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I. INTRODUCTION

Improved experimental particle production techniques and potential applications in quantum

information theory have stimulated interest in multipartite singlet and other entangled states. In

particular, singlet states are among the most useful states in quantum mechanics, as they ap-

pear form-invariant under spatial rotations. Hence, a physical property such as uniqueness [1]

or equibalance [2] which holds true in one frame or direction remains to be true in all other frames

or directions obtained by spatial rotations.

Yet, the explicit structure of singlet states — although well understood in general terms in

group theory — has up to now neither been enumerated nor investigated beyond a few instances

for spin one-half and spin one particles. Recent theoretical and experimental studies in multi-

particle production (e.g., Ref. [3]) suggest that a more systematic way to generate the complete set

of arbitrary N-particle singlet states is desirable.

In the present study we first pursue an algorithmic generation strategy, and tabulate some of

the first singlet states. The recursive method employed is based on triangle relations and Clebsch-

Gordan coefficients (e.g., Ch. 13, Sec. 27 of Ref. [4]). With this approach, a complete table of

all angular momentum states can be enumerated. The singlet states are obtained via the various

pathways towards the j = m = 0 states.

The procedure can best be illustrated by a triangular diagram, where the states in ascending

order of angular momentum are drawn against the number of particles. In such a diagram, the

“lowest” states correspond to singlet states.

Consider, for the sake of an explicit demonstration of this generation method, a two-

dimensional diagram such as the ones depicted in Fig. 1 and in Fig. 2, which represents the “space”

or “domain” of all multi-partite states. In such a diagram, the number of particles is represented

by the abscissa (the x-coordinate) along the positive x-axis. The ordinate (the y-coordinate) of

the state is equal the total angular momentum of the state. Note that a single point may repre-

sent many states; all corresponding to an equal number of particles, and all having the same total

angular momentum. N-partite singlet states can be constructed by starting from the unique state

of one particle, then proceeding via all “diagonal” and, whenever possible for integer spins, also

“horizontal” pathways (e.g., the “horizontal” path in Fig. 2) consisting of single substeps adding

one particle after the other — either diagonally from the lower left to the upper right “↗,” or

diagonally from the upper left to the lower right “↘,” or, if possible, also horizontally from left
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to right “→” — towards the zero momentum state of N particles. Every diagonal or horizontal

substep corresponds to the addition of a single particle. Below we shall explicitly construct singlet

states composed from particles of spin one-half and spin one.

In the second part of this article, we present an explicit analysis of the singlet states of four

spin one-half particles in terms of their probabilities and expectation functions for spin state mea-

surements. We also investigate the possibility to group the outcomes of the four spin state mea-

surements on each particle to obtain “condensed” observables. Likewise, we consider selection of

one or two particles and the resulting correlations. One of our physical motivations for doing so

was the question of how such “condensed” observables would perform with respect to violations

of classical locality conditions.

II. GENERAL ALGORITHM FOR OBTAINING SINGLET STATES

In what follows we present a method to construct all states for a given number of particles.

They are the basis to construct non-trivial, e.g., non-“zigzag” singlet states, which are not just

products of singlet states of a smaller number of particles. Although only the spin one-half and

the spin one cases are explicitly discussed, the method applies to arbitrary spin.

A. Spin one-half

We start by considering the spin state of a single spin one-half particle. A second spin one-half

particle is added by combining two angular momenta 1
2 to all possible total angular momenta l = 0

or 1. Next, a third particle is introduced by coupling a third angular momentum 1
2 to all previously

derived states. Following the triangle equation, the resulting j-values for each l are in the domain

|l− j3| ≤ j ≤ l + j3. (1)

In order to obtain all N-particle singlet states, we successively produce all states (not only sin-

glet states) of N/2 particles. Note that for N/2≤ h≤N particles we only need angular momentum

states within 0≤ j≤ (N−h)/2, because the construction method does not allow states with higher

angular momentum to “bend diagonally backwards” and finally reach the angular momentum zero

singlet state.

Angular momentum states will be written as |h, j,m, i〉, where h denotes the particle number,

j the angular momentum, and m the magnetic quantum number. Note that there may exist many
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states with equal h, j and m. Thus i denotes the number of state in an enumeration of all h-partite

states with identical angular momentum j and magnetic quantum number m. In the enumeration

scheme chosen, we first take states generated from higher total angular momentum, followed by

states with equal total angular momentum for spin one particles, and states with lower total an-

gular momentum. For spin one-half particles, let us define a function f ( j + 1,h) denoting the

total number of states of h particles with total angular momentum j/2. This function is tabu-

lated in Table I for the spin one-half particle case. The Clebsch-Gordan coefficient is denoted by

〈 j1, j2,m1,m2| j,m〉.
For spin one-half particles, an arbitrary state |h, j,m, i〉, h > 1, can be generated from the states

with one particle less by adding a particle, thereby increasing or decreasing the total angular mo-

mentum of the previous state containing one particle less. Thus, we obtain two different pathways

towards |h, j,m, i〉; one from the total angular momentum j + 1
2 , symbolized graphically by “↘,”

and one from the total angular momentum j− 1
2 , symbolized graphically by “↗.”

For the sake of demonstration of the method employed, we shall explicitly discuss one of

the two cases, in which the addition of one particle h− 1 → h results in a lowering of the total

angular momentum by 1
2 through j + 1

2 → j, thus representing the diagonal pathway “↘” from

the “upper left” to the “lower right” in a diagram (nonuniquely) representing states as points with

coordinates given by the number of particles and the total angular momentum, respectively (e.g.,

Fig. 1). The first contribution, associated with the magnetic quantum numbers m− 1
2 and +1

2 , can

be constructed from the product state

|h−1, j +
1
2
,m− 1

2
, i〉⊗ |1,

1
2
,
1
2
,1〉 (2)

by multiplying it with the Clebsch-Gordan coefficient

〈 j +
1
2
,m− 1

2
,
1
2
,
1
2
| j,m〉. (3)

Similarly, the second contribution to |h, j,m, i〉, associated with the magnetic quantum numbers

m+ 1
2 and −1

2 , can be constructed via the product state

|h−1, j +
1
2
,m+

1
2
, i〉⊗ |1,

1
2
,−1

2
,1〉, (4)

multiplied with the Clebsch-Gordan coefficient

〈 j +
1
2
,m+

1
2
,
1
2
,−1

2
| j,m〉. (5)
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Adding the two results, we obtain the state |h, j,m, i〉; i.e.,

|h, j,m, i〉 = 〈 j + 1
2 ,m− 1

2 , 1
2 , 1

2 | j,m〉|h−1, j + 1
2 ,m− 1

2 , i〉⊗ |1, 1
2 , 1

2 ,1〉+
+〈 j + 1

2 ,m+ 1
2 , 1

2 ,−1
2 | j,m〉|h−1, j + 1

2 ,m+ 1
2 , i〉⊗ |1, 1

2 ,−1
2 ,1〉.

(6)

We do this for m =− j, . . . , j and for all states labeled by the state number i = 1,2, . . ., f ((2 j +

1)+1,h−1). Recall that f ( j +1,h) denotes the total number of states of h particles with angular

momentum j/2. It can be computed by counting the number of all states generated by all possible

pathways in the construction method described above.

Similarly, if j is greater than zero, we obtain the state |h, j,m, i〉 from the diagonal pathway

“↗,” starting from the states |h−1, j− 1
2 ,m− 1

2 , i〉 and |h−1, j− 1
2 ,m+ 1

2 , i〉 of h−1 particles and

total angular momentum j− 1
2 by adding a single particle via

〈 j− 1
2
,m− 1

2
,
1
2
,
1
2
| j,m〉|h−1, j− 1

2
,m− 1

2
, i〉⊗ |1,

1
2
,
1
2
,1〉 (7)

and

〈 j− 1
2
,m+

1
2
,
1
2
,−1

2
| j,m〉|h−1, j− 1

2
,m+

1
2
, i〉⊗ |1,

1
2
,−1

2
,1〉. (8)

This procedure is carried out for m =− j, . . . , j and i satisfying

f ((2 j +1)+1,h−1)+1≤ i≤ f ((2 j +1)+1,h−1)+ f ((2 j +1)−1,h−1). (9)

A concrete example is drawn in Fig. 1. It contains the pathways leading to the construction of

both singlet states of four spin one-half particles.

For spin one-half particles, the function f ( j + 1,h) denoting the total number of states of h

particles with total angular momentum j/2 is tabulated in Table I. The bottom line above the

axis contains the number of different orthogonal singlet states. The singlet states of up to six spin

one-half particles are explicitly enumerated in Table II.

B. Spin one

The construction of the singlet states of spin one particles follows similar rules as in the case

of spin one-half particles. One example is the construction of the singlet state consisting of three

spin one particles drawn in Fig. 2. Note that in this case, as for all particles of integer spin, there

are three possible subpaths per addition of one particle; two diagonal “↗” and “↘” pathways as

in the case for spin one-half particles, as well as one horizontal “→.” Table III enumerates the
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FIG. 1 Construction of both singlet states a) and b) of four spin one-half particles. Concentric circles

indicate the target states. The second state is a “zigzag” state composed by the product of two two-partite

singlet states.

j

5 1

9
2 1 10

4 1 9 54

7
2 1 8 44 208

3 1 7 35 154 637

5
2 1 6 27 110 429 1638

2 1 5 20 75 275 1001 3640

3
2 1 4 14 48 165 572 2002 7072

1 1 3 9 28 90 297 1001 3432 11934

1
2 1 2 5 14 42 132 429 1430 4862 16796

0 1 2 5 14 42 132 429 1430 4862 16796

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 N

TABLE I Enumeration of the total numbers of states contributing to a calculation of singlet states up to

20 spin one-half particles. The bottom line above the axis shows the actual number of different orthogonal

singlet states.
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N #

2 1 1√
2

(|+−〉−|−+〉);

4 1 − 1
2
√

3

(|−+−+〉+ |−++−〉+ |+−−+〉+ |+−+−〉)+
+ 1√

3

(|−−++〉+ |++−−〉);

4 2
(− 1√

2
|−+〉+ 1√

2
|+−〉)2;

6 1 −1
2 |−−−+++〉+−1

6

(|−++−−+〉+ |−++−+−〉+
+|−+++−−〉+ |+−+−−+〉+ |+−+−+−〉+
+|+−++−−〉+ |++−−−+〉+ |++−−+−〉+

+|++−+−−〉)+ 1
6

(|−−+−++〉+ |−−++−+〉+
+|−−+++−〉+ |−+−−++〉+ |−+−+−+〉+
+|−+−++−〉+ |+−−−++〉+ |+−−+−+〉+

+|+−−++−〉)+ 1
2 |+++−−−〉;

6 2 −
√

2
3 |−−+−++〉+− 1

3
√

2

(|−+++−−〉+ |+−++−−〉+
+|++−−−+〉+ |++−−+−〉)+− 1

6
√

2

(|−+−+−+〉+
+|−+−++−〉+ |+−−+−+〉+ |+−−++−〉)+

+ 1
6
√

2

(|−++−−+〉+ |−++−+−〉+ |+−+−−+〉+
+|+−+−+−〉)+ 1

3
√

2

(|−−++−+〉+ |−−+++−〉+
+|−+−−++〉+ |+−−−++〉)+

√
2

3 |++−+−−〉;
6 3 − 1√

6

(|−+−−++〉+ |−+++−−〉)+− 1
2
√

6

(|+−−+−+〉+
+|+−−++−〉+ |+−+−−+〉+ |+−+−+−〉)+

+ 1
2
√

6

(|−+−+−+〉+ |−+−++−〉+ |−++−−+〉+
+|−++−+−〉)+ 1√

6

(|+−−−++〉+ |+−++−−〉);

6 4 − 1√
6

(|−−++−+〉+ |++−−−+〉)+− 1
2
√

6

(|−+−++−〉+
+|−++−+−〉+ |+−−++−〉+ |+−+−+−〉)+

+ 1
2
√

6

(|−+−+−+〉+ |−++−−+〉+ |+−−+−+〉+
+|+−+−−+〉)+ 1√

6

(|−−+++−〉+ |++−−+−〉);

6 5
(− 1√

2
|−+〉+ 1√

2
|+−〉)3

.

TABLE II First singlet states of N spin one-half particles.
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0 1 2 3 N

1

2

3

j

R

-

FIG. 2 Construction of the singlet state of three spin one particles. Note that for integer spin, there are three

possible subpaths per addition of one particle; two diagonal “↗” and “↘,” as well as one horizontal “→.”

j

9 1

8 1 8 45

7 1 7 36 155 605

6 1 6 28 111 405 1397 4642

5 1 5 21 76 258 837 2640 8162 24882

4 1 4 15 49 154 468 1398 4125 12078 35178 102102

3 1 3 10 29 84 238 672 1890 5313 14938 42042 118482 334425

2 1 2 6 15 40 105 280 750 2025 5500 15026 41262 113841 315420 877320

1 1 1 3 6 15 36 91 232 603 1585 4213 11298 30537 83097 227475 625992 1730787

0 1 1 3 6 15 36 91 232 603 1585 4213 11298 30537 83097 227475 625992 1730787

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 N

TABLE III Enumeration of the total numbers of states contributing to a calculation of singlet states up to 18

spin one particles. The bottom line above the axis shows the actual number of different orthogonal singlet

states.

numbers of states contributing to a calculation of singlet states up to 18 spin one particles. The

bottom line above the axis shows the actual number of different orthogonal singlet states. The

singlet states of up to four spin one (with one singlet state of 5) particles are explicitly enumerated

in Table IV.

There always exist trivial “zigzag” singlet states which are the product of r two-particle singlet
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N #

2 1 1√
3

(−|0,0〉+ |−1,1〉+ |1,−1〉);

3 1 − 1√
6

(|−1,0,1〉+ |0,1,−1〉+ |1,−1,0〉)+
+ 1√

6

(|−1,1,0〉+ |0,−1,1〉+ |1,0,−1〉);

4 1 − 1
2
√

5

(|−1,0,0,1〉+ |−1,0,1,0〉+ |0,−1,0,1〉+ |0,−1,1,0〉+
+|0,1,−1,0〉+ |0,1,0,−1〉+ |1,0,−1,0〉+ |1,0,0,−1〉)+

+ 1
6
√

5

(|−1,1,−1,1〉+ |−1,1,1,−1〉+ |1,−1,−1,1〉+ |1,−1,1,−1〉)+
+ 1

3
√

5

(|−1,1,0,0〉+ |0,0,−1,1〉+ |0,0,1,−1〉+ |1,−1,0,0〉)+
+ 2

3
√

5
|0,0,0,0〉+ 1√

5

(|−1,−1,1,1〉+ |1,1,−1,−1〉);

4 2 − 1
2
√

3

(|−1,0,1,0〉+ |−1,1,−1,1〉+ |0,−1,0,1〉+ |0,1,0,−1〉+
+|1,−1,1,−1〉+ |1,0,−1,0〉)+ 1

2
√

3

(|−1,0,0,1〉+ |−1,1,1,−1〉+
+|0,−1,1,0〉+ |0,1,−1,0〉+ |1,−1,−1,1〉+ |1,0,0,−1〉);

4 3
( 1√

3

(−|0,0〉+ |−1,1〉+ |1,−1〉))2;

5 1 −
√

2
15 |−1,−1,0,1,1〉+− 1√

30

(|−1,0,1,0,0〉+ |0,−1,1,0,0〉+
+|0,0,−1,0,1〉+ |0,0,−1,1,0〉+ |0,1,1,−1,−1〉+

+|1,0,1,−1,−1〉+ |1,1,−1,−1,0〉+ |1,1,−1,0,−1〉)+
+− 1

2
√

30

(|−1,0,1,−1,1〉+ |−1,0,1,1,−1〉+ |−1,1,−1,0,1〉+
+|−1,1,−1,1,0〉+ |0,−1,1,−1,1〉+ |0,−1,1,1,−1〉+

+|0,1,0,−1,0〉+ |0,1,0,0,−1〉+ |1,−1,−1,0,1〉+
+|1,−1,−1,1,0〉+ |1,0,0,−1,0〉+ |1,0,0,0,−1〉)+

+ 1
2
√

30

(|−1,0,0,0,1〉+ |−1,0,0,1,0〉+ |−1,1,1,−1,0〉+
+|−1,1,1,0,−1〉+ |0,−1,0,0,1〉+ |0,−1,0,1,0〉+

+|0,1,−1,−1,1〉+ |0,1,−1,1,−1〉+ |1,−1,1,−1,0〉+
+|1,−1,1,0,−1〉+ |1,0,−1,−1,1〉+ |1,0,−1,1,−1〉)+

+ 1√
30

(|−1,−1,1,0,1〉+ |−1,−1,1,1,0〉+ |−1,0,−1,1,1〉+
+|0,−1,−1,1,1〉+ |0,0,1,−1,0〉+ |0,0,1,0,−1〉+

+|0,1,−1,0,0〉+ |1,0,−1,0,0〉)+
√

2
15 |1,1,0,−1,−1〉;

TABLE IV First singlet states of N spin one particles.
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0 1 2 3 4
0

l

j

R

µ

R

N−4 N−3 N−2 N−1 N N

µ

R

µ

R
· · ·

FIG. 3 Construction of the “zigzag” singlet state of N particles which effectively is a product state of N
2

spin l particle states.

states stemming from the rising and lowering of consecutive states. The situation is depicted in

Fig. 3. For j = 1 and N = 3r there exist “zigzag” singlet states, which are the product of r three-

particle singlet states. For singlet states with N = 2r + 3t (r, t integer) there exist singlet states

being the product of r two-particle singlet states and t three-particle singlet states.

III. SYMMETRIES

In what follows we shall discuss the symmetry behavior of singlet states. In our approach the

singlet states are orthogonal to each other. This can be demonstrated by considering the formula [5]

〈( j′1 j′2) jm|( j1 j2) jm〉 = ∑m′1+m′2=m,m1+m2=m〈( j′1 j′2) jm| j′1m′
1 j′2m′

2〉×
〈 j′1m′

1 j′2m′
2| j1m1 j2m2〉〈 j1m1 j2m2|( j1 j2) jm〉

= δ j1 j′1δ j2 j′2δm1m′1δm2m′2,

(10)

where |( j1 j2) jm〉 stands for a state of total angular momentum j and magnetic quantum number

m, composed of two parts having angular momentum j1 and j2, respectively. States stemming

from different j1 values are orthogonal to each other. Hence, also the singlet states derived from

them are orthogonal. By iteration it follows that even singlet states stemming from the same j1 are

orthogonal. The method allows us to construct the full basis for each singlet space which has the

appropriate dimension.
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A. Sign changes of magnetic quantum numbers

For the Clebsch-Gordan coefficients the following formula holds

〈 j1,−m1, j2,−m2| j,−m〉= (−1) j1+ j2− j〈 j1m1 j2m2| jm〉. (11)

1. Spin one-half

In what follows, the symmetries of singlet spin one-half particle states are investigated. For a

coupling j to j + 1
2 , the Clebsch-Gordan coefficients satisfy

〈 j,−m− 1
2 , 1

2 , 1
2 | j + 1

2 ,−m〉 = (−1)0〈 j,m+ 1
2 , 1

2 ,−1
2 | j + 1

2 ,m〉
〈 j,m+ 1

2 , 1
2 ,−1

2 | j + 1
2 ,m〉 = (−1)0〈 j,−m− 1

2 , 1
2 , 1

2 | j + 1
2 ,−m〉.

(12)

If all the magnetic quantum numbers reverse their signs, the Clebsch-Gordan coefficients stay the

same. Coupling j + 1
2 to j results in

〈 j + 1
2 ,m, 1

2 , 1
2 | j,m+ 1

2〉 = (−1)1〈 j + 1
2 ,−m, 1

2 ,−1
2 | j,−m− 1

2〉
〈 j + 1

2 ,−m, 1
2 ,−1

2 | j,−m− 1
2〉 = (−1)1〈 j + 1

2 ,m, 1
2 , 1

2 | j,m+ 1
2〉.

(13)

In this case, all the Clebsch-Gordan coefficients change their signs.

We conclude that the symmetry behavior remains the same if one passes from the angular

momentum subspace |N,J〉 to the angular momentum subspace |N + 1,J + 1
2〉. By passing from

the subspace |N,J〉 to the subspace |N + 1,J− 1
2〉 the symmetry behaviour changes from even to

odd and from odd to even, respectively. A graphical representation of this property is depicted in

Fig. 4. In particular, the singlet states where N is k · 2 · 2 (k is an integer) are even, and the ones

where N is 2 · (2k +1) are odd.

2. Spin one

Let us now consider the j = 1 case first. For the coupling of j to j +1, the symmetry described

above implies

〈 j,−m−1,1,1| j +1,−m〉 = (−1)0〈 j,m+1,1,−1| j +1,m〉,
〈 j,−m,1,0| j +1,−m〉 = (−1)0〈 j,m,1,0| j +1,m〉;

(14)

12
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1 2 5 14 42

1.2 2.2 5.2 14.2 42.2

1.3 3.3 9.3 28.3

1.4 4.4 14.4

1.5 5.5

1.6

FIG. 4 Symmetry behavior of spin one-half particles. Even and odd subspaces are denoted by concentric

and filled circles, respectively. The numbers denote the dimensions of the subspaces. The first number

stands for the number of states |h, j〉, and the second number stands for the 2 j + 1 projections. Arrows

represent the direction of the coupling.

i.e., the Clebsch-Gordan coefficients are the same. For the coupling of j to j,

〈 j,−m−1,1,1| j,−m〉 = (−1)1〈 j,m+1,1,−1| j,m〉,
〈 j,−m,1,0| j,−m〉 = (−1)1〈 j,m,1,0| j,m〉;

(15)

i.e., all Clebsch-Gordan coefficients change sign. Similarly for the coupling of j +1 to j,

〈 j +1,m,1,1| j,m+1〉 = (−1)2〈 j +1,−m,1,−1| j,−m−1〉,
〈 j +1,m,1,0| j,m〉 = (−1)2〈 j +1,−m,1,0| j,−m〉;

(16)

i.e., they all stay the same.

Using these symmetries, we conclude that the symmetry behaviour remains the same if one

passes from the angular momentum subspace |N, j〉 to the angular momentum subspace |N +

1, j +1〉. The symmetry behaviour does not change for coupling |N, j +1〉 to |N +1, j〉. Coupling

|N, j〉 to |N +1, j〉 changes the symmetry behaviour from even to odd and from odd to even. The

situation is depicted in Fig. 5. N-particle singlet states with N even are even, whereas N-particle

singlet states with N odd are odd.
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FIG. 5 Symmetries of spin one particle states. Even subspaces are denoted by concentric circles, odd

subspaces are denoted by filled circles. The numbers denote the dimensions of the subspaces. The first

number stands for the number of states |h, j〉 and the second stands for the 2 j + 1 projections. Arrows

represent the way of coupling.

B. Symmetric group

Let us consider the permutations of the N magnetic quantum numbers in every product state of

N particles. More explicitly, since every permutation of N particles can be written as the product

of N − 1 transpositions, we shall study the effects of N − 1 transpositions. We analyze N − 1

transpositions of the form ( j, j + 1), the transposition of j and j + 1 which generate the whole

symmetric group, and in particular all the N · (N− 1)/2 transpositions, since ( j,k + 1) = (k,k +

1)( j,k)(k,k+1). Therefore, we consider the class (2 1N−2) of all two particle transpositions. Each

irreducible representation can be labeled by an ordered partition of integers which corresponds to

a specific Young diagram.

As stated in App. D, Sec. 14 of Ref. [4], the space spanned by the vectors of total spins (SM)

formed by N identical spins 1
2 is associated with an irreducible representation of SN , the repre-

sentation whose Young diagram corresponds to the partition [1
2N + S, 1

2N−S] of the integer N. It

is apparent that the Young diagrams for the irreducible components of the representation of SN

have at most two lines. For N > 2, any state contains at least two individual spins in the same

state. Suppose the state contains the factor u(i)
+ u( j)

+ ; i.e., mi,m j = 1
2 . Since A = 1

2(1− (i, j)) is the

14



antisymmetrizer and 1
2(1− (i, j))u(i)

+ u( j)
+ = 0, it follows that A| jm〉= 0.

Using the theorem mentioned above, the Young diagrams of the irreducible spaces of the N-

particle singlet states correspond to the partitions [1
2N, 1

2N]. Hence the two-particle singlet state

(sometimes referred to as the “Bell” state) is an antisymmetric one-dimensional space. The four-

and six-particle singlet spaces form a two- and a five-dimensional irreducible space whose Young

diagrams are of the form [2,2] and [3,3]. Using the formula for the dimension of an irreducible

representation having the partition [λ] (e.g., Ref. [6])

f λ = n!
Πi< j≤k(λi−λ j + j− i)

Πk
i=1(λi + k− i)!

, (17)

the dimension can be verified.

IV. FOUR SPIN ONE-HALF PARTICLE CORRELATIONS

Singlet states |Ψd,n,i〉 can be labeled by three numbers d, n and i, denoting the number d of

outcomes associated with the dimension of Hilbert space per particle, the number n of participating

particles, and the state count i in an enumeration of all possible singlet states of n particles of spin

j = (d− 1)/2, respectively. To begin with the analysis of four-partite correlations, consider four

spin one-half particles in one of the two singlet states enumerated in Table II and computed by

following the “paths” indicated in Fig. 1; i.e.,

|Ψ2,4,1〉 =
1√
3

[
|++−−〉+ |−−++〉

−1
2
(|+−〉+ |−+〉)(|+−〉+ |−+〉)

]
, (18)

|Ψ2,4,2〉 = (|Ψ2,2,1〉)2 =
1
2
(|+−〉−|−+〉)(|+−〉−|−+〉), (19)

where |Ψ2,2,1〉= 1√
2

(|+−〉−|−+〉) is the two particle singlet “Bell” state.

These pure states have an explicit vector space representation as orthogonal vectors. The two

states corresponding to spin “up” and “down” correspond to |+〉 ≡ ê1 = (1,0) and |−〉 ≡ ê2 =

(0,1). Product states can be represented by the tensor or Kronecker product, which, for two

arbitrary vectors a = (a1,a2, . . . ,an) and b = (b1,b2, . . . ,bm), can be represented by

a⊗b = (a1b,a2b, . . . ,anb) = (a1b1,a1b2, . . . ,anbm). (20)

Thus, by summing up all product sates, the two singlet states have a vector representation as

Ψ̂2,4,1 =
1√
3

[
ê1⊗ ê1⊗ ê2⊗ ê2 + ê2⊗ ê2⊗ ê1⊗ ê1
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− 1√
2

(
ê1⊗ ê2 + ê2⊗ ê1

)⊗ 1√
2

(
ê1⊗ ê2 + ê2⊗ ê1

)]

=
(

0,0,0,
1√
3
,0,− 1

2
√

3
,− 1

2
√

3
,0,0,− 1

2
√

3
,− 1

2
√

3
,0,

1√
3
,0,0,0

)
. (21)

Ψ̂2,4,2 =
1√
2

(
ê1⊗ ê2− ê2⊗ ê1

)⊗ 1√
2

(
ê1⊗ ê2− ê2⊗ ê1

)

=
(

0,0,0,0,0,
1
2
,−1

2
,0,0,−1

2
,
1
2
,0,0,0,0,0

)
, (22)

Their density operators ρi, i = 1,2 are just the projectors corresponding to the one-dimensional

linear subspaces spanned by the vectors representing Ψ̂2,4,2 and Ψ̂2,4,1 in Eqs. (22, 21); i. e. they

are the dyadic product

ρi =
[
Ψ̂T

2,4,iΨ̂2,4,i
]
. (23)

As has been pointed out above, and as Ψ̂2,4,2 · Ψ̂2,4,1 = 0 or equivalently ρΨ2,4,1 ·ρΨ2,4,2 = 0, the

singlet states are orthogonal. The most general form of a four spin one-half particle singlet state is

thus given by

|Ψ2,4,s〉= λ1 |Ψ2,4,1〉+λ2 |Ψ2,4,2〉 (24)

with |λ1|2 + |λ2|2 = 1, which can be parameterized by λ1 = sinτ, λ2 = cosτ, such that for τ = 0,

|Ψ2,4,s〉= |Ψ2,4,2〉, and for τ = π/2, |Ψ2,4,s〉= |Ψ2,4,1〉.
Singlet states are form invariant with respect to arbitrary unitary transformations in the single-

particle Hilbert spaces and thus also rotationally invariant in configuration space, in particular

under the rotations |+〉= ei ϕ
2
(
cos θ

2 |+′〉− sin θ
2 |−′〉

)
and |−〉= e−i ϕ

2
(
sin θ

2 |+′〉+ cos θ
2 |−′〉

)
in the

spherical coordinates θ,ϕ defined below [e. g., Ref. [7], Eq. (2), or Ref. [8], Eq. (7–49)]. However,

despite this form invariance under rotations, the states are non-unique in the sense that knowledge

of a spin state observable for one particle is not sufficient for the simultaneous (counterfactual)

determination of spin state properties for all other three particles [9, 10].

A. Operators

In what follows, the operators corresponding to the spin state observables will be enumerated.

Thereby, spherical coordinates represent angles of spin state measurements. Suppose that i denotes

the i’th particle with 1 ≤ i ≤ 4. Let θi be the polar angle in the x–z-plane from the z-axis with

0≤ θi ≤ π, and ϕi the azimuthal angle in the x–y-plane from the x-axis with 0≤ ϕi < 2π.

For the sake of simplicity, we shall sometimes consider measurements in the x-z-plane, for

which ϕ1 = ϕ2 = ϕ3 = ϕ4 = 0. Because of the spherical symmetry of the singlet state, this is in
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every aspect equivalent to a measurement along angles lying in an arbitrary plane. In such cases

the expectation values (the raw, or uncentered, product moments [11]) are merely functions of the

polar angles θ1, θ2, θ3 and θ4, so the azimuthal angles will be omitted. For compact notation,

θ̂ and ϕ̂ will be used to denote the coordinates θ1,θ2,θ3,θ4 and ϕ1,ϕ2,ϕ3,ϕ4, respectively.

The projection operators F corresponding to a four spin one-half particle joint measurement

aligned (“+”) or antialigned (“−”) along those angles are

F±±±±(θ̂, ϕ̂) = 1
2 [I2±σ(θ1,ϕ1)]⊗ 1

2 [I2±σ(θ2,ϕ2)]⊗
⊗1

2 [I2±σ(θ3,ϕ3)]⊗ 1
2 [I2±σ(θ4,ϕ4)] ,

(25)

with σ(θ,ϕ) =


 cosθ e−iϕ sinθ

eiϕ sinθ −cosθ


. For example, F−+−+(θ̂, ϕ̂) stands for the proposition

‘The spin state of the first particle measured along θ1,ϕ1 is “−”, the spin state of

the second particle measured along θ2,ϕ2 is “+”, the spin state of the third particle

measured along θ3,ϕ3 is “−”, and the spin state of the fourth particle measured along

θ4,ϕ4 is “+” .’

Fig. 6 depicts a measurement configuration for a simultaneous measurement of spins along θ1,ϕ1,

θ2,ϕ2, θ3,ϕ3 and θ4,ϕ4 of the state Ψ2,4,2.

B. Probabilities and expectations

We now turn to the calculation of quantum predictions. The joint probability to register the

spins of the four particles in state ρΨ2,4,s aligned or antialigned along the directions defined by (θ1,

ϕ1), (θ2, ϕ2), (θ3, ϕ3), and (θ4, ϕ4) can be evaluated by a straightforward calculation of

PρΨ2,4,s±±±±(θ̂, ϕ̂) = Tr
[
ρΨ2,4,s ·F±±±±

(
θ̂, ϕ̂

)]
. (26)

The expectation functions and joint probabilities to find the four particles in an even or in an

odd number of spin “−”-states when measured along (θ1, ϕ1), (θ2, ϕ2), (θ3, ϕ3), and (θ4, ϕ4) are

enumerated in Table V. In the following, omitted arguments are zero. For example, the expectation

function of the general singlet state in Eq. (24) restricted to ϕ1 = ϕ2 = ϕ3 = ϕ4 = 0 is

E(τ; θ̂) = 1
3

(
[2+ cos(2τ)] cos(θ1−θ2) cos(θ3−θ4)

+2 sinτ
[
sinτ cos(θ1 +θ2−θ3−θ4)+

√
3 cosτ sin(θ1−θ2) sin(θ3−θ4)

]) (27)
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Two-partite singlet state

P= = 1
2 (1+E) , P6= = 1

2 (1−E)

E(θ1,θ2,ϕ1,ϕ2) = P=−P6= =− [cosθ1 cosθ2 + cos(ϕ1−ϕ2)sinθ1 sinθ2]

E(θ1,θ2) =−cos(θ1−θ2)

E(π
2 , π

2 ,ϕ1,ϕ2) =−cos(ϕ1−ϕ2)

Four-partite singlet states

Peven = 1
2 [1+E] , Podd = 1

2 [1−E] , E = Peven−Podd

EρΨ2,4,1
(θ̂, ϕ̂) = 1

3 {cosθ3 sinθ1 [−cosθ4 cos(ϕ1−ϕ2)sinθ2 +2cosθ2 cos(ϕ1−ϕ4)sinθ4]+

sinθ1 sinθ3 [2cosθ2 cosθ4 cos(ϕ1−ϕ3)+

(2cos(ϕ1 +ϕ2−ϕ3−ϕ4)+ cos(ϕ1−ϕ2)cos(ϕ3−ϕ4))sinθ2 sinθ4]+

cosθ1 [2sinθ2 (cosθ4 cos(ϕ2−ϕ3)sinθ3 + cosθ3 cos(ϕ2−ϕ4)sinθ4) +

cosθ2 (3cosθ3 cosθ4− cos(ϕ3−ϕ4)sinθ3 sinθ4)]}
EρΨ2,4,1

(π
2 , π

2 , π
2 , π

2 , ϕ̂) = 1
3 [2cos(ϕ1 +ϕ2−ϕ3−ϕ4)+ cos(ϕ1−ϕ2)cos(ϕ3−ϕ4)]

EρΨ2,4,1
(θ̂) = 1

3 [2cos(θ1 +θ2−θ3−θ4)+ cos(θ1−θ2)cos(θ3−θ4)]

EρΨ2,4,2
(θ̂) = cos(θ1−θ2)cos(θ3−θ4)

EρΨ2,4,2
(θ̂, ϕ̂) = [cosθ1 cosθ2 + cos(ϕ1−ϕ2)sinθ1 sinθ2] ·

[cosθ3 cosθ4 + cos(ϕ3−ϕ4)sinθ3 sinθ4]

E(τ; θ̂) = 1
3 {[2+ cos(2τ)] cos(θ1−θ2) cos(θ3−θ4)+

+2 sinτ
[
sinτ cos(θ1 +θ2−θ3−θ4)+

√
3 cosτ sin(θ1−θ2) sin(θ3−θ4)

]}

E(τ; θ̂, ϕ̂) = 1
3 {cosθ1 (cosθ2{3cosθ3 cosθ4 +[2cos(2τ)+1]cos(ϕ3−ϕ4)sinθ3 sinθ4}+

2sinθ2 sinτ
[
cosθ3 cos(ϕ2−ϕ4)sinθ4

(√
3cosτ+ sinτ

)−
cosθ4 cos(ϕ2−ϕ3)sinθ3

(√
3cosτ− sinτ

)])
+

sinθ1 (cosθ3 {cosθ4[2cos(2τ)+1]cos(ϕ1−ϕ2)sinθ2+

2cosθ2 cos(ϕ1−ϕ4)sinθ4 sinτ
(
sinτ−√3cosτ

)}
+

sinθ3
[
2cosθ2 cosθ4 cos(ϕ1−ϕ3)sinτ

(√
3cosτ+ sinτ

)
+

sinθ2 sinθ4
{

2cos(ϕ1 +ϕ2−ϕ3−ϕ4)sin2 τ+

[cos(2τ)+2]cos(ϕ1−ϕ2)cos(ϕ3−ϕ4)+
√

3sin(2τ)sin(ϕ1−ϕ2)sin(ϕ3−ϕ4)
}])}

TABLE V Probabilities and expectation functions for finding an odd or even number of spin “−”-states.

Omitted arguments are zero.
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FIG. 6 Simultaneous spin measurement of the four-partite singlet state represented in Eq. (19). Boxes

indicate spin state analyzers such as Stern-Gerlach apparatus oriented along the directions θ1,ϕ1, θ2,ϕ2,

θ3,ϕ3 and θ4,ϕ4; their two output ports are occupied with detectors associated with the outcomes “+” and

“−”, respectively.

For τ = 0 and τ = π
2 , Eq. (27) reduces to EρΨ2,4,2

and EρΨ2,4,1
in Table V, respectively.

We concentrate on the algebraic evaluation of EρΨ2,4,1
, as this expectation function is from

a nontrivial non-zigzag singlet state and thus can be expected to reveal additional structure not

inherited from the two-partite correlations also enumerated in Table V. If all the polar angles θ̂ are

all set to π/2, then this correlation function yields

EρΨ2,4,1
(
π
2
,
π
2
,
π
2
,
π
2
, ϕ̂) =

1
3

[2cos(ϕ1 +ϕ2−ϕ3−ϕ4)+ cos(ϕ1−ϕ2)cos(ϕ3−ϕ4)] . (28)

Likewise, if all the azimuthal angles ϕ̂ are all set to zero, one obtains

EρΨ2,4,1
(θ̂) =

1
3

[2cos(θ1 +θ2−θ3−θ4)+ cos(θ1−θ2)cos(θ3−θ4)] . (29)

C. Plasticity of expectation function

The plasticity of the expectation function E(τ; θ̂) is comparable to the two-particle expecta-

tion function E(θ) = −cosθ for measurements in one plane can be demonstrated by plotting the

probabilities and expectation values for selectively chosen parameters, as depicted in Fig. 7.

As there are four particles involved, the outcomes of one or two particles can be utilized to

select the events of the other particles. Let “±i” stand for the observation of spin state plus or
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(a) (b)

(c) (d)

(e) (f)

FIG. 7 Probabilities and expectation values for (a) τ = 0, θ1 = θ, θ2 = θ3 = θ4 = 0, (b) τ = 0, θ1 = θ,

θ2 = θ3 = 0, θ4 = π, (c) τ = π
2 , θ1 = θ2 =−θ3 = θ4 = θ, (d) τ = π

2 , θ1 =−θ3 = θ4 = θ, θ2 = π
4 , (e) τ = π

4 ,

θ1 = −θ3 = θ4 = θ, θ2 = π
4 , (f) τ = π

4 , θ1 = −θ3 = θ4 = θ, θ2 = 0. Dashed (dash dotted) lines indicate

probabilities to find an even (odd) number of “−” outcomes, solid lines depict expectation functions.20



minus on the ith particle. Table VI contains the results of the associated expectation values and

joint probabilities for finding an odd or even number of spin “−”-states.

Two or three observables could also be grouped together to form a “condensed” observable.

For instance, for each individual quadruple of outcomes {o1,o2,o3,o4} the values of the first and

the second, as well as of the third and the fourth particle could be multiplied to obtain two other,

dichotomic observables o1o2 and o3o4, respectively. More generally, one could take all partitions

of 4, such that the outcomes of all particles within an element of the partition are multiplied.

As the single outcomes occur at random, their resulting products and thus the new condensed

observable would also represent random variables. Since the multiplication is associative, the

resulting condensed correlations are just the four-partite correlations discussed so far.

V. SUMMARY

In summary, we have discussed an algorithmic procedure to enumerate all singlet states of N

particles of arbitrary spin. We have then explicitly enumerated the first cases for spin one-half and

spin one and discussed their symmetries. These results have then be applied for a calculation of

the quantum probabilities and expectation functions of four spin one-half particles in four arbitrary

directions. We conclude by pointing out that all discussed configurations could, as a proof of

principle, be locally realized by generalized beam splitters [12–14].
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Three-partite GHZM state (Ref. [7])

P± = 1
4 [1+2E] , P± = 1

4 [1−2E] , E± = P±−P±

E±(θ1,θ2,θ3,ϕ1,ϕ2,ϕ3|±3) = 1
2 [cosθ1 cosθ2±3 cos(ϕ1 +ϕ2 +ϕ3)sinθ1 sinθ2 sinθ3]

Four-partite singlet states

EρΨ2,4,1
(θ̂, ϕ̂|±4) = 1

12 ± 1
2 EρΨ2,4,1

(θ̂, ϕ̂)

EρΨ2,4,1
(θ̂|±3±4) = 1

12 {2(±31)(±41)cos(θ1 +θ2−θ3−θ4)+ cos(θ1−θ2) [1+(±31)(±41)cos(θ3−θ4)]}
EρΨ2,4,1

(θ̂, ϕ̂|±3±4) = 1
12 {cosθ1(2(±31)(±41)sinθ2 [cosθ4 cos(ϕ2−ϕ3)sinθ3+

cosθ3 cos(ϕ2−ϕ4)sinθ4]+

cosθ2 [1+3(±31)(±41)cosθ3 cosθ4−
(±31)(±41)cos(ϕ3−ϕ4)sinθ3 sinθ4])+

sinθ1(cos(ϕ1−ϕ2)sinθ2 [1− (±31)(±41)cosθ3 cosθ4+

(±31)(±41)cos(ϕ3−ϕ4)sinθ3 sinθ4]+

2(±31)(±41) [cosθ2 cosθ4 cos(ϕ1−ϕ3)sinθ3+

cosθ2 cosθ3 cos(ϕ1−ϕ4)sinθ4+

cos(ϕ1 +ϕ2−ϕ3−ϕ4)sinθ2 sinθ3 sinθ4])}
EρΨ2,4,1

(θ̂|±2±4) = 1
12 {(±21)(±41) [2cos(θ1 +θ2−θ3−θ4)+ cos(θ1−θ2)cos(θ3−θ4)]−2cos(θ1−θ3)}

EρΨ2,4,1
(θ̂, ϕ̂|±2±4) = 1

12 {cosθ1((±21)(±41)sinθ3 [2cosθ4 cos(ϕ2−ϕ3)sinθ2−
cosθ2 cos(ϕ3−ϕ4)sinθ4]+

cosθ3 [−2+3(±21)(±41)cosθ2 cosθ4+

2(±21)(±41)cos(ϕ2−ϕ4)sinθ2 sinθ4])+

sinθ1((±21)(±41)cosθ3 [−cosθ4 cos(ϕ1−ϕ2)sinθ2+

2cosθ2 cos(ϕ1−ϕ4)sinθ4]+

sinθ3(2 [−1+(±21)(±41)cosθ2 cosθ4]cos(ϕ1−ϕ3)+

(±21)(±41)(2cos(ϕ1 +ϕ2−ϕ3−ϕ4)+

cos(ϕ1−ϕ2)cos(ϕ3−ϕ4))sinθ2 sinθ4))}

TABLE VI Probabilities and expectation functions for finding an odd or even number of spin “−”-states

with selection. “±i” stands for the observation of spin state plus or minus on the ith particle.
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