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Abstract As quantum parallelism allows the effective co-representation of classical
mutually exclusive states, the diagonalization method of classical recursion theory has
to be modified. Quantum diagonalization involves unitary operators whose eigenvalues
are different from one.
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1 Introduction

The reasoning in formal logic and the theory of recursive functions and effective com-
putability [1–6], at least insofar as their applicability to worldly things is concerned [7],
makes implicit assumptions about the physical meaningfulness of the entities of dis-
course; e.g., their actual physical representability and operationalizability [8]. It is
this isomorphism or correspondence between the phenomena and theory and vice
versa—postulated by the Church-Turing thesis [9]—which confers power to the for-
mal methods. Therefore, any finding in physics presents a challenge to the formal
sciences; at least insofar as they claim to be relevant to the physical universe, although
history shows that the basic postulates have to be re-considered very rarely.

For example, the fundamental atom of classical information, the bit, is usually ass-
umed to be in one of two possible mutually exclusive states, which can be represented
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by two distinct states of a classical physical system. These issues have been exten-
sively discussed in the context of energy dissipation associated with certain logical
operations and universal (ir)reversible computation [10–13].

In general, all varieties of physical states, as well as their evolution and transfor-
mations, are relevant for propositional logic as well as for a generalized theory of
information. Quantum logic [14], partial algebras [15,16], empirical logic [17,18]
and continuous time computations [19] are endeavors in this direction. These states
need not necessarily be mapped into or bounded by classical information. Likewise,
physical transformations and manipulations available, for instance, in quantum infor-
mation and classical continuum theory, may differ from the classical paper-and-pencil
operations modeled by universal Turing machines. Hence, the computational methods
available as “elementary operations” have to be adapted to cope with the additional
physical capabilities [20].

Indeed, in what follows it is argued that, as quantum theory offers nonclassical states
and operators available in quantum information theory, several long-held assumptions
on the character and transformation of classical information have to be adapted. As a
consequence, the formal techniques in manipulating information in the theory of recur-
sive functions and effective computability have to be revised. Particular emphasis is
given to undecidability and the diagonalization method.

2 Quantum information theory

As several fine presentations of quantum information and computation theory exist
(cf. Refs. [21–29] for a few of them), there is no need of an extended exposition. In
what follows, we shall mainly follow Mermin’s notation [29,30]. For the represen-
tation of both a single classical and quantum bit, suppose a two-dimensional Hilbert
space. (For physical purposes a linear vector space endowed with a scalar product will
be sufficient.) Let the superscript T indicate transposition, and let |0〉 ≡ (1, 0)T and
|1〉 ≡ (0, 1)T be the orthogonal vector representations of the classical states associated
with “falsity” and “truth,” or “0” and “1,” respectively.

From the varieties of properties featured by quantum information, one is of partic-
ular importance for quantum recursion theory: the ability to co-represent classically
distinct, contradictory states of information via the generalized quantum bit state

|ψ〉 = α0|0〉 + α1|1〉 ≡
(
α0
α1

)
, (1)

with the normalization |α0|2 + |α1|2 = 1. This feature is also known as quantum par-
allelism, alluding to the fact that n quantum bits can co-represent 2n classical mutually
exclusive states

{|i1i2 · · · in〉 | i j ∈ {0, 1}, j = 1, . . . , n
}

of n classical bits.
As will be argued below, recursion theoretic diagonalization can be symbolized by

the diagonalization or “not” operator X =
(

0 1
1 0

)
, transforming |0〉 into |1〉, and vice

versa. The eigensystem of the diagonalization operator X is given by the two 50:50
mixtures of |0〉 and |1〉 with the two eigenvalues 1 and −1; i.e.,
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X
1√
2
(|0〉 ± |1〉) = ± 1√

2
(|0〉 ± |1〉) = ±|ψ±〉. (2)

In particular, the state |ψ+〉 associated with the eigenvalue +1 is a fixed point of the
operator X.

Note that, provided that |ψ〉 �∈ {|0〉, |1〉}, a quantum bit is not in a pure classical
state “relative to” the propositions corresponding to the projectors |0〉〈0| and |1〉〈1|.
Any practical determination of the quantum bit amounts to a measurement of the state
“along” one context [31] or base, such as the base “spanned” by {|0〉, |1〉}. Any such
single measurement will be indeterministic (provided that the basis does not coin-
cide with {|ψ+〉, |ψ−〉}); in particular, |〈ψ±|0〉|2 = |〈ψ±|1〉|2 = 1/2. That is, if the
fixed point state and the measurement context mismatch, by Born’s postulate [32,33],
the outcome of a single measurement occurs indeterministically, unpredictably and
at random. Hence, in terms of the quantum states |0〉 and |1〉 corresponding to the
classical states, the fixed point remains indeterminate.

In what follows it is argued that, due to the superposition principle, the quantum
recursion theoretic diagonalization method has to be reformulated as a fixed point
argument. Application of the diagonal operator X yields no reductio ad absurdum.
Instead, undecidability is recovered as a natural consequence of quantum coherence
and of the unpredictability of certain quantum events.

3 Diagonalization

For comprehensive reviews of recursion theory and the diagonalization method the
reader is referred to Refs. [1–6]. Therefore, only a few hallmarks will be stated. As
already pointed out by Gödel in his classical paper on the incompleteness of arith-
metic [34], the undecidability theorems of formal logic [2] are based on semantical
paradoxes such as the liar [35] or Richard’s paradox. A proper translation of the seman-
tic paradoxes into formal proofs results in the diagonalization method. Diagonalization
has apparently first been applied by Cantor to demonstrate the undenumerability of
real numbers [36]. It has also been used by Turing for a proof of the recursive unde-
cidability of the halting problem [37].

A brief review of the classical algorithmic argument will be given first. Consider a
universal computer C . For the sake of contradiction, consider an arbitrary algorithm
B(X) whose input is a string of symbols X . Assume that there exists a “halting algo-
rithm” HALT which is able to decide whether B terminates on X or not. The domain
of HALT is the set of legal programs. The range of HALT are classical bits (classical
case) and quantum bits (quantum mechanical case).

Using HALT(B(X)) we shall construct another deterministic computing agent A,
which has as input any effective program B and which proceeds as follows: Upon
reading the program B as input, A makes a copy of it. This can be readily achieved,
since the program B is presented to A in some encoded form �B�, i.e., as a string of
symbols. In the next step, the agent uses the code �B� as input string for B itself; i.e.,
A forms B(�B�), henceforth denoted by B(B). The agent now hands B(B) over to
its subroutine HALT. Then, A proceeds as follows: if HALT(B(B)) decides that B(B)
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halts, then the agent A does not halt; this can for instance be realized by an infinite
DO-loop; if HALT(B(B)) decides that B(B) does not halt, then A halts.

The agent A will now be confronted with the following paradoxical task: take the
own code as input and proceed.

3.1 Classical case

Assume that A is restricted to classical bits of information. To be more specific, assume
that HALT outputs the code of a classical bit as follows (↑ and ↓ stands for divergence
and convergence, respectively):

HALT(B(X)) =
{ |0〉 if B(X) ↑

|1〉 if B(X) ↓ . (3)

Then, whenever A(A) halts, HALT(A(A)) outputs |1〉 and forces A(A) not to halt.
Conversely, whenever A(A) does not halt, then HALT(A(A)) outputs |0〉 and steers
A(A) into the halting mode. In both cases one arrives at a complete contradiction.
Classically, this contradiction can only be consistently avoided by assuming the non-
existence of A and, since the only nontrivial feature of A is the use of the peculiar
halting algorithm HALT, the impossibility of any such halting algorithm.

3.2 Quantum mechanical case

As has been argued above, in quantum information theory a quantum bit may be in a
linear coherent superposition of the two classical states |0〉 and |1〉. Due to the super-
position of classical bit states, the usual reductio ad absurdum argument breaks down.
Instead, diagonalization procedures in quantum information theory yield quantum bit
solutions which are fixed points of the associated unitary operators.

In what follows it will be demonstrated how the task of the agent A can be performed
consistently if A is allowed to process quantum information. To be more specific,
assume that the output of the hypothetical “halting algorithm” is a quantum bit

HALT(B(X)) = |ψ〉. (4)

We may think of HALT(B(X)) as a universal computer C ′ simulating C ′ and contain-
ing a dedicated halting bit, which it the output of C ′ at every (discrete) time cycle.
Initially (at time zero), this halting bit is prepared to be a 50:50 mixture of the classical
halting and non-halting states |0〉 and |1〉 with equal phase; i.e., |ψ+〉. If later C ′ finds
that C converges (diverges) on B(X), then the halting bit of C ′ is set to the “classical”
values |1〉 or |0〉.

The emergence of fixed points can be demonstrated by a simple example. Agent A’s
diagonalization task can be formalized as follows. Consider for the moment the action
of diagonalization on the classical bit states. (Since the quantum bit states are merely
a linear coherent superposition thereof, the action of diagonalization on quantum bits
is straightforward.) Diagonalization effectively transforms the classical bit value |0〉
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into |1〉 and vice versa. Recall that in equation (3), the state |1〉 has been identified
with the halting state and the state |0〉 with the non-halting state.

The evolution representing diagonalization (effectively, agent A’s task) can be
expressed by the unitary operator D as

D|0〉 = |1〉 and D|1〉 = |0〉. (5)

Thus, D acts essentially as a not-gate corresponding to the operator X. In the above
state basis, D can be represented by

D = X =
(

0 1
1 0

)
. (6)

D will be called diagonalization operator, despite the fact that the only nonvanishing
components are off-diagonal.

As has been pointed out earlier, quantum information theory allows a linear coher-
ent superposition |ψ〉 of the “classical” bit states |0〉 and |1〉. D has a fixed point at the
quantum bit state

|ψ+〉 = 1√
2
(|0〉 + |1〉) ≡ 1√

2

(
1
1

)
. (7)

|ψ+〉 does not give rise to inconsistencies [38]. If agent A hands over the fixed point
state |ψ+〉 to the diagonalization operator D, the same state |ψ+〉 is recovered. Stated
differently, as long as the output of the “halting algorithm” to input A(A) is |ψ+〉, i.e.,
HALT(A(A)) = |ψ+〉, diagonalization does not change it. Hence, even if the (clas-
sically) “paradoxical” construction of diagonalization is maintained, quantum theory
does not give rise to a paradox, because the quantum range of solutions is larger than
the classical one. Therefore, standard proofs of the recursive unsolvability of the halt-
ing problem do not apply if agent A is allowed a quantum bit. The consequences for
quantum recursion theory are discussed below.

4 Consequences for quantum recursion theory

Several critical remarks are in order. It should be noted that the fixed point quan-
tum bit “solution” of the above halting problem is of not much practical help. In
particular, if one is interested in the “classical” answer whether or not A(A) halts,
then one ultimately has to perform an irreversible measurement on the fixed point
state. This causes a state reduction into the classical states corresponding to |0〉
and |1〉. Any single measurement will yield an indeterministic result. There is a
50:50 chance that the fixed point state will be either in |0〉 or |1〉, since as has been
argued before, |〈ψ+|0〉|2 = |〈ψ+|1〉|2 = 1/2. Thereby, classical undecidability is
recovered.
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Thus, as far as problem solving is concerned, classical bits are not much of an
advance. If a classical information is required, then quantum bits are not better than
probabilistic knowledge. With regards to the question of whether or not a computer
halts, the “solution” is effectively equivalent to the throwing of a fair coin [39]. There-
fore, the advance of quantum recursion theory over classical recursion theory is not so
much classical problem solving but the consistent representation of statements which
would give rise to classical paradoxes.

The above argument used the continuity of quantum bit states as compared to the
two discrete classical bit states for a construction of fixed points of the diagonalization
operator. One could proceed a step further and allow nonclassical diagonalization pro-
cedures. Thereby, one could extend diagonalization to the entire range of two-dimen-
sional unitary transformations [40], which need not have fixed points corresponding
to eigenvalues of exactly one. Note that the general diagonal form of finite-dimen-
sional unitary transformations in matrix notation is diag(eiϕ1 , eiϕ2 , . . . , eiϕn ); i.e., the
eigenvalues of a unitary operator are complex numbers of unit modulus (e.g., Ref. [41,
p. 39], or Ref. [42, p. 161]). Fixed points only occur if at least one of the phases ϕi ,
i ∈ {1, 2, . . . , n} is a multiple of 2π . In what follows, we shall study the physical
realizability of general unitary operators associated with generalized beam splitters
[43–46]. We will be particularly interested in those transformations whose spec-
tra do not contain the eigenvalue one and thus do not allow a fixed point eigen-
vector.

In what follows, lossless devices will be considered. In order to be able to real-
ize a universal unitary transformation in two-dimensional Hilbert space, one needs to
consider gates with two input und two output ports representing beam splitters and
Mach-Zehnder interferometers equipped with an appropriate number of phase shift-
ers. For the sake of demonstration, consider the two realizations depicted in Fig. 1.
The elementary quantum interference device Tbs in Fig. 1a is a unit consisting of two
phase shifters P1 and P2 in the input ports, followed by a beam splitter S, which is
followed by a phase shifter P3 in one of the output ports. The device can be quantum
mechanically represented by [47]

P1 : |0〉 → |0〉ei(α+β),
P2 : |1〉 → |1〉eiβ,

S : |0〉 → √
T |1′〉 + i

√
R|0′〉,

S : |1〉 → √
T |0′〉 + i

√
R|1′〉,

P3 : |0′〉 → |0′〉eiϕ,

(8)

where every reflection by a beam splitter S contributes a phase π/2 and thus a factor
of eiπ/2 = i to the state evolution. Transmitted beams remain unchanged; i.e., there
are no phase changes. Global phase shifts from mirror reflections are omitted. With√

T (ω) = cosω and
√

R(ω) = sinω, the corresponding unitary evolution matrix is
given by

Tbs(ω, α, β, ϕ) =
(

iei(α+β+ϕ) sinω ei(β+ϕ) cosω
ei(α+β) cosω ieiβ sinω

)
. (9)
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Fig. 1 A universal quantum
interference device operating on
a qubit can be realized by a
4-port interferometer with two
input ports |0〉, |1〉 and two
output ports |0〉′, |1〉′; a
realization by a single beam
splitter S(T ) with variable
transmission T and three phase
shifters P1, P2, P3; b realization
by two 50:50 beam splitters S1
and S2 and four phase shifters
P1, P2, P3, P4 (a)

(b)

Alternatively, the action of a lossless beam splitter may be described by the matrix1

(
i
√

R(ω)
√

T (ω)√
T (ω) i

√
R(ω)

)
=

(
i sinω cosω
cosω i sinω

)
.

A phase shifter in two-dimensional Hilbert space is represented by either diag
(
eiϕ, 1

)
or diag

(
1, eiϕ

)
. The action of the entire device consisting of such elements is cal-

culated by multiplying the matrices in reverse order in which the quanta pass these
elements [48,49]; i.e.,

Tbs(ω, α, β, ϕ) =
(

eiϕ 0
0 1

) (
i sinω cosω
cosω i sinω

) (
ei(α+β) 0

0 1

)(
1 0
0 eiβ

)
. (10)

The elementary quantum interference device TM Z depicted in Fig. 1b is a Mach-
Zehnder interferometer with two input and output ports and four phase shifters. The
process can be quantum mechanically described by

1 The standard labeling of the input and output ports are interchanged, therefore sine and cosine are
exchanged in the transition matrix.
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P1 : |0〉 → |0〉ei(α+β),
P2 : |1〉 → |1〉eiβ,

S1 : |1〉 → (|b〉 + i |c〉)/√2,
S1 : |0〉 → (|c〉 + i |b〉)/√2,
P3 : |b〉 → |b〉eiω,

S2 : |b〉 → (|1′〉 + i |0′〉)/√2,
S2 : |c〉 → (|0′〉 + i |1′〉)/√2,
P4 : |0′〉 → |0′〉eiϕ.

(11)

The corresponding unitary evolution matrix is given by

TM Z (α, β, ω, ϕ) = iei(β+ ω
2 )

(−ei(α+ϕ) sin ω
2 eiϕ cos ω2

eiα cos ω2 sin ω
2

)
. (12)

Alternatively, TM Z can be computed by matrix multiplication; i.e.,

TM Z (α, β, ω, ϕ) = iei(β+ ω
2 )

(
eiϕ 0
0 1

)
1√
2

(
i 1
1 i

) (
eiω 0
0 1

)

× 1√
2

(
i 1
1 i

) (
ei(α+β) 0

0 1

) (
1 0
0 eiβ

)
.

(13)

Both elementary quantum interference devices Tbs and TM Z are universal in the sense
that every unitary quantum evolution operator in two-dimensional Hilbert space

U2(ω, α, β, ϕ) = e−iβ
(

eiα cosω −e−iϕ sinω
eiϕ sinω e−iα cosω

)
, (14)

where −π ≤ β, ω ≤ π , −π
2 ≤ α, ϕ ≤ π

2 [40] corresponds to Tbs (
ω′, α′, β ′, ϕ′)

and TM Z (
ω′′, α′′, β ′′, ϕ′′), where ω, α, β, ϕ are arguments of the (double) primed

parameters [46].
A typical example of a nonclassical operation on a quantum bit is the “square root

of not” gate (
√
not

√
not = X)

√
not = 1

2

(
1 + i 1 − i
1 − i 1 + i

)
. (15)

Although
√
not still has a eigenstate associated with a fixed point of unit eigenvalue,

not all of these unitary transformations have eigenvectors associated with eigenvalues
one that can be identified with fixed points. Indeed, only unitary transformations of
the form

[U2(ω, α, β, ϕ)]−1diag(1, eiλ)U2(ω, α, β, ϕ)

=
(

cosω2 + eiλ sinω2 −1+eiλ

2 e−i(α+ϕ) sin(2ω)
−1+eiλ

2 ei(α+ϕ) sin(2ω) eiλcosω2 + sinω2

)
(16)

have fixed points.
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Applying nonclassical operations on quantum bits with no fixed points

D∗ = [U2(ω, α, β, ϕ)]−1diag(eiµ, eiλ)U2(ω, α, β, ϕ)

=
(

eiµ cos(ω)2 + eiλ sin(ω)2 e−i(α+p)

2

(
eiλ − eiµ

)
sin(2ω)

ei(α+p)

2

(
eiλ − eiµ

)
sin(2ω) eiλ cos(ω)2 + eiµ sin(ω)2

)
,

(17)

with µ, λ �= 2nπ , n ∈ N0 gives rise to eigenvectors which are not fixed points, but
which acquire nonvanishing phases µ, λ in the generalized diagonalization process.

5 Summary

It has been argued that, because of quantum parallelism, i.e., the effective co-represen-
tation of classical mutually exclusive states, the diagonalization method of classical
recursion theory has to be modified. Quantum diagonalization involves unitary oper-
ators whose eigenvalues carry phases strictly different from multiples of 2π . The
quantum fixed point “solutions” of halting problems can be 50:50 mixtures of the
classical halting and nonhalting states, and therefore do not contribute to classical
deterministic solutions of the associated decision problems.

Another, less abstract, application for quantum information theory is the handling
of inconsistent information in databases. Thereby, two contradicting classical bits of
information |0〉 and |1〉 are resolved, i.e., co-represented, by the quantum bit |ψ+〉.
Throughout the rest of the computation the coherence is maintained. After the process-
ing, the result is obtained by an irreversible measurement. The processing of quantum
bits, however, would require an exponential space overhead on classical computers in
classical bit base [10]. Thus, in order to remain tractable, the corresponding quantum
bits should be implemented on truly quantum universal computers.
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