis-

tent information in databases. Thereby, two contradicting classical bits of information |0〉 and |1〉
are resolved, i.e., co-represented, by the quantum bit |ψ+〉. Throughout the rest of the computa-

tion the coherence is maintained. After the processing, the result is obtained by an irreversible

measurement. The processing of quantum bits, however, would require an exponential space over-

head on classical computers in classical bit base [10]. Thus, in order to remain tractable, the

corresponding quantum bits should be implemented on truly quantum universal computers.
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