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We propose three criteria for the generation of random digital strings from quantum beam splitters: �i� three
or more mutually exclusive outcomes corresponding to the invocation of three- and higher-dimensional Hilbert
spaces, �ii� the mandatory use of pure states in conjugated bases for preparation and detection, and �iii� the use
of entangled singlet �unique� states for elimination of bias.
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Quantum random-number generators are important for
quantum-information processing as they are likely to be one
of the first technologies applied for various physical and
commercial applications. They also serve as components of
other quantum devices for quantum key distribution and ex-
periments testing and utilizing quantum nonlocality.

Randomness is a notorious property, both from theoretical
and practical points of view. It is commonly accepted that
there is a satisfactory definition �1� of infinite random se-
quences in terms of algorithmic incompressibility �2� as well
as of the equivalent statistical tests �3�. Besides the obvious
fact that all computable and physically operational entities
are limited to finite objects and methods, algorithmic pseu-
dorandom generators suffer from von Neumann’s verdict that
�4� “anyone who considers arithmetical methods of produc-
ing random digits is, of course, in a state of sin.” The halting
probability � �5� shares three perplexing properties: it is
computably enumerable �computable in a weak sense�, prov-
able random �which implies that � is noncomputable�, as
well as infinitely knowledgeable in its role as a “rosetta
stone” for all decision problems encodable as halting prob-
lems �1�. A few of its starting bits have been computed �6�,
yet due to its randomness only finitely many bits of this
number can ever be computed.

From the numerous random-number generators based on
physical processes �cf. Refs. �7–12� to name a few�, the use
of single photons �or other quanta such as neutrons� sub-
jected to beam splitters appears particularly promising
�13–16� for the following reasons: �i� due to �ideally� single-
photon events, the physical systems are “elementary;” �ii�
they can be controlled to a great degree; and �iii� they can be
certified to be random relative to the postulates of quantum
theory �17�.

Three features of quantum theory directly relate to ran-
dom sequences generated from beam splitter experiments: �i�
the randomness of individual events �cf. Ref. �18�, p. 866
and Ref. �19�, p. 804��; �ii� complementarity ��20�, p. 7�; and
�iii� value indefiniteness, i.e., the absence of two-valued
states interpretable as “global” �i.e., valid on all observables�
truth functions �21�. In order to fully implement these quan-
tum features, we propose three improvements to existing
protocols �13–16,22–24�.

The first criterion ensures that the quantum random-

number generators can be certified to be subjected to quan-
tum value indefiniteness. A necessary condition for this to
apply is the possibility of three or more mutually exclusive
outcomes in measurements of single quanta. Formally, this is
due to the fact that violations of Bell-type inequalities, as
well as proofs of Gleason’s and Kochen-Specker-type theo-
rems are only realizable �25� in three- and higher-
dimensional Hilbert spaces. Only from three-dimensional
vector space onward it is possible to nontrivially intercon-
nect bases through one �or up to n−2 for n-dimensional Hil-
bert space� common base element�s�. This can be explicitly
demonstrated by certain, even dense �26–28�, “dilutions” of
bases, which break up the possibility to interconnect, thus
allowing value definiteness. In more operational terms, if
some “exotic” scenarios �e.g., Refs. �29,30�� are excluded,
the violation of Bell-type inequalities for two two-state par-
ticles �corresponding to two outcomes on each side� is a
sufficient criterion for quantum value indefiniteness.

Of course, one could argue that protocols based on two
outcomes are still protected by quantum complementarity,
and the full range of quantum indeterminism, in particular
quantum value indefiniteness, is not needed. There is also the
possibility that the Born rule might be derived through some
other argument �possibly from another set of axioms� than
Gleason’s theorem �31–34�. However, there exist sufficiently
many two-valued states on propositional structures with two
outcomes to allow for a homeomorphic embedding of this
structure into a classical Boolean algebra. In any case, it
appears prudent to use all the “mind-boggling” features of
quantum mechanics against cryptananalytic attacks on some
quantum-generated sequence.

The resulting trivalent or multivalued sequence can be
easily “downgraded” or “translated” to binary sequences
through elimination or identification without loss of random-
ness: systematically eliminating n−2 symbol�s� will trans-
form a random sequence on an alphabet with n�3 symbols
into a random sequence on an alphabet with two symbols �1�.

The second criterion proposes the mandatory use of pure
states from maximally conjugated bases for preparation and
detection. This requirement deals with the single-particle
source of quantum random-number generators. Indeed, many
two-particle experiments have been using this criterion al-
ready, as full tomography is performed to characterize the
state as completely as possible. These experiments use a
�Bell� state which is as pure and maximally entangled as
operationally feasible; quite often they produce the singlet
Bell state �which, due to technical issues related to other*svozil@tuwien.ac.at; http://tph.tuwien.ac.at/~svozil
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degrees of freedom, can never be ideally pure�. Tomography
is used to characterize the state and hence certify the ran-
domness of outcomes. Hence in this sense and in these ex-
periments, the criterion is already implicitly implemented.

Although it is generally believed that mixed �nonpure�
quantum states can be “produced” and operationalized “for
all practical purposes,” one might cautiously argue that this
may actually be a subjective statement on behalf of the ob-
server: whereas the experimenter might “pretend” that the
exact state leaving the particle source is unknown, it might
still be possible to conceive of the state to be in some, albeit
unknown but not principally unknowable, unique pure state.
This is related to the question of whether or not mixed states
should be thought of as merely subjective constructions
which even in the epistemic view—as the wave function �the
quantum state� representing a catalog of expectations �35�—
represent only certain partial incomplete representations of
systems which might be completely defined by a single
unique context.

Even if one is unwilling to accept these principal con-
cerns, it remains prudent not to expose the protocols for gen-
erating quantum randomness to the possibility of hidden
regularities of the source. After all, beam splitters are just
one-to-one bijective devices representable by reversible uni-
tary operators �36–38�—a fact which can be seen by recom-
bining the two paths by a second beam splitter in a Mach-
Zender interferometer, thereby recovering the original signal.
Thus, in order to assure quantum randomness, the beam
splitter should not be considered as an isolated element but
has to be examined in combination with the source. In ac-
cordance with this principle, a mismatch between state
preparation and measurement guarantees that quantum
complementarity ensures the indeterministic outcome. This
can, for instance, be implemented by preparing the single
particle in a pure state which corresponds to an element of a
certain basis and then measuring it in a different basis, in
which the original state is in a coherent superposition of
more than one states �cf. Ref. �13� and the first protocol
using beam splitting polarizers in Ref. �15��.

Third and finally, in order to eliminate any possible bias
�for some “classical” methods to eliminate bias, we refer to
Refs. �39–42��, we propose to utilize Einstein-Podolsky-
Rosen-type measurements of two quanta in a unique en-
tangled state. Any state satisfying the uniqueness property
�43� in at least two directions, such as the singlet states
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could be used for this purpose. In that way, the outcome of

one particle can be combined with the outcome of the other
particle to eliminate bias. Again, it should be kept in mind
that physical realizations of this protocol can never be made
ideal and necessarily suffer from, for instance, the nonideal
behavior of the beam splitters.

For the sake of demonstration, suppose Alice and Bob
share successive pairs of quanta in the singlet Bell state
1
�2
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2 �−�− 1
2 , 1

2 ��. Denote Alices’s and Bob’s outcomes in
the jth measurement by aj and bj, with the coding aj ,bj
� �0,1	, respectively. Using XOR operations on their com-
bined results by a product mod 2 of aj and bj, i.e., by defin-
ing sj =aj � bj =ajbj mod 2, yields a totally unbiased se-
quence sj of bits. Remarkably, as the state guarantees a 50:50
occurrence of 0’s and 1’s on either side, the associated bases
of Alice and Bob need not even be maximally “apart:” one
outcome on Alice’s side can be thought of as serving as
“one-time pad” in encrypting the other outcome on Bob’s
side, and vice versa. Again, this method will be as good as
the entangled particle source. In order to eliminate causal
influences, the events recorded by Alice and Bob should be
separated by strict Einstein locality conditions �44,45�, al-
though separating the particles will be experimentally chal-
lenging.

Alternatively, in an adaptive “delayed choice” experiment
the outcome on Alice’s side could be transferred to Bob, who
adjusts his experiment �e.g., by changing the direction of
spin-state measurements� according to Alice’s input �46�.
This method resembles the previously implemented self-
calibration techniques utilizing coincidence measurements
�22�, entropy measures �24�, and iterative sampling �23�.
Whether or not it could also be used for classical angular-
momentum zero states “exploding” into two parts �47� re-
mains unknown.

In summary we have argued that the present protocols for
generating quantum random sequences with beam splitters
should be improved to be certifiable against value definite-
ness and hidden bias of the source. We have also proposed a
procedure to eliminate bias by using one particle of a singlet
in an Einstein-Podolsky-Rosen configuration as a one-time
pad for the other particle.
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