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Abstract

Two novel computing models based on an infinite tessellation of space-time are introduced.

They consist of recursively coupled primitive building blocks. The first model is a scale-invariant

generalization of cellular automata, whereas the second one utilizes self-similar Petri nets. Both

models are capable of hypercomputations and can, for instance, “solve” the halting problem for

Turing machines. These two models are closely related, as they exhibit a step-by-step equivalence

for finite computations. On the other hand, they differ greatly for computations that involve an

infinite number of building blocks: the first one shows indeterministic behavior whereas the second

one halts. Both models are capable of challenging our understanding of computability, causality,

and space-time.
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I. INTRODUCTION

Every physically relevant computational model must be mapped into physical space-

time and vice versa [1–3]. In this line of thought, Von Neumann’s self-reproducing Cellular

Automata [4] have been envisioned by Zuse [5] and other researchers [6–9] as “calculating

space;” i.e., as a locally connected grid of finite automata [10] capable of universal algorithmic

tasks, in which intrinsic [11] observers are embedded [12]. This model is conceptually discreet

and noncontinuous and resolves the eleatic “arrow” antinomy [13–16] against motion in

discrete space by introducing the concept of information about the state of motion in between

time steps.

Alas, there is no direct physical evidence supporting the assumption of a tessellation

of configuration space or time. Given enough energy, and without the possible bound at

the Planck length of about 10−35m, physical configuration space seems to be potentially

infinitely divisible. Indeed, infinite divisibility of space-time has been utilized for proposals

of a kind of “Zeno oracle” [17], a progressively accelerated Turing machine [18–20] capable

of hypercomputation [21–23]. Such accelerated Turing machines have also been discussed in

the relativistic context [24, 25]. In general, a physical model capable of hypercomputation

by some sort of “Zeno squeezing” has to cope with two seemingly contradictory features: on

the one hand, its infinite capacities could be seen as an obstacle of evolution and therefore

require a careful analysis of the principal possibility of motion in finite space and time

via an infinity of cycles or stages. On the other hand, the same infinite capacities could

be perceived as an advantage, which might yield algorithms beyond the Turing bound of

universal computation, thus extending the Church-Turing thesis.

The models presented in this article unify the connectional clarity of von Neumann’s

Cellular Automaton model with the requirement of infinite divisibility of cell space. In-

formally speaking, the scale-invariant cellular automata presented “contain” a multitude of

“spatially” and “temporally” ever decreasing copies of themselves, thereby using different

time scales at different layers of cells. The cells at different levels are also capable to com-

municate, i.e., exchange information, with these copies, resulting in ever smaller and faster

cycling cells. The second model is based on Petri nets which can enlarge themselves.

The advantage over existing models of accelerated Turing machines — which are just

Turing machines with a geometrically progression of accelerated time cycles — resides in
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the fact that the underlying computational medium is embedded into its environment in

a uniform and homogeneous way. In these new models, the entire universe, and not just

specially localized parts therein, is uniformly capable of the same computational capacities.

This uniformity of the computational environment could be perceived as one further step

towards the formalization of continuous physical systems [26] in algorithmic terms. In this

respects, the models seem to be closely related to classical continuum models, which are at

least in principle capable of unlimited divisibility and information flows at arbitrary small

space and time dimensions. At present however, for all practical purposes, there are finite

bounds on divisibility and information flow.

To obtain a taste of some of the issues encountered in formalizing this approach, note

that an infinite sequence of ever smaller and faster cycling cells leads to the following sit-

uation. Informally speaking, let a self-similar cellular automaton be a variant of a one-

dimensional elementary cellular automaton, such that each cell is updated twice as often

as its left neighbor. The cells of a self-similar cellular automaton can be enumerated as

. . . , c−2, c−1, c0, c1, c2, . . .. Starting at time 0 and choosing an appropriate time unit, cell ci is

updated at times 1/2i, 2/2i, 3/2i, . . .. Remarkably, this definition leads to indeterminism. To

see this, let s(i, t) be the state of cell i at time t. Now, the state s(0, 1) depends on s(1, 1/2),

which itself depends on s(2, 1/22) and so on, leading to an infinite regress. In general, in

analogy to Thomson’s paradox [16, 27], this results in an undefined or at least nonunique

and thus indeterministic behavior of the automaton.

This fact relates to the following variant of Zeno’s paradox of a runner, according to which

the runner cannot even get started [16]. He must first run to the half way point, but before

that he must run half way to the half way point and so on indefinitely. Whereas Zeno’s

runner can find rescue in the limit of convergent real sequences, there is no such relieve for

the discrete systems considered.

Later on, two restrictions on self-similar automata (build from scale-invariant cellular

automata) are presented, which are sufficient conditions for deterministic behavior, at least

for finite computations. Furthermore, a similar model based on a variant of Petri nets will

be introduced, that avoids indeterminism and halts in the infinite limit, thereby coming

close to the spirit of Zeno’s paradox.

The article is organized as follows. Section II defines the Turing machine model used in the

remainder of the article, and introduces two hypercomputing models: the accelerated and the
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right-accelerated Turing machine. In section III self-similar as well as scale-invariant cellular

automata are presented. Section IV is devoted to the construction of a hypercomputer based

on self-similar cellular automata. There is a strong resemblance between this construction

and the right-accelerated Turing machine, as defined in section II. A new computing model,

the self-similar Petri net is introduced in section V. This model features a step-to-step

equivalence to self-similar cellular automata for finite computations, but halts in the infinite

case. The same construction as in section IV is used to demonstrate that self-similar Petri

nets are capable of hypercomputation. The final section contains some concluding remarks

and gives some directions for future research.

II. TURING MACHINES AND ACCELERATED TURING MACHINES

The Turing machine is, beside other formal systems that are computationally equivalent,

the most powerful model of classical computing [28–30]. We use the following model of a

Turing machine [10].

Definition 1 (Turing Machine). Formally, a Turing machine is a tuple M =

(Q, Σ, Γ, δ, q0, B, F ), where Q is the finite set of states, Γ is the finite set of tape sym-

bols, Σ ⊂ Γ is the set of input symbols, q0 ∈ Q is the start state, B ∈ Γ\Σ is the blank,

and F ⊂ Q is the set of final states. The next move function or transition function δ is a

mapping from Q× Γ to Q× Γ× {L,R}, which may be undefined for some arguments.

The Turing machine M works on a tape divided into cells that has a leftmost cell but

is infinite to the right. Let δ(q, a) = (p, b, D). One step (or move) of M in state q and the

head of M positioned over input symbol a consists of the following actions: scanning input

symbol a, replacing symbol a by b, entering state p and moving the head one cell either to

the left (D = L) or to the right (D = R). In the beginning, M starts in state q0 with a

tape that is initialized with an input word w ∈ Σ∗, starting at the leftmost cell, all other

cells blank, and the head of M positioned over the first symbol of w. We need sometimes

the function δ split up into three separate functions: δ(q, a) = (δQ(q, a), δΓ(q, a), δD(q, a)).

The configuration of a Turing machine M is denoted by a string of the form α1qα2, where

q ∈ Q and α1, α2 ∈ Γ∗. Here q is the current state of M , α1 is the tape content to the left,

and α2 the tape content to the right of the head including the symbol that is scanned next.
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Leading and trailing blanks will be omitted, except the head has moved to the left or to

the right of the non-blank content. Let α1qα2 and α′1pα
′
2 be two configurations of M . The

relation α1qα2 `M α′1pα
′
2 states that M with configuration α1qα2 changes in one step to the

configuration α′1pα
′
2. The relation `∗M denotes the reflexive and transitive closure of `M .

The original model of a Turing machine as introduced by Alan Turing contained no

statement about the time in which a step of the Turing machine has to be performed.

In classical computation, a ”yes/no”-problem is therefore decidable if, for each problem

instance, the answer is obtained in a finite number of steps. Choosing an appropriate

time scheduling, the Turing machine can perform infinitely many steps in finite time, which

transcends classical computing, thereby leading to the following two hypercomputing models.

The concept of an accelerated Turing machine was independently proposed by Bertrand

Russell, Ralph Blake, Hermann Weyl and others (see Refs. [20, 31]).

Definition 2 (Accelerated Turing machine). An accelerated Turing machine is a Turing

machine which performs the n-th step of a calculation in 1/2n units of time.

The first step is performed in time 1, and each subsequent step in half of the time before.

Since 1 + 1/2 + 1/4 + 1/8 + . . . = 2, the accelerated Turing machine can perform infinitely

many steps in finite time. The accelerated Turing machine is a hypercomputer, since it

can, for example, solve the halting problem, see e.g., Ref. [20]. If the output operations

are not carefully chosen, the state of a cell becomes indeterminate, leading to a variation of

Thomson’s lamp paradox. The open question of the physical dynamics in the limit reduces

the physical plausibility of the model. The following model of a hypercomputing Turing

machine has a different time scheduling, thereby avoiding some of the paradoxes that might

arise from the previous one.

Definition 3 (Right-accelerated Turing machine). Let the cells of the tape be numbered

from the left to the right c0, c1, c2, . . .. A right-accelerated Turing machine is a Turing

machine that takes 1/2n units of time to perform a step that moves the head from cell cn

to one of its neighbor cells.

Theorem 1. There exists a right-accelerated Turing machine that is a hypercomputer.

Proof. Let MU be a universal Turing machine. We construct a Turing machine MU that

alternates between simulating one step of MU and shifting over the tape content one cell to
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the right. We give a sketch of the construction, Ref. [10] contains a detailed description of

the used techniques. The tape of MU contains one additional track that is used to mark

the cell that is read next by the simulated MU . The finite control of MU is able to store

simultaneously the state of the head of MU as well as a tape symbol of MU . We assume that

the input of MU is surrounded by two special tape symbols, say $. At the start of a cycle,

the head of MU is initially positioned over the left delimiter $. MU scans the tape to the

right, till it encounters a flag in the additional track that marks the head position of MU .

Accessing the stored state of MU , MU simulates one step of MU thereby marking either the

left or the right neighbor cell as the cell that has to be visited next in the simulation of MU .

If necessary, a blank is inserted left to the right delimiter $, thereby extending the simulated

tape of MU . Afterwards the head of MU moves to the right delimiter $ to start the shift

over that is performed from the right to the left. MU repeatedly stores the symbols read in

its finite control and prints them to the cell to the right. After the shift over, the head of

MU is positioned over the left delimiter $ which finishes one cycle.

We now give an upper bound of the cycle time. Let n be the number of cells, from the

first $ to the second one. Without loss of generality we assume that c0 contains the left

$. MU scans from the left to the right and simulates one step of MU which might require

to go an additional step to the left. If cell c1 is to be read next, the head of MU cannot

move to the right, otherwise it would fall off the tape of MU . Therefore the worst case

occurs if the cell c2 is marked as cell that MU has to be read next. In this case we obtain

1 + 1/2 + 1/4 + 1/2 + 1/4 + 1/8 + . . . + 1/2n−1 < 3. The head of MU is now either over cell

cn−1, or over cell cn if a insertion was performed. The shift over visits each cell ci, 1 ≤ i < n

three times, and c0 two times. Therefore the following upper bound of the time of the shift

over holds: 3(1 + 1/2 + 1/4 + . . . 1/2n) < 6. We conclude that if the cycle started initally

in cell cn it took less than time 9/2n. If MU halts on its input, MU finishes the simulation

in a time less than 9(1 + 1/2 + 1/4 + . . .) = 18. MU therefore solves the halting problem of

Turing machines. We remark that if MU does not halt, the head of MU vanishes in infinity,

leaving a blank tape behind. Q.E.D.

A right-accelerated Turing machine is, in contrast to the accelerated one, in control over

the acceleration. This can be used to transfer the result of a computation back to slower

cells. The construction of an infinite machine, as proposed by Davies [19], comes close to the
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model of a right-accelerated Turing machine, and his reasoning shows that a right-accelerated

Turing machine could be build within a continuous Newtonian universe.

III. SELF-SIMILAR AND SCALE-INVARIANT CELLULAR AUTOMATA

A. Basic definitions

Cellular automata are dynamical systems in which space and time are discreet. The states

of cells in a regular lattice are updated synchronously according to a local deterministic

interaction rule. The rule gives the new state of each cell as a function of the old states of

some “nearby” neighbor cells. Each cell obeys the same rule, and has a finite (usually small)

number of states. For a more comprehensive introduction to cellular automata, we refer to

Refs. [4, 8, 32–34].

A scale-invariant cellular automaton operates like an ordinary cellular automaton on a

cellular space, consisting of a regular arrangement of cells, whereby each cell can hold a

value from a finite set of states. Whereas the cellular space of a cellular automaton consists

of a regular one- or higher dimensional lattice, a scale-invariant cellular automaton operates

on a cellular space of recursively nested lattices which can be embedded in some Euclidean

space as well.

The time behavior of a scale-invariant cellular automaton differs from the time behavior

of a cellular automaton: Cells in the same lattice synchronously change their state [35], but

as cells are getting smaller in deeper nested lattices, the time steps between state changes

in the same lattice are assumed to decrease and approach zero in the limit. Thereby, a finite

speed of signal propagation between adjacent cells is always maintained. The scale-invariant

cellular automaton model gains its computing capabilities by introducing a local rule that

allows for interaction between adjacent lattices [36]. We will introduce the scale-invariant

cellular automaton model for the one-dimensional case, the extension to higher dimensions

[37] is straightforward.

A scale-invariant cellular automaton, like a cellular automaton, is defined by a cellular

space, a topology that defines the neighborhood of a cell, a finite set of states a cell can be

in, a time model that determines when a cell is updated, and a local rule that maps states of

neighborhood cells to a state. We first define the cellular space of a scale-invariant cellular
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FIG. 1: Space and topological structure of a scale-invariant cellular automaton.

automaton. To this end, we make use of standard interval arithmetic. For a scalar λ ∈ R
and a (half-open) interval [x, y) ⊂ R set: λ + [x, y) = [λ + x, λ + y) and λ[x, y) = [λx, λy).

We denote the unit interval [0, 1) by 1.

Definition 4 (Cellular Space and Space Operators). The cellular space C, the set of all

cells of the scale-invariant cellular automaton, is the set C = {2k(i + 1)|i, k ∈ Z}. The

neighborhood of a cell c is determined by the following operators op : C → C. For a

cell c = 2k(i + 1) in C let c← = 2k(i − 1 + 1) be the left neighbor, c→ = 2k(i + 1 + 1)

the right neighbor, c↑ = 2k+1(b i
2
c + 1) the parent, c↙ = 2k−1(2i + 1) the left child, and

c↘ = 2k−1(2i + 1 +1) the right child of c. The predicate left(c) is true if and only if the cell

c is the left child of its parent.

The cellular space C is the union of all lattices Lk = {2k(i + 1)|i ∈ Z}, where k is

an integer. This topology is depicted in Fig. 1. For notational convenience, we introduce

a further operator, this time from C to C × C, that maps a cell to its both child cells:

c↓ = (c↙, c↘). We remark that according to the last definition for each cell either left(c) or

¬left(c) is true. Later on, we will consider scale-invariant cellular automata where not each

cell has a parent cell. If c = 2k(i + 1) is such a cell, we set by convention left(c) = 1 if i

mod 2 = 0, otherwise left(c) = 0.

All cells in lattice Lk are updated synchronously at time instances 2ki where i is an integer.

The time interval between two cell updates in lattice Lk is again a half-open interval 2k(i+1)

and the cycle time, that is the time between two updates of the cell, is therefore 2k. A simple

consequence of this time model is that child cells cycle twice as fast and the parent cell cycle

half as fast as the cell itself.

Definition 5 (Time Scale and Time Operators). The time scale T is the set of all possible
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FIG. 2: Temporal dependencies of a scale-invariant cellular automaton.

time intervals, which is in the one-dimensional case equal to the set C: T = {2k(i+1)|i, k ∈
Z}. The temporal dependencies of a cell are expressed by the following time operators

op : T → T . For a time inverval t = 2k(i + 1) let t← = 2k(i− 1 + 1), t↑ = 2k+1(b i−1
2
c+ 1),

t↙ = 2k−1(2i − 2 + 1), and t↘ = 2k−1(2i − 1 + 1). The predicate coupled(t) is true if and

only if the state change of a cell at the beginning of t occurs simultaneously with the state

change of its parent cell.

The usage of time intervals instead of time instances, has the advantage that a time

interval uniquely identifies the lattice where the update occurs. Fig. 2 depicts the temporal

dependencies of a cell: to the left it shows a coupled state change, to the right an uncoupled

one. We remark that we denoted space and time operators by the same symbols, even if

their mapping is different. In applying these operators, we take in the remainder of this

paper care, that the context of the operator is always clearly defined.

At any time, each cell is in one state from a finite state set Z. The cell state in a given

time interval is described by the state function s(c, t), which maps cells and time intervals to

the state set. The space-time scale S of the scale-invariant cellular automaton describes the

set of allowed pairs of cells and time intervals: S = {(c, t)|c ∈ C, t ∈ T and |c| = |t|}. Then,

the state function s can be expressed as a mapping s : S → Z. The local rule describes the

evolution of the state function.

Definition 6 (Local Rule). For a cell c and a time interval t, where (c, t) is in S, the

evolution of the state is given by the local rule f of the scale-invariant cellular automaton

s(c, t) = f(s(c↑, t↑), s(c←, t←), s(c, t←), s(c→, t←), s(c↓, t↙), s(c↓, t↘), left(c), coupled(t)) (1)

In accordance with the definition, the expanded form of a expression of the kind s(c↓, t↙)

is (s(c↙, t↙), s(c↘, t↙)). The local rule f is a mapping from Z8 × {0, 1}2 to Z. Beside the
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dependencies on the states of the neighbor cells, the new state of the cell further depends on

whether the cell is the left or the right child of its parent cell and whether the state change

is coupled or uncoupled to the state change of its parent cell. Formally, a scale-invariant

cellular automaton A is denoted by the tuple A = (Z, f). There are some simplifications

of the local rule possible, if one allows for a larger state set. For instance, the values of

the predicates left and coupled could be stored as substate in the initial configuration. If

the local rule accordingly updates the value of coupled , the dependencies on the boolean

predicates could be dropped from the local rule.

As noted in the introduction the application of the local rule in its general form might lead

to indeterministic behavior. The next subsection introduces two restrictions of the general

model that avoid indeterminism at least for finite computations. A special case of the local

rule is a rule of the form f(s(c←, t←), s(c, t←), s(c→, t←)), which is the constituting rule of a

one-dimensional 3-neighborhood cellular automaton. In this case, the scale-invariant cellular

automaton splits up in a sequence of infinitely many nonconnected cellular automata. This

shows that the scale-invariant cellular automaton model is truly an extension of the cellular

automaton model and allows us to view a scale-invariant cellular automaton as an infinite

sequence of interconnected cellular automata.

We now examine the signal speed that is required to communicate state changes between

neighbor cells. To this end, we select the middle point of a cell as the source and the target

of a signal that propagates the state change of a cell to one of its neighbor cells. A simple

consideration shows that the most restricting cases are the paths from the space time points

(c←, t←), (c↑, t↑), (c↙, t↘) to (c, t) if not coupled(t). The simple calculation delivers the

results 1, 1, and 1
2
, respectively, hence a signal speed of 1 is sufficient to deliver the updates

in the given timeframe. A more general examination takes also the processing time of a cell

into account. If a cell in Lk takes time 2kp to process their inputs and if we assume a finite

signal speed of v, the cycle time of a cell in Lk must be at least 2k(p + v). In sum, as long

as the processing time is proportional to the diameter of a cell, we can always find a scaling

factor t → λt, such that the scale-invariant cellular automaton has cycle times that conform

to the time scale T .
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B. Self-similar cellular automata and indeterminism

The construction of a hypercomputer in section IV uses a simplified version of a scale-

invariant cellular automaton, which we call a Self-similar Cellular Automaton.

Definition 7 (Self-similar Cellular Automaton). A self-similar cellular automaton has the

cellular space C = {2k1|k ∈ Z}, the time scale T = {2k(i + 1)|i, k ∈ Z}, and the finite state

set Z. The space-time scale of a self-similar cellular automaton is the set S = {(c, t)|c ∈
C, t ∈ T and |c| = |t|}. The self-similar cellular automaton has the following local rule: for

all (c, t) ∈ S

s(c, t) = f(s(c↑, t↑), s(c, t←), s(c↙, t↙), s(c↙, t↘), coupled(t)) (2)

The local rule f is a mapping from Z4 × {0, 1} to Z. Formally, a self-similar cellular

automaton A is denoted by a tuple A = (Z, f). By restricting the local rule of a scale-

invariant cellular automaton, a self-similar cellular automaton can also be constructed from

a scale-invariant cellular automaton. Consider a scale-invariant cellular automaton whose

local rule does not depend on the cell neighbors c←, c→, and c↘. Then, the resulting scale-

invariant cellular automaton contains the self-similar cellular automaton as subautomaton.

We introduce the following notation for self-similar cellular automata. We index a cell

[0, 2k) by the integer −k, that is a cell with index k has a cyle time of 2−k. We call the cell

k − 1 the upper neighbor and the cell k + 1 the lower neighbor of cell k. Time instances

can be conveniently expressed as a binary number. If not stated otherwise, we use the cycle

time of cell 0 as time unit.

We noted already in the introduction that the evolution of a scale-invariant cellular

automaton might lead to indeterministic behavior. We offer two solutions, one based on a

special quiescent state, the other one based on a dynamically growing lattice.

Definition 8 (Short-Circuit Evaluation). A state q in the state set Z is called a quiescent

state with regard to the short-circuit evaluation, if f(q, q, ?, ?, ?) = q, where the question

mark sign “?” either represents an arbitrary state or a boolean value, depending on its

position. Whenever a cell is in state q, the cell does not access its lower neighbor.

The cell remains as long in the quiescent state as long as the upper neighbor is in the

quiescent state, too. This modus of operandi corresponds to the short-circuit evaluation
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of logical expressions in programming languages like C or Java. If the self-similar cellular

automaton starts in an initial configuration of the form z0z1 . . . znqqq . . . at cell 0, the infinite

regress is interrupted, since cell n + 2 evolves to q without being dependent on cell n + 3.

Definition 9 (Dynamically growing self-similar cellular automaton). Let q be a state in the

state set Z, called the quiescent state. A dynamically growing self-similar cellular automaton

initially starts with the finite set of cells 0, . . . , n and the following boundary condition.

Whenever cell 0 or the cell with the highest index k is evolved, the state of the missing

neighbor cell is assumed to be q. The self-similar cellular automaton dynamically appends

cells to the lower end when needed: whenever the cell with the highest index k enters a state

that is different from the quiescent state, a new cell k + 1 is appended, initialized with state

q, and connected to the cell k. To be more specific: If k is the highest index, and cell k

evolves at time 2−ki to state z 6= q, a new cell k+1 in state q is appended. The cell performs

its first transition at time 2−k(i + 1/2), assuming state q for its missing lower neighbor cell.

We note that the same technique could also be applied to append upper cells to the

self-similar cellular automaton, although in the remainder of this paper we only deal with

self-similar cellular automata which are growing to the bottom. Both enhancements ensure

a deterministic evaluation either for a configuration where only a finite number of cells is in

a nonquiescent state or for a finite number of cells.

Definition 10 (Finite and Final Configuration). A configuration of a self-similar cellular

automaton A is called finite if only a finite number of cells is different from the quiescent

state. Let C be a finite configuration and C ′ the next configuration in the evolution that is

different to C. C ′ is again finite. We denote this relationship by C `A C ′. The relation `∗A
is again the reflexive and transitive closure of `A.

A self-similar cellular automaton as a scale-invariant cellular automaton cannot halt by

definition and runs forever without stopping. The closest analogue to the Turing machine

halting occurs, when the configuration stays constant during evolution. Such a configuration

that does not change anymore is called final.
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IV. CONSTRUCTING A HYPERCOMPUTER

In this section, we shall construct an accelerated Turing machine based on a self-similar

cellular automaton. A self-similar cellular automaton which simulates the Turing machine

MU specified in the proof of Theorem 1 in a step-by-step manner is a hypercomputer, since

the resulting Turing machine is a right-accelerated one. We give an alternative construction,

where the shift over to the right is directly embedded in the local rule of the self-similar

cellular automaton. The self-similar cellular automaton will simultaneously simulate the

Turing machine and shift the tape content down to faster cycling cells. The advantages of

this construction are the smaller state set as well as a resulting faster simulation.

A. Specification

Let M = (Q, Σ, Γ, δ, q0, B, F ) be an arbitrary Turing machine. We construct a self-similar

cellular automaton AM = (Z, f) that simulates M as follows. First, we simplify the local

rule by dropping the dependency on t↙, obtaining

s(c, t) = f(s(c↑, t↑), s(c, t←), s(c↙, t↘), coupled(t)). (3)

The state set Z of AM is given by

Z = Γ ∪ (Γ× {→}) ∪ (Q× Γ) ∪ (Q× Γ× {→}) ∪ {¤,J,C,
−→C , B,BB,BJ}.

We write −→a for an element (a,→) in Γ × {→}, 〈q, a〉 for an element (q, a) in Q × Γ, and
−−−→〈q, a〉 for an element (q, a,→) in Q × Γ × {→}. To simulate M on the input w = a1 . . . an

in Σ∗, n ≥ 1, AM is initialized with the sequence
−→C〈q0, a1〉a2a3 . . . anB starting at cell 0,

all other cells shall be in the quiescent state ¤. If w = a1, AM is initialized with the

sequence
−→C〈q0, a1〉BB, and if w = ε, the empty word, AM is initialized with the sequence

−→C〈q0, B〉BB. We denote the initial configuration by C0, or by C0(w) if we want to emphasize

the dependency on the input word w. The computation is started at time 0, i.e. the first

state change of cell k occurs at time 2−k.

The elements 〈q, a〉 and
−−−→〈q, a〉 act as head of the Turing machine including the input

symbol of the Turing machine that is scanned next. To accelerate the Turing machine,

we have to shift down the tape content to faster cycling cells of the self-similar cellular

automaton, thereby taking care that the symbols that represent the non-blank content of

13



the Turing machine tape are kept together. We achieve this by sending a pulse, which is just

a symbol from a subset of the state set, from the left delimiter C to the right delimiter B
and back. Each zigzag of the pulse moves the tape content one cell downwards and triggers

at least one move of the Turing machine. Furthermore a blank is inserted to the right of the

simulated head if necessary. The pulse that goes down is represented by exactly one element

of the form
−→C ,−→a ,

−−−→〈q, a〉, BB, or BJ, the upgoing pulse is represented by the element J.

The specification of the values for the local rule f for all possible arguments is tedious,

therefore we use the following approach. A coupled transition of two neighbor cells can

perform a simultaneous state change of the two cells. If the state changes of these two

neighbor cells is independent of their other neighbors, we can specify the state changes as

a transformation of a state pair into another one. Let z1, z2, z
′
1, z

′
2 be elements in Z. We

call a mapping of the form z1 z2 7→ z′1 z′2 a block transformation. The block transformation

z1 z2 7→ z′1 z′2 defines a function mapping of the form f(x, z1, z2, 0) = f(x, z1, z2, 1) = z′1 and

f(z1, z2, y, 1) = z′2 for all x, y in Z. Furthermore, we will also allow block transformations

that might be ambiguous for certain configurations. Consider the block transformations

z1 z2 7→ z′1 z′2 and z2 z3 7→ z′′2 z′3 that might lead to an ambiguity for a configuration that

contains z1z2z3. Instead of resolving these ambiguities in a formal way, we will restrict our

consideration to configurations that are unambiguous.

The evolution of the self-similar cellular automaton AM is governed by the following block

transformations:

1. Pulse moves downwards. Set

−→C 〈q, a〉 7→ C
−−−→〈q, a〉; (4)

−→a b 7→ a
−→
b ; (5)

−→C a 7→ C−→a . (6)

If δ(q, a) = (p, c, R) set
−→
b 〈q, a〉 7→ b

−−−→〈q, a〉; (7)

−−−→〈q, a〉 b 7→ c
−−−→〈p, b〉; (8)

−−−→〈q, a〉B 7→ 〈q, a〉 BB . (9)

If δ(q, a) = (p, c, L) set
−→
b 〈q, a〉 7→ 〈p, b〉 −→c ; (10)
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Symbol
State 0 1 X Y B

q0 (q1, X, R) — — (q3, Y, R) —
q1 (q1, 0, R) (q2, Y, L) — (q1, Y, R) —
q2 (q2, 0, L) — (q0, X, R) (q2, Y, L) —
q3 — — — (q3, Y, R) (q4, B, R)
q4 — — — — —

FIG. 3: The function δ.

−−−→〈q, a〉 b 7→ 〈q, a〉 −→b ; (11)

−−−→〈q, a〉B 7→ 〈q, a〉 BJ . (12)

Set

−→a B 7→ a BJ; (13)

BB ¤ 7→ B BJ; (14)

BJ ¤ 7→J B. (15)

2. Pulse moves upwards. Set

a J 7→J a; (16)

〈q, a〉 J 7→J 〈q, a〉; (17)

C J 7→ ¤−→C . (18)

If to a certain cell no block transformation is applicable the cell shall remain in its previous

state. Furthermore, we assume a short-circuit evaluation with regard to the quiescent state:

f(¤,¤, ?, ?) = ¤, whereby the lower neighbor cell is not accessed.

B. Example

We illustrate the working of AM by a simple example. Let L be the formal language

consisting of strings with n 0’s, followed by n 1’s: L = {0n1n|n ≥ 1}. A Turing machine that

accepts this language is given by M = ({q0, q1, q2, q3, q4}, {0, 1}, {0, 1, X, Y,B}, δ, q0, B, {q4})
[10] with the transition function depicted in Fig. 3. Note that L is a context-free language,
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but M will serve for demonstration purposes. The computation of M on input 01 is given

below:

q001 ` Xq11 ` q2XY ` Xq0Y ` XY q3 ` XY Bq4.

Fig. 4 depicts the computation of AM on the Turing machine input 01. The first column

of the table specifies the time in binary base. AM performs 4 complete pulse zigzags and

enters a final configuration in the fifth one after the Turing machine simulation has reached

the final state q4. Fig. 5 depicts the space-time diagram of the computation. It shows the

position of the left and right delimiter (gray) and the position of the pulse (black).

C. Proof

We split the proof that AM is a hypercomputer into several steps. We first show that the

block transformations are well-defined and the pulse is preserved during evolution. After-

wards we will prove that AM simulates M correctly and we will show that AM represents

an accelerating Turing machine.

Let D = {−→C , BB,BJ,−→a ,
−−−→〈q, a〉} be the set of elements that represent the downgoing

pulse, U = {J} be the singleton that contains the upgoing pulse, P = D∪U , and R = Z\P
the remaining elements. The following lemma states that the block transformations are

unambiguous for the set of configurations we consider and that the pulse is preserved during

evolution.

Lemma 1. If the finite configuration C contains exactly one element of P then the applica-

tion of the block transformations 4 – 18 is unambiguous and at most one block transformation

is applicable. If a configuration C ′ with C `AM
C ′ exists, then C ′ contains exactly one ele-

ment of P as well.

Proof. Note that the domains of all block transformations are pairwise disjoint. This ensures

that for all pairs z1z2 in Z × Z at most one block transformation is applicable. Block

transformations 4 – 14 are all subsets or elements of (D×R)×(R×D), block transformation

15 is element of (D × R) × (U × R), block transformations 16 and 17 are subsets of (R ×
U)× (U×R), and finally block transformation 18 is element of (R×U)× (R×D). Since the

domain is either a subset of D ×R or R× U the block transformations are unambiguous if

C contains at most one element of P . A configuration C ′ with C `AM
C ′ must be the result
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0 1 2 3 4 5 6 7 8 9

0.000000002
−→C 〈q0, 0〉 1 B ¤ ¤ ¤ ¤ ¤ ¤

1.000000002 C −−−→〈q0, 0〉 1 B ¤ ¤ ¤ ¤ ¤ ¤
1.100000002 C X

−−−→〈q1, 1〉 B ¤ ¤ ¤ ¤ ¤ ¤
1.110000002 C X 〈q1, 1〉 BJ ¤ ¤ ¤ ¤ ¤ ¤
1.111000002 C X 〈q1, 1〉 J B ¤ ¤ ¤ ¤ ¤

10.000000002 C X J 〈q1, 1〉 B ¤ ¤ ¤ ¤ ¤
10.100000002 C J X 〈q1, 1〉 B ¤ ¤ ¤ ¤ ¤
11.000000002 ¤ −→C X 〈q1, 1〉 B ¤ ¤ ¤ ¤ ¤
11.100000002 ¤ C −→

X 〈q1, 1〉 B ¤ ¤ ¤ ¤ ¤
11.110000002 ¤ C 〈q2, X〉 −→

Y B ¤ ¤ ¤ ¤ ¤
11.111000002 ¤ C 〈q2, X〉 Y BJ ¤ ¤ ¤ ¤ ¤
11.111100002 ¤ C 〈q2, X〉 Y J B ¤ ¤ ¤ ¤

100.000000002 ¤ C 〈q2, X〉 J Y B ¤ ¤ ¤ ¤
100.010000002 ¤ C J 〈q2, X〉 Y B ¤ ¤ ¤ ¤
100.100000002 ¤ ¤ −→C 〈q2, X〉 Y B ¤ ¤ ¤ ¤
100.110000002 ¤ ¤ C −−−−→〈q2, X〉 Y B ¤ ¤ ¤ ¤
100.111000002 ¤ ¤ C X

−−−−→〈q0, Y 〉 B ¤ ¤ ¤ ¤
100.111100002 ¤ ¤ C X 〈q0, Y 〉 BB ¤ ¤ ¤ ¤
100.111110002 ¤ ¤ C X 〈q0, Y 〉 B BJ ¤ ¤ ¤
100.111111002 ¤ ¤ C X 〈q0, Y 〉 B J B ¤ ¤
101.000000002 ¤ ¤ C X 〈q0, Y 〉 J B B ¤ ¤
101.000100002 ¤ ¤ C X J 〈q0, Y 〉 B B ¤ ¤
101.001000002 ¤ ¤ C J X 〈q0, Y 〉 B B ¤ ¤
101.010000002 ¤ ¤ ¤ −→C X 〈q0, Y 〉 B B ¤ ¤
101.011000002 ¤ ¤ ¤ C −→

X 〈q0, Y 〉 B B ¤ ¤
101.011100002 ¤ ¤ ¤ C X

−−−−→〈q0, Y 〉 B B ¤ ¤
101.011110002 ¤ ¤ ¤ C X Y

−−−−→〈q3, B〉 B ¤ ¤
101.011111002 ¤ ¤ ¤ C X Y 〈q3, B〉 BB ¤ ¤
101.011111102 ¤ ¤ ¤ C X Y 〈q3, B〉 B BJ ¤
101.011111112 ¤ ¤ ¤ C X Y 〈q3, B〉 B J B
101.100000002 ¤ ¤ ¤ C X Y 〈q3, B〉 J B B
101.100001002 ¤ ¤ ¤ C X Y J 〈q3, B〉 B B
101.100010002 ¤ ¤ ¤ C X J Y 〈q3, B〉 B B
101.100100002 ¤ ¤ ¤ C J X Y 〈q3, B〉 B B
101.101000002 ¤ ¤ ¤ ¤ −→C X Y 〈q3, B〉 B B
101.101100002 ¤ ¤ ¤ ¤ C −→

X Y 〈q3, B〉 B B
101.101110002 ¤ ¤ ¤ ¤ C X

−→
Y 〈q3, B〉 B B

101.101111002 ¤ ¤ ¤ ¤ C X Y
−−−−→〈q3, B〉 B B

101.101111102 ¤ ¤ ¤ ¤ C X Y B
−−−−→〈q4, B〉 B

FIG. 4: A computation of AM on input 01.

of the application of exactly one block transformation. Since each block transformation

preserves the pulse, C ′ contains one pulse if and only if C contains one. Q.E.D.

We introduce a mapping γ that aims to decode a self-similar cellular automaton config-

uration into a Turing machine configuration. Let C be a finite configuration. Then γ(C) is
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FIG. 5: Space-time diagram of the computation of AM on input 01.

the string in (Γ ∪Q)∗ that is formed of C as following:

1. All elements in {¤,J,C,
−→C , B,BB,BJ} are omitted.

2. All elements of the form −→a are replaced by a and all elements of the form 〈q, a〉 or
−−−→〈q, a〉 are replaced by the two symbols q and a.

3. All other elements of the form a are added as they are.

4. Leading or trailing blanks of the resulting string are omitted.

The following lemma states that AM correctly simulates M .

Lemma 2. Let c1, c2 be configurations of M . If c1 `∗M c2, then there exist two finite

configurations C1, C2 of AM such that γ(C1) = c1, γ(C2) = c2, and C1 `∗AM
C2. Especially if

the initial configuration C0 of AM satisfies γ(C0) = c1, then there exists a finite configuration

C2 of AM , such that γ(C2) = c2 and C0 `∗AM
C2.

Proof. If c1 has the form a1 . . . anq we consider without loss of generality a1 . . . anqB.

Therefore let c1 = a1 . . . ai−1qai . . . an. If i < n or i = n and δD(q, an) = L we choose

C1 =
−→Ca1 . . . ai−1〈q, ai〉ai+1 . . . anB. If i = n and δD(q, an) = R we insert an additional

blank: C1 =
−→Ca1 . . . an−1〈q, an〉BB. In any case γ(C1) = c1 holds. We show the correctness

of the simulation by calculating a complete zigzag of the pulse for the start configuration:
−→Ca1 . . . ai−1〈q, ai〉ai+1 . . . anB. The number of the block transformation that is applied, is

written above the derivation symbol. We split the zigzag up into three phases.

1. Pulse moves down from the left delimiter to the left neighbor cell of the simulated

head.
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For i > 1 we obtain

−→Ca1 . . . ai−1〈q, ai〉ai+1 . . . anB
(6)

`AM
C−→a1 . . . ai−1〈q, ai〉ai+1 . . . anB

(5)

`AM

Ca1
−→a2 . . . ai−1〈q, ai〉ai+1 . . . anB

(5)

`AM
. . .

(5)

`AM
Ca1 . . .−−→ai−1〈q, ai〉ai+1 . . . an B .

(19)

If i = 1 the pulse piggybacked by the left delimiter
−→C is already in the left neighbor

cell of the head and this phase is omitted.

2. Downgoing pulse passes the head.

If in the beginning of the zigzag the head was to the right of the left delimiter then

−→C〈q, a1〉a2 . . . anB
(4)

`AM
C
−−−→〈q, a1〉a2 . . . an B . (20)

If δD(q, a1) = L no further block transformation is applicable and the configuration

is final. The case δD(q, a1) = R will be handled later on. We now continue the

derivation 19. If δ(q, ai) = (p, b, L) then

Ca1 . . .−−→ai−1〈q, ai〉ai+1 . . . anB
(10)

`AM
Ca1 . . . 〈p, ai−1〉−→b ai+1 . . . an B . (21)

If δ(q, ai) = (p, b, R) then

Ca1 . . .−−→ai−1〈q, ai〉ai+1 . . . anB
(7)

`AM
Ca1 . . . ai−1

−−−→〈q, ai〉ai+1 . . . an B . (22)

We distinguish two cases: i < n and i = n. If i < n then

Ca1 . . . ai−1

−−−→〈q, ai〉ai+1 . . . anB
(8)

`AM
Ca1 . . . ai−1b

−−−−−→〈p, ai+1〉ai+2 . . . an B . (23)

If the next steps of M are moving the head again to the right, block transformation

8 will repeatedly applied, till the head changes its direction or till the head is left of

the right delimiter B. If the Turing machine M changes its direction before the right

delimiter is reached, we obtain

Ca1 . . . ai−1b1 . . . bj

−−−→〈r, ak〉ak+1 . . . anB
(11)

`AM
Ca1 . . . ai−1b1 . . . bj〈r, ak〉−−→ak+1 . . . anB (24)

or if the direction change happens just before the right delimiter then

Ca1 . . . ai−1b1 . . . bj

−−−→〈r, an〉B
(12)

`AM
Ca1 . . . ai−1b1 . . . bj〈r, an〉BJ . (25)
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If i = n or if the right-moving head hits the right delimiter the derivation has the

following form

Ca1 . . . an−1

−−−−→〈q, an〉B
(9)

`AM
Ca1 . . . an−1〈q, an〉BB

(14)

`AM
Ca1 . . . an−1〈q, an〉BBJ, (26)

which inserts a blank to the right of the simulated head.

3. Downgoing pulse is reflected and moves up.

We proceed from configurations of the form Cc1 . . . ci−1〈p, ci〉−−→ci+1 . . . cnB. Then

Cc1 . . . ci−1〈p, ci〉−−→ci+1 . . . cnB
(5)

`AM
. . .

(5)

`AM
Cc1 . . . ci−1〈p, ci〉ci+1 . . .−→cnB

(13)

`AM

Cc1 . . . ci−1〈p, ci〉ci+1 . . . cnBJ
(15)

`AM
Cc1 . . . ci−1〈p, ci〉ci+1 . . . cn J B

(16)

`AM
. . .

(16)

`AM

Cc1 . . . ci−1〈p, ci〉 J ci+1 . . . cnB
(17)

`AM
Cc1 . . . ci−1 J 〈p, ci〉ci+1 . . . cnB

(16)

`AM
. . .

(16)

`AM

C J c1 . . . ci−1〈p, ci〉ci+1 . . . cnB
(18)

`AM

−→Cc1 . . . ci−1〈p, ci〉ci+1 . . . cnB,

(27)

which finishes the zigzag. Note that the continuation of derivations 25 and 26 is

handled by the later part of derivation 27. We also remark that the zigzag has shifted

the whole configuration one cell downwards.

All block transformations except transformations 8 and 10 keep the γ-value of the con-

figuration unchanged. Block transformations 8 and 10 correctly simulate one step in the

calculation of the Turing machine M : if C
(8)or(10)

`AM
C ′, γ(C) = c, and γ(C ′) = c′ then c `M c′.

Let C ′
1 be the resulting configuration of the zigzag. We conclude that γ(C1) `∗M γ(C ′

1) holds.

We have chosen C1 in such a way that at least one step of M is performed, if M does not

halt, either by block transformation 8 or 10. If M does not halt the configuration after the

zigzag is again of the form
−→Ca1 . . . ai−1〈q, ai〉ai+1 . . . anB. The case i = n and δD(q, an) = R

is excluded by derivation 26, which inserts a blank to the right of the head, if δD(q, an) = R.

This means that C ′
1 has the same form as C1 and that any subsequent zigzag will perform

at least one step of M as well if M does not halt.

In summary, we conclude that AM reaches after a finite number of zigzags a configuration

C2 such that γ(C2) = c2. On the other hand, if M halts, AM enters a final configuration since

derivations 21 or 23 are not applicable anymore and the pulse cannot cross the simulated

head. Since we have chosen C0 to be of the same form as C1 in the beginning of the proof,

the addendum of the lemma regarding the initial configuration is true. Q.E.D.
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Next, the time behavior of the self-similar cellular automaton AM will be investigated.

Lemma 3. Let C =
−→Ca1 . . . ai−1〈q, ai〉ai+1 . . . anB be a finite configuration of AM that

starts in cell k. If M does not halt, the zigzag of the pulse takes 3 cycles of cell k and AM

is afterwards in a finite configuration C ′ =
−→Cb1 . . . bj−1〈p, bj〉bj+1 . . . bmB that starts in cell

k + 1.

Proof. Without loss of generality, we assume that the finite configuration starts in cell 0.

We follow the zigzag of the pulse, thereby tracking all times, compare with Fig. 4 and Fig. 5.

The pulse reaches at time 1 cell 1, and at time
∑1

i=0 2−i cell 2. In general, the downgoing

pulse reaches cell r in time
∑r−1

i=0 2−i. At time
∑n+1

i=0 2−i the cell n + 2 changes to BJ which

marks the reversal of direction of the pulse. The next configuration change (BJ¤ 7→J B)

occurs at
∑n+1

i=0 2−i + 2−(n+1) = 2. The pulse J reaches cell n + 1 in time 2 + 2−(n+1) and

in general cell r in time 2 + 2−r. The final configuration change of the zigzag (C J 7→ ¤−→C)

that marks also the beginning of a new pulse zigzag occurs synchronously in cell 0 and cell

1 at time 3. We remark that the overall time of the pulse zigzag remains unchanged if the

simulated head inserts a blank between the two delimiters. Q.E.D.

Theorem 2. If M halts on w and AM is initialized with C0(w) then AM enters a final

configuration in a time less than 6 cycles of cell 0, containing the result of the calculation

between the left and right delimiter. If M does not halt, AM enters after 6 cycles of cell 0

the final configuration that consists of an infinite string of the quiescent element: ¤∞.

Proof. AM needs 3 cycles of cell 0 to perform the first zigzag of the pulse. After the 3 cycles

the configuration is shifted one cell downwards, starting now in cell 1. The next zigzag takes

3 cycles of cell 1 which are 3/2 cyles of cell 0, and so on. Each zigzags performs at least one

step of the Turing machine M , if M does not halt. We conclude that if M halts, A enters a

final configuration in a time less than
∑∞

i=0 3/2i = 6 cycles of cell 0. If M does not halt, the

zigzag disappears in infinity after 6 cycles of cell 0 leaving a trail of ¤’s behind. Q.E.D.

If M is a universal Turing machine, we immediately obtain the following result, which

proves that AM is a hypercomputer for certain Turing machines M .

Corollary 1. Let MU be a universal Turing machine. Then AMU
solves the halting problem

for Turing machines.
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Proof. Initialize AMU
with an encoded Turing machine M and an input word w. Then AM

enters a final configuration with the result of M on w in less than 6 cycles of cell 0 if and

only if M halts. Q.E.D.

In the current form of Turing machine simulation the operator has to scan a potentially

unlimited number of cells to determine whether M has halted or not, which limits its prac-

tical value. If M has halted, we would like to propagate at least this fact back to the upper

cells. The following obvious strategy fails in a subtle way. Add a rule to AM that whenever

〈q, a〉 has no next move, replaces it by the new symbol H. Add the rule f(?, ?, H, ?) = H to

AM that propagates H upwards to cell 0. The propagation upwards is only possible if we

change also the block transformation 18 to C J 7→ ♦−→C , thereby introducing a new symbol ♦
that is not subject of the short-circuit evaluation. The last point, even if necessary, causes

the strategy to fail, since if AM does not halt, AM is after 6 cycles in the configuration ♦∞

that leads to indeterministic behavior of AM . This is in so far problematic, since we can

not be sure whether a state H in cell 0 is really the outcome of a halting Turing machine or

the result of indeterministic behavior. Instead of enhancing the self-similar cellular automa-

ton model, we will introduce in the next section a computing model that is computational

equivalent for finite computations, but avoids indeterminism for infinite computations.

V. SELF-SIMILAR PETRI NETS

The evolution of a cellular automaton as well as the evolution of a self-similar cellular

automaton depends on an extrinsic clock representing a global time that triggers the state

changes. Since a self-similar cellular automaton cannot halt, a self-similar cellular automaton

is forced to perform a state change, even if no state with a causal relationship to the previous

one exists, leading to indeterministic behavior, as described in the introduction. In this

section, we present a model based on Petri nets, the self-similar Petri nets, with a close

resemblance to self-similar cellular automata. Even though Petri nets in general are not

deterministic, there exist subclasses that are. As will be shown below, self-similar Petri

Nets are deterministic. They are also capable of hypercomputing, but compared to self-

similar cellular automata, their behavior differ in the limit. Whereas a self-similar cellular

automaton features indeterministic behavior, the self-similar Petri net halts.
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A. Petri nets

C.A. Petri introduced Petri nets in the 1960s to study asynchronous computing systems.

They are now widely used to describe and study information processing systems that are

characterized as being concurrent, asynchronous, distributed, parallel, nondeterministic,

and/or stochastic. It is interesting to note that very early, and clearly ahead of its time,

Petri investigated the connections between physical and computational processes, see e.g.,

Ref. [38]. In what follows, we give a brief introduction to Petri nets to define the terminology.

For a more comprehensive treatment we refer to the literature; e.g., to Ref. [39].

Definition 11 (Petri Net). A Petri net is a directed, weighted, bipartite graph consisting

of two kinds of nodes, called places and transitions. The weight w(p, t) is the weight of the

arc from place p to transition t, w(t, p) is the weight of the arc from transition t to place

p. A marking assigns to place p a nonnegative integer k, we say that p is marked with k

tokens. If a place p is connected with a transition t by an arc that goes from p to t, p is an

input place of t, if the arc goes from t to p, p is an output place. A Petri net is changed

according to the following transition (firing) rule:

1. a transition t may fire if each input place p of t is marked with at least w(p, t) tokens,

and

2. a firing of an enabled transition t removes w(p, t) tokens from each input place p of t,

and adds w(t, p) tokens to each output place p of t.

Formally, a Petri net N is a tuple N = (P, T, F, W,M0) where P is the set of places, T is

the set of transitions, F ⊆ (P × T ) ∪ (T × P ) is the set of arcs, W : F → N is the weight

function, and M0 : P → N is the initial marking.

In graphical representation, places are drawn as circles and transitions as boxes. If a place

is input place of more than one transition, the Petri net becomes in general indeterministic,

since a token in this place might enable more than one transition, but only one can actually

fire and consume the token. The subclass of Petri nets given in the following definition

avoids these conflicts and is therefore deterministic. In a standard Petri net, tokens are

indistinguishable. If the Petri net model is extended so that the tokens can hold values, the

Petri net is called a colored Petri net.
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FIG. 6: Underlying graph of a self-similar Petri net.

Definition 12 (Marked Graph and Colored Petri Net). A marked graph is a Petri Net

such that each place has exactly one input transition and exactly one output transition. A

colored Petri net is a Petri net where each token has a value.

B. Self-similarity

It is well-known that cellular automata can be modeled as colored Petri Nets. To do this,

each cell of the cellular automaton is replaced by a transition and a place for each neighbor.

The neighbor transitions send their states as token values to their output places, which are

the input places of the transition under consideration. The transition consumes the tokens,

calculates the new state, and send its state back to its neighbors. A similar construction

can be done for self-similar cellular automata, leading to the class of self-similar Petri nets.

Definition 13 (Self-similar Petri Net). A self-similar Petri net is a colored Petri net with

some extensions. A self-similar Petri net has the underlying graph partitioned into cells

that is depicted in Fig. 6. We denote the transition of cell n by t(n), the place to the left

of the transition by pl(n), the place to the right of the transition by pr(n) and the central

place, in the figure the place above the transition, by pc(n). Let Z be a finite set, the state

set, q ∈ Z be the quiescent state, and f be a (partial) function Z4 × {0, 1} → Z. The

set V = Z ∪ ({0, 1} × Z) is the value set of the tokens. Tokens are added to a place and

consumed from the place according to a first-in first-out order. Initially, the self-similar

Petri net starts with a finite number of cells 0, 1, . . . , n, and is allowed to grow to the right.

The notation p ← z defines the following action: create a token with value z and add it to

place p. The firing rule for a transition in cell n of a self-similar Petri net extends the firing

rule of a standard Petri net in the following way:
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1. If the transition t(n) is enabled, the transition removes token Tk l from place pl(n),

token Tk c from pc(n) and tokens Tk r1,Tk r2 from pr(n). The value of token Tk l shall

be of the form (coupled , zl) in V = {0, 1} × Z, the other token values zc, zr1 and zr2

shall be in Z. If the tokens do not conform, the behavior of the transition is undefined.

2. The transition calculates z = f(zl, zc, zr1, zr2, coupled).

3. (Left boundary cell) If n = 0 then pl(0) ← (¬coupled, q), pc(0) ← z, pl(1) ← (0, z),

pl(1) ← (1, z).

4. (Inner cell) If n > 0 and n is not the highest index, then: pr(n− 1) ← z, pc(n) ← z,

pl(n + 1) ← (0, z), pl(n + 1) ← (1, z).

5. (Right boundary cell) If n is the highest index then:

(a) (Quiescent state) If z = q then pr(n− 1) ← q, pc(n) ← q, pr(n) ← q, pr(n) ← q

(b) (New cell allocation) If z 6= q then a new cell n + 1 is created and connected to

cell n. Furthermore: pr(n − 1) ← z, pc(n) ← z, pr(n) ← q, pl(n + 1) ← (0, z),

pl(n + 1) ← (1, z), pc(n + 1) ← q, pr(n + 1) ← q, pr(n + 1) ← q.

Formally, we denote the self-similar Petri net by a tuple N = (Z, f).

A self-similar Petri net is a marked graph and therefore deterministic. The initial markup

is chosen in such a way that initially only the rightmost transition is enabled.

Definition 14. (Initial markup) Let a0a1 . . . am be an input word in Zm+1 and let N be a

self-similar Petri net with n cells, whereby n > m + 1. The initial markup of the Petri net

is as follows:

• pl(0) ← (0, q), (pl(i) ← (0, ai−1), pl(i) ← (1, ai−1)) for 0 < i ≤ m + 1, (pl(i) ← (0, q),

pl(i) ← (1, q)) for i > m + 1

• pc(i) ← ai for i ≤ m, pc(i) ← q for i > m,

• pr(i) ← ai+1 for i < m, pr(i) ← q for i ≥ m, and pr(n) ← q.

Note that the place pr(n) is initialized with two tokens. We identify the state of a cell

with the value of its pc-token. If pc is empty, because the transition is in the process of

firing, the state shall be the value of the last consumed token of pc.
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FIG. 7: Token flow in a self-similar Petri net.

Fig. 7 depicts the token flow of a self-similar Petri net consisting of 4 cells under the

assumption that the self-similar Petri net does not grow. Tokens that are created and

consumed by the same cell are not shown. The numbers indicate whether the firing is

uncoupled (0) or coupled (1). The only transition that is enabled in the begin is t(3), since

pr(3) was initialized with 2 tokens. The firing of t(3) bootstraps the self-similar Petri net by

adding a second token to pr(2), thereby enabling t(2), and so on, until all transitions have

fired, and the token flow enters periodic behavior.

C. Comparison of self-similar cellular automata and self-similar Petri nets

We now compare self-similar Petri nets with self-similar cellular automata. We call a

computation finite, if it involves either only a finite number of state updates of a self-

similar cellular automaton, or a finite number of transition firings of a self-similar Petri net,

respectively.

Lemma 4. For finite computations, a dynamically growing self-similar cellular automaton

A = (Z, f) and a self-similar Petri net N = (Z, f) are computationally equivalent on a step-

by-step basis if the start with the same number of cells and the same initial configuration.

Proof. Let N be a self-similar Petri net which has n cells initially. For the sake of the proof

consider an enhanced self-similar Petri net N ′ that is able to timestamp its token. A token

Tk of N ′ does not hold only a value, but also a time interval. We refer to the time interval

of Tk by Tk .t and to the value of Tk by Tk .v. We remark that the timestamps serve only

to compare the computations of a self-similar cellular automaton and a self-similar Petri net

and do not imply any time behavior of the self-similar Petri net. The firing rule of N ′ works

26



as for N , but has an additional pre- and postprocessing step:

• (Preprocessing) Let Tk c, Tk l, Tk r1, and Tk r2 be the consumed token, where the

alphabetical subscript denotes the input place and the numerical subscript the order

in which the tokens were consumed. Calculate t = (Tk c.t)→, where → is the inverse

time operator of ←. If Tk r1.t 6= t↙ or Tk r2.t 6= t↘ or Tk l.t 6= t↑ the firing fails and

the transition becomes permanently disabled.

• (Postprocessing) For each created token Tk , set Tk .t = t.

The initial marking must set the t-field, otherwise the first transitions will fail. For the

initial tokens in cell k, set Tk l.t = 2−k+11 for both tokens in place pl, Tk c.t = 2−k1, and

Tkd.t = 2−k−11. Set Tkd.t = 2−n−1(1 + 1) for the second token in pr(n). The firings of cell

k add tokens with timestamps 2−k1, 2−k(2 + 1), 2−k(3 + 1) . . . to the output place pc(k). If

transition t(k) does not fail, the state function for the arguments c = 2−k1 and t = 2−k(i+1)

is well-defined: s′(c, t) = z if cell k has produced or was initialized in place pr with a token Tk

with Tk .t = t and Tk .v = z. Let s(c, t) be the state function of the scale-invariant cellular

automaton A. Due to the initialization, the two state functions are defined for the first n cells

and first time intervals 2−k1. Assume that the values of s and s′ differ for some argument

or that their domains are different. Consider the first time interval t1 where the difference

occurs: s(c, t1) 6= s′(c, t1), or exactly one of s(c, t1) or s′(c, t1) is undefined. If there is more

than one time interval choose an arbitrary one of these. Since t1 was the first time interval

where the state functions differ, we know that s(c↑, t1↑) = s′(c↑, t1↑), s(c, t1←) = s′(c, t1←),

s(c↙, t1↙) = s′(c↙, t1↙), and s(c↙, t1↘) = s′(c↙, t1↘). We handle the case that the values

of the state functions are different or that s′ is undefined for (c, t1) whereas s is. The other

case (s′ defined, but not s) can be handled analogously. If c = 2−k1, we conclude that

tokens with timestamps t1↑, t1←, t1↙, t1↘ were sent to cell k, and no other tokens were

sent afterwards to cell k, since the timestamps are created in chronological order. Hence,

the precondition of the firing rule is satisfied and we conclude that s(c, t1) = s′(c, t1), which

contradicts our assumption. The allocation of new cells introduces some technicalities, but

the overall strategy of going back in time and concluding that the conditions for a state

change or cell allocation were the same in both models works here also. We complete the

proof, by the simple observation that N and N ′ perform the same computation. Q.E.D.
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The proof can be simplified using the following more abstract argumentation. A compar-

ison of Fig. 7 with Fig. 2 shows that each computation step has in both models the same

causal dependencies. Since both computers use the same rule to calculate the value of a cell,

respectively the value of a token, we conclude that the causal nets [40] of both computations

are the same for a finite computation, and therefore both computers yield the same output,

in case the computation is finite.

D. Timed self-similar Petri nets that hypercompute

A large number of different approaches to introducing time concepts to Petri nets have

been proposed since the first extensions in the mid 1970s. We do not delve into the depths

of the different models, but instead, define a very simple time schedule for the class of

self-similar Petri nets.

Definition 15 (Timed Self-similar Petri Net). A timed self-similar Petri net is a self-similar

Petri net that fires as soon as the transition is enabled and where a firing of an enabled

transition t(k) takes the time 2−k. In the beginning of the firing, the tokens are removed

from the input places, and at the end of the firing the produced tokes of the firing are

simultaneously entered into the output places.

This time model can be satisfied if the cells of the timed self-similar Petri net are arranged

as the cells of a self-similar cellular automaton. Under the assumption of a constant token

speed, a firing time that is proportional to the cell length, and an appropriate unit of time

we yield again cycle times of 2−k.

We now come back to the simulation of Turing machines and construct a hypercomputing

timed self-similar Petri net, analogous to the hypercomputing self-similar cellular automaton

in section IV. Let M = (Q, Σ, Γ, δ, q0, B, F ) be an arbitrary Turing machine. Let Z be

the state set that we used in the simulation of a Turing machine by a self-similar cellular

automaton, and let f the local rule that is defined by the block transformations 4 - 18,

without the short-circuit evaluation. By Lemma 4 we know that the timed self-similar Petri

net NM = (Z, f) simulates M correctly for a finite number of Turing machine steps. Hence,

if M halts on input w, NM enters a final configuration in less than 6 cyles of cell 0. We

examine now the case that M does not halt. A pivotal difference between a self-similar
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cellular automaton and a self-similar Petri net is the ability of the latter one to halt on a

computation. This happens if all transitions of the self-similar Petri net are disabled.

Lemma 5. Let M = (Q, Σ, Γ, δ, q0, B, F ) be an arbitrary Turing machine and w an input

word in Σ∗. If M does not halt on w, the timed self-similar Petri net NM halts on C0(w)

after 6 cycles of cell 0.

Proof. As long as the number of cells is finite, the boundary condition 5a of the firing rule

adds by each firing two tokens to the pr-place of the rightmost cell that successively enable

all other transitions as well. This holds no longer for the infinite case. Let M be a Turing

machine, and w an input word, such that M does not halt on w. We consider again the

travel of the pulse zigzags down to infinity for the timed self-similar Petri net NM with initial

configuration C0(w), thereby tracking the marking of the pr-places for times after the zigzag

has passed by. The first states of cell 0 are
−→C , C, C, and ¤, including the initial one. The

state ¤ is the result of the firing at time 3, exhausting thereby the tokens in place pr(0). At

time 3 the left delimiter (
−→C) of the pulse zigzag is now in cell 1. Cell 1 runs from time 3 on

through the same state sequence
−→C , C, C, and ¤, thereby adding in summary 4 tokens to

pr(0). After creating the token with value ¤, pr(1) is empty as well. We conclude that after

the zigzag has passed by a cell, the lower cell sends in summary 4 tokens to the upper cell,

till the zigzag has left the lower cell as well. For each cell k these four tokens in pr(k) enable

two firings of cell k thereby adding two tokens to pr(k − 1). These two tokens of pr(k − 1)

enable again one firing of cell k−1 thereby adding one token to pr(k−2). We conclude that

each cell fires 3 times after the zigzag has passed by and that the final marking of each pr

is one. Hence, no pr has the necessary two tokens that enable the transition, therefore all

transitions are disabled and NM halts at time 6. Q.E.D.

Since NM halts for nonhalting Turing machines, there are no longer any obstacles that

prevent the construction of the proposed propagation of the halting state back to upper

cells. We replace block transformation 4 with the following two and add one new.

If δ(q, a) = (p, c, R) set
−→C 〈q, a〉 7→ C

−−−→〈q, a〉. (28)

If δ(q, a) = (p, c, L) or δ(q, a) is not defined set

−→C 〈q, a〉 7→ C H. (29)
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If δ(q, a) is not defined set
−→
b 〈q, a〉 7→ b H. (30)

The following definition propagates the state H up to cell 0:

f(?, ?, H, ?) = H. (31)

We denote the resulting timed self-similar Petri net by NM . The following theorem makes

use of the apparently paradoxical fact, that NM halts if and only if the simulated Turing

machine does not halt.

Theorem 3. Let MU be a universal Turing machine. Then NMU
solves the halting problem

for Turing machines.

Proof. Consider a Turing machine M and an input word w. Initialize NMU
with C0(〈M, w〉)

where 〈M,w〉 is the encoding of M and w. If M does not halt on w, NMU
halts at time

6 by Lemma 5. If M halts on w, then one cell of NMU
enters the state H by block trans-

formation 29 or 30 according to Theorem 2 and Lemma 4 and taking the changes in f into

account. The mapping 31 propagates H up to cell 0. An easy calculation shows that cell 0

is in state H, in time 7 or less. Q.E.D.

We have proven that NMU
is indeed a hypercomputer without the deficiencies of the scale-

invariant cellular automaton-based hypercomputer. We end this section with two remarks.

The timed self-similar Petri net NM sends a flag back to the upper cells, if the simulated

Turing machine halts. Strictly speaking, this is not necessary, if the operator is able to

recognize whether the timed self-similar Petri net has halted or not. On the other hand,

a similar construction is essential, if the operator is interested in the final tape content

of the simulated Turing machine. Transferring the whole tape content of the simulated

Turing machine upwards, could be achieved by implementing a second pulse that performs

an upwards-moving zigzag. The construction is even simpler as the described one, since the

tape content of the Turing machine becomes static as soon as the Turing machine halts.

The halting problem of Turing machines is not the only problem that can be solved by

self-similar cellular automata, scale-invariant cellular automata, or timed self-similar Petri

nets, but is unsolvable for Turing machines. A discussion of other problems unsolvable by

Turing machines and of techniques to solve them within infinite computing machines, can

be found in Davies [19].
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VI. SUMMARY

We have presented two new computing models that implement the potential infinite di-

visibility of physical configuration space. These models are purely information theoretic

and do not take into account kinetic and other effects. With these provisos, it is possible,

at least in principle, to use the potential infinite divisibility of space-time to perform hy-

percomputation, thereby extending the algorithmic domain to hitherto unsolvable decision

problems.

Both models are composed of elementary computation primitives. The two models are

closely related but are very different ontologically. A cellular automaton depends on an

extrinsic time requiring an external clock and a rigid synchronization of its computing cells,

whereas a Petri net implements a causal relationship leading to an intrinsic concept of time.

Scale-invariant cellular automata as well as self-similar Petri nets are built in the same

way from their primitive building blocks. Each unit is recursively coupled with a sized-down

copy of itself, potentially leading to an infinite sequence of ever decreasing units. Their close

resemblance leads to a step-by-step equivalence of finite computations, yet their ontologi-

cal difference yields different behaviors for the for the case that the computation involves

an infinite number of units: a scale-invariant cellular automaton exhibits indeterministic

behavior, whereas a self-similar Petri net halts. Two supertasks which operate identically

in the finite case but differ in their limit is a puzzling observation which might question

our present understanding of supertasks. This may be considered an analogy to a theorem

[41] in recursive analysis about the existence of recursive monotone bounded sequences of

rational numbers whose limit is not a computable number.

One striking feature of both models is their scale-invariance. The computational behavior

of these models is therefore the first example for what might be called scale-invariant or self-

similar computing, which might be characterized by the property that any computational

space-time pattern can be arbitrary squeezed to finer and finer regions of space and time.

Although the basic definitions have been given, and elementary properties of these new

models have been explored, a great number of questions remain open for future research.

The construction of a hypercomputer was a first demonstration of the extraordinary compu-

tational capabilities of these models. Further investigations are necessary to determine their

limits, and to relate them with the emerging field of hypercomputation [21–23, 27, 31, 42, 43].
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Another line of research would be the investigation of their phenomenological properties,

analogous to the statistical mechanics of cellular automata [8, 44].
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