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Proposed direct test of a certain type of noncontextuality in quantum mechanics
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The noncontextuality of quantum mechanics can be directly tested by measuring two entangled particles
with more than two outcomes per particle. The two associated contexts are “interlinked” by common

observables.
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Quantum value indefiniteness [1] refers to the impossibil-
ity of a consistent coexistence of certain complementary
operationally incompatible quantum observables. It is
inferred from three sources: (i) from quantum violations
of constraints on classical probability distributions termed
“conditions of possible experience” by Boole [2], also
known as the Boole-Bell-type inequalities [3], (ii) from the
Kochen-Specker theorem [4-6], as well as (iii) from the
Greenberger-Horne-Zeilinger [7,8] theorem. Formally, these
results are related to the “scarcity” or even total absence of
two-valued states identifiable as (classical) truth assignments
on the entire range of quantum observables. In what follows,
quantum contextuality [9-13] will be identified with the as-
sertion that the result of a measurement depends on what
other observables are comeasured alongside of it. It is one
conceivable (but not necessary [14]) quasiclassical interpre-
tation of quantum value indefiniteness, thereby counterfactu-
ally maintaining the “physical existence” of the full domain
of possible physical observables.

There exist other notions of contextuality based upon vio-
lations of some bounds on or conditions imposed by classical
probabilities. In their extreme form, these amount to all-or-
nothing—type contradictions between noncontextual hidden
variables and quantum mechanics. The corresponding ex-
perimental tests indicate the occurrence of this type of quan-
tum contextuality [15-23]. These findings utilize subsequent
measurements of quantum observables contributing to a con-
tradiction with their classical counterparts, but they have no
direct bearing on the experiments proposed here which aim
at testing another, more direct form of quantum contextual-
ity.

A quantum mechanical context [13] is a “maximal collec-
tion of comeasurable observables” within the nondistributive
structure of quantum propositions. It can be formalized by a
single maximal self-adjoint operator, such that every collec-
tion of mutually compatible comeasurable operators (such as
projections corresponding to yes—no propositions) are func-
tions thereof [[24], Sec. 84].

Different contexts can be interlinked at one or more com-
mon observable(s) whose Hilbert-space representation is
identical and independent of the contexts they belong to. The
context independence of the representation of observables by
operators (e.g., projectors) in Hilbert space suggests that
quantum contextuality, if it exists, manifests itself in random
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and uncontrollable single-particle outcomes. A necessary
condition for the interlinking of two or more contexts by link
observable(s) is the requirement that the dimensionality of
the Hilbert space must exceed two since for lower dimen-
sional Hilbert spaces the maximal operators “decay” into
separate isolated “trivial” Boolean sublogics without any
common observable. This is also the reason for similar di-
mensional conditions on the theorems by Gleason, as well as
by Kochen and Specker.

In what follows we propose an experiment capable of
directly testing the contextuality hypothesis via counterfac-
tual elements of physical reality. Indeed, counterfactual rea-
soning might be considered less desirable than direct mea-
surements as it involves an additional logical inference step
rather than a straight empirical finding.

In the proposed experiment, two different contexts or,
equivalently, two noncommuting maximal observables are
simultaneously measured on a pair of spin-one particles in a
singlet state [11,25,26]. The contexts are fine tuned to allow
a common single observable interlinking them. Although the
proposal possesses some conceptual similarities to Einstein-
Podolsky-Rosen type experiments, the quantum states as
well as the structure of the observables are different.

We shall first consider the contexts originally proposed by
Kochen and Specker [[4], pp. 71-73], referring to the change
in the energy of the lowest orbital state of orthohelium re-
sulting from the application of a small electric field with
rhombic symmetry. The terms Kochen-Specker contexts and
(maximal) Kochen-Specker operators will be used synony-
mously. More explicitly, the maximal Kochen-Specker op-
erators associated with this link configuration can be con-
structed from the spin-one observables (e.g., Refs. [27,28])
in arbitrary directions measured in spherical coordinates
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where 0= = 7 stands for the polar angle in the x-z plane
taken from the z axis, and 0= ¢ <27 is the azimuthal angle
in the x-y plane taken from the x axis. The orthonormalized
eigenvectors associated with the eigenvalues +1, 0, —1 of
J(6,¢) in Eq. (1) are
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FIG. 1. (Color online) Diagrammatical representation of two
interlinked Kochen-Specker contexts: Greechie (orthogonality) dia-
gram representing two tripods with a common leg: points stand for
individual basis vectors and entire contexts—in this case the one-
dimensional linear subspaces spanned by the vectors of the orthogo-
nal tripods—are drawn as smooth curves.
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where . and &, stand for arbitrary phases.
For real a# 8+ y# «, the maximal Kochen and Specker
operators [4] are defined by
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Their common spectrum of eigenvalues is «, 3, and vy, cor-
responding to the eigenvectors (0,1,0), (1,0,1), (=1,0,1) of
Cks and (0,1,0), (-i,0,1), (i,0,1) of Ckg, respectively. The
resulting orthogonality structure of propositions is depicted
in Fig. 1.

In order to be able to use the type of counterfactual
inference employed by an Einstein-Podolsky-Rosen setup,
a multipartite quantum state has to be chosen which satis-
fies the uniqueness property [29] with respect to the two
Kochen-Specker contexts such that knowledge of a
measurement outcome of one particle entails the certainty
that, if this observable were measured on the other particle(s)
as well, the outcome of the measurement would be a unique
function of the outcome of the measurement actually per-
formed. Consider the two spin-one particle singlet state
@)= (1/13)(=[00)+|—+)+|+-)) and identify with the spin
states the directions in Hilbert space according to Egs. (2);
ie., with |+)=(1,0,0), |0)=(0,1,0), and |-)=(0,0,1);
hence in the Kronecker product representation,
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=(1/+3)(0,0,1,0,-1,0,1,0,0). This singlet state is form
invariant under spatial rotations (but not under all unitary
transformations [28]) and satisfies the uniqueness property
(see below), just as the ordinary Bell singlet state of two
spin-one-half quanta (we cannot use these because they are
limited to 2 X 2 dimensions, with merely two dimensions per
quantum). Hence, it is possible to employ a similar counter-
factual argument and establish two elements of physical re-
ality according to the Einstein-Podolsky-Rosen criterion for
the two interlinked Kochen-Specker contexts Cgg as well as
Cks-

When combined with the singlet state |¢,), two “collin-
ear” Kochen-Specker contexts yield

Tr{|¢s><¢x|[cl(5(a7189 Y) ® CKS(5’87 g)]}

=Tr{| oo [ Cks(a. B,Y) ® Cxs(8,8,0)1}
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As a consequence, in this configuration the uniqueness prop-
erty manifests itself by the unique joint occurrence of the
outcomes associated with @« & (corresponding to the propo-
sition associated with the link observable between Cgg and
Cks), as well as B<>¢e and y<> {. Thus, by counterfactual
inference, if the contexts measured on both sides are identi-
cal, whenever «, B, or 7 is registered on one side, 6, € or {
is measured on the other side, respectively, and vice versa.
We are now in the position to formulate a testable crite-
rion for (non)contextuality: contextuality predicts that there
exist outcomes associated with a on one context Cxg which
are accompanied by the outcomes ¢ or { for the other context
Cgs: likewise & should be accompanied by S and . The
quantum mechanical expectation values can be obtained
from

Trll oo [Crs(@Boy) ® Cls(S.8. 01}
= D25+ (B+ e+ 0] s)

As a consequence, the outcomes a—e, a—{_, as well as
B—06 and y— ¢ indicating contextuality do not occur. This is
in contradiction with the contextuality hypothesis.

Another context configuration in four-dimensional Hilbert
space drawn in Fig. 2 consists of two contexts which are
interconnected by fwo common link observables. The two
context operators

C(a.B.v,90) = diag(a, B, v, 9),

a+B a-p
2 2
C'(a,B,7v,6) =diag .Y, 0 (6)
a-B a+p
2 2

have identical eigenvalue spectra containing mutually differ-
ent real eigenvalues «, B, 7y, and 9.

Consider the singlet state of two spin-3/2 observables
[)=3(3.-9)=|-3.9)=[3.=3)+|-3.2))  satisfying  the
uniqueness property for all spatial directions. The four
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FIG. 2. (Color online) Greechie diagram of two contexts in four-
dimensional Hilbert space interconnected by two link observables.

different spin states can be identified with the Cartesian
basis of four-dimensional Hilbert space |%>=(1 ,0,0,0), |%>
=(0,1,0,0), —%):(0,0,1,0), and |—%>=(0,0,0,1), respec-
tively. When combined with the singlet state |/}, two “col-
linear” contexts yield

Tr{|l//s><¢s|[c(a’:87 Y- 6) ® C(S, g? 7, V)]}

1
= Z[av+ B+ y{+ d¢],
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As a consequence, in this configuration the uniqueness prop-
erty manifests itself by the unique joint occurrence of the
outcomes associated with a« v and B« n, as well as y—
and d— ¢ for C, and (a or B)«< (7 or v), as well as (y or
8)« (g or {) for C’. Thus, by counterfactual inference, if the
contexts measured on both sides are identical, whenever « or
B, and vy or & is registered on one side, v or », and { or € is
measured on the other side, respectively, and vice versa.

Compared to the previous Kochen-Specker contexts, this
configuration has the additional advantage that—in the ab-
sence of any criterion for outcome preference—Jayne’s prin-
ciple [30] suggests that contextuality predicts totally uncor-
related outcomes associated with a maximal unbias of the
two common link observables, resulting in the equal occur-
rence of the joint outcomes y—1#, y—v, 6— 7, and 6—v. The
quantum mechanical predictions are based on the expectation
values
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Tr{|y )¢ - [C(e, B, y,8) ® C' (.4, 7, v)]}
1
=§[2(04V+,37})+(7+ d)(e+0)]. (8)

As a consequence, there are no outcomes y—17, y—v, 0— 7,
and 8-, which is in contradiction to the contextuality pos-
tulate.

One of the conceivable criticisms against the presented
arguments is that the configurations considered, although
containing complementary contexts, still allow even a full
separable set of two-valued states and therefore need no con-
textual interpretation. However, it is exactly these Kochen-
Specker type contexts which enter the Kochen-Specker argu-
ment. Hence, they should not be interpreted as separate
isolated sublogics but as parts of a continuum of sublogics,
containing the finite structure devised by Kochen and
Specker and others.

One could also point out that it might suffice to prepare
the particle in some link state “along” one context and then
measure its state along a different context “containing” the
same link observable. This could for instance in the three-
dimensional configuration be realized by two successive
three-port beam splitters arranged serially. In such a configu-
ration, if the outcomes of the two beam splitters do not co-
incide at the link observable, then noncontextuality is dis-
proved; likewise, if there is a perfect correlation between the
link state prepared and the link observable measured, then
contextuality could be disproved. This configuration might
be criticized by proponents of contextuality as being too re-
strictive since there is a preselection, effectively fixing the
preparation state corresponding to the link observable.

Third, one could reprehend that the entangled particles
cannot be thought of as isolated and that the singlet state
enforces noncontextuality by the way it is constructed. This
criticism could be counterpointed by noting that it is exactly
this kind of configurations which yield violations of Boole-
Bell-type conditions of physical experience.

The situation can be summarized as follows. The direct
measurement of more than one context on a single particle is
blocked by quantum complementarity. For the counterfactual
“workaround” to measure two noncommuting interlinked
contexts on pairs of spin-one and spin-three-half particles in
singlet states, quantum mechanics predicts noncontextual be-
havior. Because of the lack of a uniqueness property, coun-
terfactual inference of configurations with more than two
particles are impossible.
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