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ABSTRACT. Group theoretic methods to construct all N-particle singlet states
by iterative recursion are presented. These techniques are applied to the quan-
tum correlations of four spin one-half particles in their singlet states. Multipartite
quantized systems can be partitioned, and their observables grouped and rede-

fined into condensed correlations.
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1. Introduction

Improved experimental particle production techniques and potential appli-
cations in quantum information theory have stimulated interest in multipartite
singlet and other entangled states. In particular, singlet states are among the
most useful states in quantum mechanics, as they appear form-invariant under
spatial rotations. Hence, a physical property such as uniqueness [1] or equibal-
ance [2] which holds true in one frame or direction remains to be true in all other
frames or directions obtained by spatial rotations.

Yet, the explicit structure of singlet states — although well understood in
general terms in group theory — has up to now neither been enumerated nor
investigated beyond a few instances for spin one-half and spin one particles. Re-
cent theoretical and experimental studies in multi-particle production (e.g., [3])
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suggest that a more systematic way to generate the complete set of arbitrary
N -particle singlet states is desirable.

In the present study we first pursue an algorithmic generation strategy, and
tabulate some of the first singlet states. The recursive method employed is based
on triangle relations and Clebsch-Gordan coefficients (e.g., [4, Ch. 13, Sec. 27]).
With this approach, a complete table of all angular momentum states can be
enumerated. The singlet states are obtained via the various pathways towards
the j = m = 0 states.

The procedure can best be illustrated by a triangular diagram, where the
states in ascending order of angular momentum are drawn against the number
of particles. In such a diagram, the “lowest” states correspond to singlet states.

Consider, for the sake of an explicit demonstration of this generation method,
a two-dimensional diagram such as the ones depicted in Fig. 1 and in Fig. 2,
which represents the “space” or “domain” of all multi-partite states. In such a
diagram, the number of particles is represented by the abscissa (the x-coordinate)
along the positive x-axis. The ordinate (the y-coordinate) of the state is equal
the total angular momentum of the state. Note that a single point may represent
many states; all corresponding to an equal number of particles, and all having
the same total angular momentum. N -partite singlet states can be constructed
by starting from the unique state of one particle, then proceeding via all “diag-
onal” and, whenever possible for integer spins, also “horizontal” pathways (e.g.,
the “horizontal” path in Fig. 2) consisting of single substeps adding one particle
after the other — either diagonally from the lower left to the upper right “↗ ”,
or diagonally from the upper left to the lower right “↘”, or, if possible, also
horizontally from left to right “→” — towards the zero momentum state of N
particles. Every diagonal or horizontal substep corresponds to the addition of a
single particle. Below we shall explicitly construct singlet states composed from
particles of spin one-half and spin one.

In the second part of this article, we present an explicit analysis of the singlet
states of four spin one-half particles in terms of their probabilities and expecta-
tion functions for spin state measurements. We also investigate the possibility
to group the outcomes of the four spin state measurements on each particle to
obtain “condensed” observables. Likewise, we consider selection of one or two
particles and the resulting correlations. One of our physical motivations for
doing so was the question of how such “condensed” observables would perform
with respect to violations of classical locality conditions.
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2. General algorithm for obtaining singlet states

In what follows we present a method to construct all states for a given number
of particles. They are the basis to construct non-trivial, e.g., non-“zigzag” singlet
states, which are not just products of singlet states of a smaller number of
particles. Although only the spin one-half and the spin one cases are explicitly
discussed, the method applies to arbitrary spin.

2.1. Spin one-half

We start by considering the spin state of a single spin one-half particle. A
second spin one-half particle is added by combining two angular momenta 1

2
to all possible total angular momenta l = 0 or 1. Next, a third particle is
introduced by coupling a third angular momentum 1

2
to all previously derived

states. Following the triangle equation, the resulting j-values for each l are in
the domain

|l − j3| ≤ j ≤ l + j3. (1)

In order to obtain all N -particle singlet states, we successively produce all
states (not only singlet states) of N/2 particles. Note that for N/2 ≤ h ≤ N par-
ticles we only need angular momentum states within 0 ≤ j ≤ (N−h)/2, because
the construction method does not allow states with higher angular momentum
to “bend diagonally backwards” and finally reach the angular momentum zero
singlet state.

Angular momentum states will be written as |h, j,m, i〉, where h denotes the
particle number, j the angular momentum, and m the magnetic quantum num-
ber. Note that there may exist many states with equal h, j and m. Thus
i denotes the number of state in an enumeration of all h-partite states with
identical angular momentum j and magnetic quantum number m. In the enu-
meration scheme chosen, we first take states generated from higher total angular
momentum, followed by states with equal total angular momentum for spin one
particles, and states with lower total angular momentum. For spin one-half par-
ticles, let us define a function f(j + 1, h) denoting the total number of states
of h particles with total angular momentum j/2. This function is tabulated in
Table 1 for the spin one-half particle case. The Clebsch-Gordan coefficient is
denoted by 〈j1, j2,m1,m2|j,m〉.

For spin one-half particles, an arbitrary state |h, j,m, i〉, h > 1, can be gener-
ated from the states with one particle less by adding a particle, thereby increasing
or decreasing the total angular momentum of the previous state containing one
particle less. Thus, we obtain two different pathways towards |h, j,m, i〉; one
from the total angular momentum j + 1

2 , symbolized graphically by “↘”, and

one from the total angular momentum j − 1
2 , symbolized graphically by “↗ ”.
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For the sake of demonstration of the method employed, we shall explicitly
discuss one of the two cases, in which the addition of one particle h − 1 → h
results in a lowering of the total angular momentum by 1

2 through j + 1
2 → j,

thus representing the diagonal pathway “↘” from the “upper left” to the “lower
right” in a diagram (nonuniquely) representing states as points with coordinates
given by the number of particles and the total angular momentum, respectively
(e.g., Fig. 1). The first contribution, associated with the magnetic quantum
numbers m− 1

2 and +1
2 , can be constructed from the product state∣∣h− 1, j + 1

2
,m− 1

2
, i
〉⊗ ∣∣1, 1

2
, 1
2
, 1
〉

(2)

by multiplying it with the Clebsch-Gordan coefficient〈
j + 1

2 ,m− 1
2 ,

1
2 ,

1
2 |j,m

〉
. (3)

Similarly, the second contribution to |h, j,m, i〉, associated with the magnetic
quantum numbers m+ 1

2 and −1
2 , can be constructed via the product state∣∣h− 1, j + 1
2 ,m+ 1

2 , i
〉⊗ ∣∣1, 12 ,−1

2 , 1
〉
, (4)

multiplied with the Clebsch-Gordan coefficient〈
j + 1

2 ,m+ 1
2 ,

1
2 ,−1

2 |j,m
〉
. (5)

Adding the two results, we obtain the state |h, j,m, i〉; i.e.,∣∣h, j,m, i〉 = 〈
j + 1

2 ,m− 1
2 ,

1
2 ,

1
2

∣∣j,m〉∣∣h− 1, j + 1
2 ,m− 1

2 , i
〉⊗ ∣∣1, 12 , 12 , 1〉

+
〈
j + 1

2 ,m+ 1
2 ,

1
2 ,−1

2

∣∣j,m〉∣∣h− 1, j + 1
2 ,m+ 1

2 , i
〉⊗ ∣∣1, 12 ,−1

2 , 1
〉
.

(6)

We do this for m = −j, . . . , j and for all states labeled by the state number
i = 1, 2, . . . , f((2j + 1) + 1, h − 1). Recall that f(j + 1, h) denotes the total
number of states of h particles with angular momentum j/2. It can be computed
by counting the number of all states generated by all possible pathways in the
construction method described above.

Similarly, if j is greater than zero, we obtain the state |h, j,m, i〉 from the
diagonal pathway “↗ ”, starting from the states

∣∣h − 1, j − 1
2 ,m − 1

2 , i
〉
and∣∣h− 1, j − 1

2 ,m+ 1
2 , i

〉
of h− 1 particles and total angular momentum j − 1

2 by
adding a single particle via〈

j − 1
2 ,m− 1

2 ,
1
2 ,

1
2

∣∣j,m〉∣∣h− 1, j − 1
2 ,m− 1

2 , i
〉⊗ ∣∣1, 12 , 1

2 , 1
〉

(7)

and 〈
j − 1

2 ,m+ 1
2 ,

1
2 ,−1

2

∣∣j,m〉∣∣h− 1, j − 1
2 ,m+ 1

2 , i
〉⊗ ∣∣1, 12 ,−1

2 , 1
〉
. (8)

This procedure is carried out for m = −j, . . . , j and i satisfying

f((2j+1)+1, h−1)+1 ≤ i ≤ f((2j+1)+1, h−1)+f((2j+1)−1, h−1). (9)

A concrete example is drawn in Fig. 1.
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Figure 1. Construction of both singlet states a) and b) of four spin one-
half particles. Concentric circles indicate the target states. The second
state is a “zigzag” state composed by the product of two two-partite singlet

states

It contains the pathways leading to the construction of both singlet states of
four spin one-half particles.

For spin one-half particles, the function f(j+1, h) denoting the total number
of states of h particles with total angular momentum j/2 is tabulated in Table 1.
The bottom line above the axis contains the number of different orthogonal
singlet states.

The singlet states of up to six spin one-half particles are explicitly enumerated
in Table 2.

2.2. Spin one

The construction of the singlet states of spin one particles follows similar rules
as in the case of spin one-half particles. One example is the construction of the
singlet state consisting of three spin one particles drawn in Fig. 2. Note that in
this case, as for all particles of integer spin, there are three possible subpaths per
addition of one particle; two diagonal “↗ ” and “↘” pathways as in the case for
spin one-half particles, as well as one horizontal “→”.

Table 3 enumerates the numbers of states contributing to a calculation of
singlet states up to 18 spin one particles. The bottom line above the axis shows
the actual number of different orthogonal singlet states. The singlet states of up
to four spin one (with one singlet state of 5) particles are explicitly enumerated
in Table 4.

There always exist trivial “zigzag” singlet states which are the product of r
two-particle singlet states stemming from the rising and lowering of consecutive
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Table 1. Enumeration of the total numbers of states contributing to a
calculation of singlet states up to 20 spin one-half particles. The bottom
line above the axis shows the actual number of different orthogonal singlet

states

j 5
1

9 2
1

1
0

4
1

9
5
4

7 2
1

8
4
4

2
0
8

3
1

7
3
5

1
5
4

6
3
7

5 2
1

6
2
7

1
1
0

4
2
9

1
6
3
8

2
1

5
2
0

7
5

2
7
5

1
0
0
1

3
6
4
0

3 2
1

4
1
4

4
8

1
6
5

5
7
2

2
0
0
2

7
0
7
2

1
1

3
9

2
8

9
0

2
9
7

1
0
0
1

3
4
3
2

1
1
9
3
4

1 2
1

2
5

1
4

4
2

1
3
2

4
2
9

1
4
3
0

4
8
6
2

1
6
7
9
6

0
1

2
5

1
4

4
2

1
3
2

4
2
9

1
4
3
0

4
8
6
2

1
6
7
9
6

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

N

states. The situation is depicted in Fig. 3. For j = 1 and N = 3r there exist
“zigzag” singlet states, which are the product of r three-particle singlet states.
For singlet states with N = 2r + 3t (r, t integer) there exist singlet states being
the product of r two-particle singlet states and t three-particle singlet states.
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Figure 2. Construction of the singlet state of three spin one particles.
Note that for integer spin, there are three possible subpaths per addition
of one particle; two diagonal “↗ ” and “↘”, as well as one horizontal “→”
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Figure 3. Construction of the “zigzag” singlet state of N particles which
effectively is a product state of N

2
spin l particle states
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Table 2. First singlet states of N spin one-half particles

N #

2 1 1√
2

(|+−〉 − | −+〉);
4 1 − 1

2
√
3

(| −+−+〉+ | −++−〉+ |+−−+〉+ |+−+−〉)+
+ 1√

3

(| − −++〉+ |++−−〉);
4 2

(− 1√
2
| −+〉+ 1√

2
|+−〉)2;

6 1 −1
2 | − − −+++〉+−1

6

(| −++−−+〉+ | −++−+−〉+
+| −+++−−〉+ |+−+−−+〉+ |+−+−+−〉+
+|+−++−−〉+ |++−−−+〉+ |++−−+−〉+

+|++−+−−〉)+ 1
6

(| − −+−++〉+ | − −++−+〉+
+| − −+++−〉+ | −+−−++〉+ | −+−+−+〉+
+| −+−++−〉+ |+−−−++〉+ |+−−+−+〉+

+|+−−++−〉)+ 1
2 |+++−−−〉;

6 2 −
√
2
3 | − −+−++〉+− 1

3
√
2

(| −+++−−〉+ |+−++−−〉+
+|++−−−+〉+ |++−−+−〉)+− 1

6
√
2

(| −+−+−+〉+
+| −+−++−〉+ |+−−+−+〉+ |+−−++−〉)+

+ 1
6
√
2

(| −++−−+〉+ | −++−+−〉+ |+−+−−+〉+
+|+−+−+−〉)+ 1

3
√
2

(| − −++−+〉+ | − −+++−〉+
+| −+−−++〉+ |+−−−++〉)+ √

2
3 |++−+−−〉;

6 3 − 1√
6

(| −+−−++〉+ | −+++−−〉)+− 1
2
√
6

(|+−−+−+〉+
+|+−−++−〉+ |+−+−−+〉+ |+−+−+−〉)+

+ 1
2
√
6

(| −+−+−+〉+ | −+−++−〉+ | −++−−+〉+
+| −++−+−〉)+ 1√

6

(|+−−−++〉+ |+−++−−〉);
6 4 − 1√

6

(| − −++−+〉+ |++−−−+〉)+− 1
2
√
6

(| −+−++−〉+
+| −++−+−〉+ |+−−++−〉+ |+−+−+−〉)+

+ 1
2
√
6

(| −+−+−+〉+ | −++−−+〉+ |+−−+−+〉+
+|+−+−−+〉)+ 1√

6

(| − −+++−〉+ |++−−+−〉);
6 5

(− 1√
2
| −+〉+ 1√

2
|+−〉)3.

3. Symmetries

In what follows we shall discuss the symmetry behavior of singlet states.
In our approach the singlet states are orthogonal to each other. This can be
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Table 3. Enumeration of the total numbers of states contributing to a
calculation of singlet states up to 18 spin one particles. The bottom line
above the axis shows the actual number of different orthogonal singlet

states

j9
1

8
1

8
4
5

7
1

7
3
6

1
5
5

6
0
5

6
1

6
2
8

1
1
1

4
0
5

1
3
9
7

4
6
4
2

5
1

5
2
1

7
6

2
5
8

8
3
7

2
6
4
0

8
1
6
2

2
4
8
8
2

4
1

4
1
5

4
9

1
5
4

4
6
8

1
3
9
8

4
1
2
5

1
2
0
7
8

3
5
1
7
8

1
0
2
1
0
2

3
1

3
1
0

2
9

8
4

2
3
8

6
7
2

1
8
9
0

5
3
1
3

1
4
9
3
8

4
2
0
4
2

1
1
8
4
8
2

3
3
4
4
2
5

2
1

2
6

1
5

4
0

1
0
5

2
8
0

7
5
0

2
0
2
5

5
5
0
0

1
5
0
2
6

4
1
2
6
2

1
1
3
8
4
1

3
1
5
4
2
0

8
7
7
3
2
0

1
1

1
3

6
1
5

3
6

9
1

2
3
2

6
0
3

1
5
8
5

4
2
1
3

1
1
2
9
8

3
0
5
3
7

8
3
0
9
7

2
2
7
4
7
5

6
2
5
9
9
2

1
7
3
0
7
8
7

0
1

1
3

6
1
5

3
6

9
1

2
3
2

6
0
3

1
5
8
5

4
2
1
3

1
1
2
9
8

3
0
5
3
7

8
3
0
9
7

2
2
7
4
7
5

6
2
5
9
9
2

1
7
3
0
7
8
7

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

N
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Table 4. First singlet states of N spin one particles

N #

2 1 1√
3

(− |0, 0〉+ | − 1, 1〉+ |1,−1〉);
3 1 − 1√

6

(| − 1, 0, 1〉+ |0, 1,−1〉+ |1,−1, 0〉)
+ 1√

6

(| − 1, 1, 0〉+ |0,−1, 1〉+ |1, 0,−1〉);
4 1 − 1

2
√
5

(| − 1, 0, 0, 1〉+ | − 1, 0, 1, 0〉+ |0,−1, 0, 1〉+ |0,−1, 1, 0〉
+|0, 1,−1, 0〉+ |0, 1, 0,−1〉+ |1, 0,−1, 0〉+ |1, 0, 0,−1〉)
+ 1

6
√
5

(| − 1, 1,−1, 1〉+ | − 1, 1, 1,−1〉+ |1,−1,−1, 1〉
+|1,−1, 1,−1〉)+ 1

3
√
5

(| − 1, 1, 0, 0〉+ |0, 0,−1, 1〉+ |0, 0, 1,−1〉
+|1,−1, 0, 0〉)+ 2

3
√
5
|0, 0, 0, 0〉+ 1√

5

(| − 1,−1, 1, 1〉+ |1, 1,−1,−1〉);
4 2 − 1

2
√
3

(| − 1, 0, 1, 0〉+ | − 1, 1,−1, 1〉+ |0,−1, 0, 1〉+ |0, 1, 0,−1〉
+|1,−1, 1,−1〉+ |1, 0,−1, 0〉)+ 1

2
√
3

(| − 1, 0, 0, 1〉+ | − 1, 1, 1,−1〉
+|0,−1, 1, 0〉+ |0, 1,−1, 0〉+ |1,−1,−1, 1〉+ |1, 0, 0,−1〉);

4 3
(

1√
3

(− |0, 0〉+ | − 1, 1〉+ |1,−1〉))2;
5 1 −

√
2
15 | − 1,−1, 0, 1, 1〉+− 1√

30

(| − 1, 0, 1, 0, 0〉+ |0,−1, 1, 0, 0〉
+|0, 0,−1, 0, 1〉+ |0, 0,−1, 1, 0〉+ |0, 1, 1,−1,−1〉
+|1, 0, 1,−1,−1〉+ |1, 1,−1,−1, 0〉+ |1, 1,−1, 0,−1〉)
+− 1

2
√
30

(| − 1, 0, 1,−1, 1〉+ | − 1, 0, 1, 1,−1〉+ | − 1, 1,−1, 0, 1〉
+| − 1, 1,−1, 1, 0〉+ |0,−1, 1,−1, 1〉+ |0,−1, 1, 1,−1〉
+|0, 1, 0,−1, 0〉+ |0, 1, 0, 0,−1〉+ |1,−1,−1, 0, 1〉
+|1,−1,−1, 1, 0〉+ |1, 0, 0,−1, 0〉+ |1, 0, 0, 0,−1〉)
+ 1

2
√
30

(| − 1, 0, 0, 0, 1〉+ | − 1, 0, 0, 1, 0〉+ | − 1, 1, 1,−1, 0〉
+| − 1, 1, 1, 0,−1〉+ |0,−1, 0, 0, 1〉+ |0,−1, 0, 1, 0〉
+|0, 1,−1,−1, 1〉+ |0, 1,−1, 1,−1〉+ |1,−1, 1,−1, 0〉
+|1,−1, 1, 0,−1〉+ |1, 0,−1,−1, 1〉+ |1, 0,−1, 1,−1〉)
+ 1√

30

(| − 1,−1, 1, 0, 1〉+ | − 1,−1, 1, 1, 0〉+ | − 1, 0,−1, 1, 1〉
+|0,−1,−1, 1, 1〉+ |0, 0, 1,−1, 0〉+ |0, 0, 1, 0,−1〉
+|0, 1,−1, 0, 0〉+ |1, 0,−1, 0, 0〉)+√

2
15 |1, 1, 0,−1,−1〉;

demonstrated by considering the formula [5]

〈(j′1j′2)jm|(j1j2)jm〉= ∑
m′

1+m′
2=m,m1+m2=m

〈(j′1j′2)jm|j′1m′
1j

′
2m

′
2〉 ×

× 〈j′1m′
1j

′
2m

′
2|j1m1j2m2〉〈j1m1j2m2|(j1j2)jm〉

= δj1j′1δj2j′2δm1m′
1
δm2m′

2
,

(10)
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where |(j1j2)jm〉 stands for a state of total angular momentum j and magnetic
quantum number m, composed of two parts having angular momentum j1 and
j2, respectively. States stemming from different j1 values are orthogonal to
each other. Hence, also the singlet states derived from them are orthogonal.
By iteration it follows that even singlet states stemming from the same j1 are
orthogonal. The method allows us to construct the full basis for each singlet
space which has the appropriate dimension.

3.1. Sign changes of magnetic quantum numbers

For the Clebsch-Gordan coefficients the following formula holds

〈j1,−m1, j2,−m2|j,−m〉 = (−1)j1+j2−j〈j1m1j2m2|jm〉. (11)

3.1.1. Spin one-half

In what follows, the symmetries of singlet spin one-half particle states are inves-
tigated. For a coupling j to j + 1

2 , the Clebsch-Gordan coefficients satisfy
〈
j,−m− 1

2 ,
1
2 ,

1
2

∣∣j + 1
2 ,−m

〉
= (−1)0

〈
j,m+ 1

2 ,
1
2 ,−1

2

∣∣j + 1
2 ,m

〉
〈
j,m+ 1

2
, 1
2
,−1

2

∣∣j + 1
2
,m

〉
= (−1)0

〈
j,−m− 1

2
, 1
2
, 1
2

∣∣j + 1
2
,−m

〉
.

If all the magnetic quantum numbers reverse their signs, the Clebsch-Gordan
coefficients stay the same. Coupling j + 1

2 to j results in
〈
j + 1

2 ,m, 12 ,
1
2

∣∣j,m+ 1
2

〉
= (−1)1

〈
j + 1

2 ,−m, 12 ,−1
2

∣∣j,−m− 1
2

〉
〈
j + 1

2 ,−m, 12 ,−1
2

∣∣j,−m− 1
2

〉
= (−1)1

〈
j + 1

2 ,m, 12 ,
1
2

∣∣j,m+ 1
2

〉
.

In this case, all the Clebsch-Gordan coefficients change their signs.

We conclude that the symmetry behavior remains the same if one passes from
the angular momentum subspace |N, J〉 to the angular momentum subspace
|N + 1, J + 1

2 〉. By passing from the subspace |N, J〉 to the subspace |N + 1,

J− 1
2 〉 the symmetry behaviour changes from even to odd and from odd to even,

respectively. A graphical representation of this property is depicted in Fig. 4.
In particular, the singlet states where N is k ·2 ·2 (k is an integer) are even, and
the ones where N is 2 · (2k + 1) are odd.

3.1.2. Spin one

Let us now consider the j = 1 case first. For the coupling of j to j + 1, the
symmetry described above implies

〈j,−m− 1, 1, 1|j + 1,−m〉 = (−1)0〈j,m+ 1, 1,−1|j + 1,m〉,
〈j,−m, 1, 0|j + 1,−m〉 = (−1)0〈j,m, 1, 0|j + 1,m〉; (12)
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Figure 4. Symmetry behavior of spin one-half particles. Even and odd
subspaces are denoted by concentric and filled circles, respectively. The
numbers denote the dimensions of the subspaces. The first number stands
for the number of states |h, j〉, and the second number stands for the 2j+1
projections. Arrows represent the direction of the coupling

i.e., the Clebsch-Gordan coefficients are the same. For the coupling of j to j,

〈j,−m− 1, 1, 1|j,−m〉 = (−1)1〈j,m+ 1, 1,−1|j,m〉,
〈j,−m, 1, 0|j,−m〉 = (−1)1〈j,m, 1, 0|j,m〉; (13)

i.e., all Clebsch-Gordan coefficients change sign. Similarly for the coupling of
j + 1 to j,

〈j + 1,m, 1, 1|j,m+ 1〉 = (−1)2〈j + 1,−m, 1,−1|j,−m− 1〉,
〈j + 1,m, 1, 0|j,m〉 = (−1)2〈j + 1,−m, 1, 0|j,−m〉; (14)

i.e., they all stay the same. Using these symmetries, we conclude that the
symmetry behaviour remains the same if one passes from the angular momentum
subspace |N, j〉 to the angular momentum subspace |N+1, j+1〉. The symmetry
behaviour does not change for coupling |N, j + 1〉 to |N + 1, j〉. Coupling |N, j〉
to |N + 1, j〉 changes the symmetry behaviour from even to odd and from odd
to even. The situation is depicted in Fig. 5. N -particle singlet states with N
even are even, whereas N -particle singlet states with N odd are odd.

3.2. Symmetric group

Let us consider the permutations of the N magnetic quantum numbers in
every product state of N particles. More explicitly, since every permutation

712



A GLANCE AT SINGLET STATES AND FOUR-PARTITE CORRELATIONS

0 1 2 3 4 5 6 7 8 9 10 N

0

1

2

3

4

5

j

� � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�� �

�

�

�

�

�

�

�

�

�

�

�� �

�

�

�

�

� �

�

1 1 3 6 15 36 91 232 603

1.3 1.3 3.3 6.3 15.3 36.3 91.3 232.3 603.3

1.5 2.5 6.5 15.5 40.5 105.5 280.5

1.7 3.7 10.7 29.7 84.7

1.9 4.9 15.9

1.11

Figure 5. Symmetries of spin one particle states. Even subspaces are
denoted by concentric circles, odd subspaces are denoted by filled circles.
The numbers denote the dimensions of the subspaces. The first number
stands for the number of states |h, j〉 and the second stands for the 2j + 1
projections. Arrows represent the way of coupling

of N particles can be written as the product of N − 1 transpositions, we shall
study the effects of N − 1 transpositions. We analyze N − 1 transpositions of
the form (j, j + 1), the transposition of j and j + 1 which generate the whole
symmetric group, and in particular all the N · (N − 1)/2 transpositions, since
(j, k+1) = (k, k+1)(j, k)(k, k+1). Therefore, we consider the class (2 1N−2) of
all two particle transpositions. Each irreducible representation can be labeled by
an ordered partition of integers which corresponds to a specific Young diagram.

As stated in [4, App. D, Sec. 14], the space spanned by the vectors of total
spins (SM ) formed by N identical spins 1

2 is associated with an irreducible
representation of SN , the representation whose Young diagram corresponds to
the partition [12N + S, 1

2N − S] of the integer N . It is apparent that the Young
diagrams for the irreducible components of the representation of SN have at
most two lines. For N > 2, any state contains at least two individual spins in

the same state. Suppose the state contains the factor u
(i)
+ u

(j)
+ ; i.e., mi,mj =

1
2 .

Since A = 1
2
(1 − (i, j)) is the antisymmetrizer and 1

2
(1 − (i, j))u

(i)
+ u

(j)
+ = 0, it

follows that A|jm〉 = 0.

Using the theorem mentioned above, the Young diagrams of the irreducible
spaces of the N -particle singlet states correspond to the partitions [12N, 12N ].
Hence the two-particle singlet state (sometimes referred to as the “Bell” state)
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is an antisymmetric one-dimensional space. The four- and six-particle singlet
spaces form a two- and a five-dimensional irreducible space whose Young dia-
grams are of the form [2, 2] and [3, 3]. Using the formula for the dimension of
an irreducible representation having the partition [λ] (e.g., [6])

fλ = n!

∏

i<j≤k

(λi−λj+j−i)

k∏

i=1

(λi+k−i)!

, (15)

the dimension can be verified.

4. Four spin one-half particle correlations

Singlet states |Ψd,n,i〉 can be labeled by three numbers d, n and i, denoting
the number d of outcomes associated with the dimension of Hilbert space per
particle, the number n of participating particles, and the state count i in an
enumeration of all possible singlet states of n particles of spin j = (d − 1)/2,
respectively. To begin with the analysis of four-partite correlations, consider four
spin one-half particles in one of the two singlet states enumerated in Table 2 and
computed by following the “paths” indicated in Fig. 1; i.e.,

|Ψ2,4,1〉 =
1√
3

[
|++−−〉+ | − −++〉

−1
2

(|+−〉+ | −+〉)(|+−〉+ | −+〉)], (16)

|Ψ2,4,2〉 = (|Ψ2,2,1〉)2 = 1
2

(|+−〉 − | −+〉)(|+−〉 − | −+〉), (17)

where |Ψ2,2,1〉 = 1√
2

(|+−〉 − | −+〉) is the two particle singlet “Bell” state.

These pure states have an explicit vector space representation as orthogonal
vectors. The two states corresponding to spin “up” and “down” correspond
to |+〉 ≡ ê1 = (1, 0) and |−〉 ≡ ê2 = (0, 1). Product states can be repre-
sented by the tensor or Kronecker product, which, for two arbitrary vectors
a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bm), can be represented by

a⊗ b = (a1b, a2b, . . . , anb) = (a1b1, a1b2, . . . , anbm). (18)
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Thus, by summing up all product sates, the two singlet states have a vector
representation as

Ψ̂2,4,1 =
1√
3

[
ê1 ⊗ ê1 ⊗ ê2 ⊗ ê2 + ê2 ⊗ ê2 ⊗ ê1 ⊗ ê1

− 1√
2

(
ê1 ⊗ ê2 + ê2 ⊗ ê1

)⊗ 1√
2

(
ê1 ⊗ ê2 + ê2 ⊗ ê1

)]

=
(
0, 0, 0, 1√

3
, 0,− 1

2
√
3
,− 1

2
√
3
, 0, 0,− 1

2
√
3
,− 1

2
√
3
, 0, 1√

3
, 0, 0, 0

)
. (19)

Ψ̂2,4,2 =
1√
2

(
ê1 ⊗ ê2 − ê2 ⊗ ê1

)⊗ 1√
2

(
ê1 ⊗ ê2 − ê2 ⊗ ê1

)
=

(
0, 0, 0, 0, 0, 12 ,−1

2 , 0, 0,−1
2 ,

1
2 , 0, 0, 0, 0, 0

)
. (20)

Their density operators ρi, i = 1, 2, are just the projectors corresponding to the
one-dimensional linear subspaces spanned by the vectors representing Ψ̂2,4,2 and

Ψ̂2,4,1 in Eqs. (20, 19); i. e. they are the dyadic product

ρi =
[
Ψ̂T

2,4,iΨ̂2,4,i

]
. (21)

As has been pointed out above, and as Ψ̂2,4,2 · Ψ̂2,4,1 = 0 or equivalently
ρΨ2,4,1

· ρΨ2,4,2
= 0, the singlet states are orthogonal. The most general form of

a four spin one-half particle singlet state is thus given by

|Ψ2,4,s〉 = λ1 |Ψ2,4,1〉+ λ2 |Ψ2,4,2〉 (22)

with |λ1|2 + |λ2|2 = 1, which can be parameterized by λ1 = sin τ , λ2 = cos τ ,
such that for τ = 0, |Ψ2,4,s〉 = |Ψ2,4,2〉, and for τ = π/2, |Ψ2,4,s〉 = |Ψ2,4,1〉.

Singlet states are form invariant with respect to arbitrary unitary transfor-
mations in the single-particle Hilbert spaces and thus also rotationally invariant

in configuration space, in particular under the rotations |+〉 = ei
ϕ
2
(
cos θ

2 |+′〉 −
sin θ

2 |−′〉) and |−〉 = e−i
ϕ
2
(
sin θ

2 |+′〉+ cos θ
2 |−′〉) in the spherical coordinates

θ, ϕ defined below (e.g., [7, Eq. (2)], or [8, Eq. (7–49)]). However, despite this
form invariance under rotations, the states are non-unique in the sense that
knowledge of a spin state observable for one particle is not sufficient for the si-
multaneous (counterfactual) determination of spin state properties for all other
three particles [9, 10].

4.1. Operators

In what follows, the operators corresponding to the spin state observables
will be enumerated. Thereby, spherical coordinates represent angles of spin
state measurements. Suppose that i denotes the ith particle with 1 ≤ i ≤ 4. Let
θi be the polar angle in the x–z-plane from the z-axis with 0 ≤ θi ≤ π, and ϕi

the azimuthal angle in the x–y-plane from the x-axis with 0 ≤ ϕi < 2π. For the
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sake of simplicity, we shall sometimes consider measurements in the x–z-plane,
for which ϕ1 = ϕ2 = ϕ3 = ϕ4 = 0. Because of the spherical symmetry of the
singlet state, this is in every aspect equivalent to a measurement along angles
lying in an arbitrary plane. In such cases the expectation values (the raw, or
uncentered, product moments [11]) are merely functions of the polar angles θ1,
θ2, θ3 and θ4, so the azimuthal angles will be omitted. For compact notation,
θ̂ and ϕ̂ will be used to denote the coordinates θ1, θ2, θ3, θ4 and ϕ1, ϕ2, ϕ3, ϕ4,
respectively.

The projection operators F corresponding to a four spin one-half particle joint
measurement aligned (“+”) or antialigned (“−”) along those angles are

F±±±±(θ̂, ϕ̂) = 1
2 [I2 ± σ(θ1, ϕ1)]⊗ 1

2 [I2 ± σ(θ2, ϕ2)]
⊗1

2 [I2 ± σ(θ3, ϕ3)]⊗ 1
2 [I2 ± σ(θ4, ϕ4)] ,

with σ(θ, ϕ) =

(
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

)
. For example, F−+−+(θ̂, ϕ̂) stands for

the proposition

‘The spin state of the first particle measured along θ1, ϕ1 is “−”,
the spin state of the second particle measured along θ2, ϕ2 is “+”,
the spin state of the third particle measured along θ3, ϕ3 is “−”, and
the spin state of the fourth particle measured along θ4, ϕ4 is “+”.’

Fig. 6 depicts a measurement configuration for a simultaneous measurement of
spins along θ1, ϕ1, θ2, ϕ2, θ3, ϕ3 and θ4, ϕ4 of the state Ψ2,4,2.

4.2. Probabilities and expectations

We now turn to the calculation of quantum predictions. The joint probability
to register the spins of the four particles in state ρΨ2,4,s

aligned or antialigned
along the directions defined by (θ1, ϕ1), (θ2, ϕ2), (θ3, ϕ3), and (θ4, ϕ4) can be
evaluated by a straightforward calculation of

PρΨ2,4,s
±±±±(θ̂, ϕ̂) = Tr

[
ρΨ2,4,s

· F±±±±(θ̂, ϕ̂)
]
. (23)

The expectation functions and joint probabilities to find the four particles in
an even or in an odd number of spin “−”-states when measured along
(θ1, ϕ1), (θ2, ϕ2), (θ3, ϕ3), and (θ4, ϕ4) are enumerated in Table 5. In the
following, omitted arguments are zero. For example, the expectation function
of the general singlet state in Eq. (22) restricted to ϕ1 = ϕ2 = ϕ3 = ϕ4 = 0 is

E(τ ; θ̂) = 1
3

(
[2 + cos(2 τ)] cos(θ1 − θ2) cos(θ3 − θ4)

+ 2 sin τ
[
sin τ cos(θ1 + θ2 − θ3 − θ4)

+
√
3 cos τ sin(θ1 − θ2) sin(θ3 − θ4)

]) (24)

716



A GLANCE AT SINGLET STATES AND FOUR-PARTITE CORRELATIONS

−

−

+

+

θ2, ϕ2

θ1, ϕ1

−

−

+

+
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Figure 6. Simultaneous spin measurement of the four-partite singlet state
represented in Eq. (17). Boxes indicate spin state analyzers such as Stern-
Gerlach apparatus oriented along the directions θ1, ϕ1, θ2, ϕ2, θ3, ϕ3 and

θ4, ϕ4; their two output ports are occupied with detectors associated with
the outcomes “+” and “−”, respectively

For τ = 0 and τ = π
2
, Eq. (24) reduces to EρΨ2,4,2

and EρΨ2,4,1
in Table 5,

respectively.

We concentrate on the algebraic evaluation of EρΨ2,4,1
, as this expectation

function is from a nontrivial non-zigzag singlet state and thus can be expected
to reveal additional structure not inherited from the two-partite correlations
also enumerated in Table 5. If all the polar angles θ̂ are all set to π/2, then this
correlation function yields

EρΨ2,4,1

(
π
2 ,

π
2 ,

π
2 ,

π
2 , ϕ̂

)
= 1

3 [2 cos(ϕ1 + ϕ2 − ϕ3 − ϕ4) + cos(ϕ1 − ϕ2) cos(ϕ3 − ϕ4)] .
(25)

Likewise, if all the azimuthal angles ϕ̂ are all set to zero, one obtains

EρΨ2,4,1
(θ̂) = 1

3 [2 cos(θ1 + θ2 − θ3 − θ4) + cos(θ1 − θ2) cos(θ3 − θ4)] . (26)

4.3. Plasticity of expectation function

The plasticity of the expectation function E(τ ; θ̂) is comparable to the two-
particle expectation function E(θ) = − cos θ for measurements in one plane
can be demonstrated by plotting the probabilities and expectation values for
selectively chosen parameters, as depicted in Fig. 7.

As there are four particles involved, the outcomes of one or two particles can
be utilized to select the events of the other particles. Let “±i” stand for the
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Table 5. Probabilities and expectation functions for finding an odd or
even number of spin “−”-states. Omitted arguments are zero

Two-partite singlet state

P= = 1
2
(1 + E) , P �= = 1

2
(1− E)

E(θ1, θ2, ϕ1, ϕ2) = P= − P �= = − [cos θ1 cos θ2 + cos(ϕ1 − ϕ2) sin θ1 sin θ2]

E(θ1, θ2) = − cos(θ1 − θ2)

E
(
π
2
, π
2
, ϕ1, ϕ2

)
= − cos(ϕ1 − ϕ2)

Four-partite singlet states

Peven = 1
2
[1 + E] , Podd = 1

2
[1− E] , E = Peven − Podd

EρΨ2,4,1
(θ̂, ϕ̂) = 1

3

{
cos θ3 sin θ1

[− cos θ4 cos(ϕ1 − ϕ2) sin θ2

+ 2cos θ2 cos(ϕ1 − ϕ4) sin θ4
]

+ sin θ1 sin θ3
[
2 cos θ2 cos θ4 cos(ϕ1 − ϕ3)

+
(
2 cos(ϕ1 + ϕ2 − ϕ3 − ϕ4)

+ cos(ϕ1 − ϕ2) cos(ϕ3 − ϕ4)
)
sin θ2 sin θ4

]

+ cos θ1
[
2 sin θ2

(
cos θ4 cos(ϕ2 − ϕ3) sin θ3

+ cos θ3 cos(ϕ2 − ϕ4) sin θ4
)

+ cos θ2 (3 cos θ3 cos θ4 − cos(ϕ3 − ϕ4) sin θ3 sin θ4)]
}

EρΨ2,4,1

(
π
2
, π
2
, π
2
, π
2
, ϕ̂

)
= 1

3
[2 cos(ϕ1 + ϕ2 − ϕ3 − ϕ4) + cos(ϕ1 − ϕ2) cos(ϕ3 − ϕ4)]

EρΨ2,4,1
(θ̂) = 1

3
[2 cos(θ1 + θ2 − θ3 − θ4) + cos(θ1 − θ2) cos(θ3 − θ4)]

EρΨ2,4,2
(θ̂) = cos(θ1 − θ2) cos(θ3 − θ4)

EρΨ2,4,2
(θ̂, ϕ̂) = [cos θ1 cos θ2 + cos(ϕ1 − ϕ2) sin θ1 sin θ2] ·

· [cos θ3 cos θ4 + cos(ϕ3 − ϕ4) sin θ3 sin θ4]

E(τ ; θ̂) = 1
3

{
[2 + cos(2 τ)] cos(θ1 − θ2) cos(θ3 − θ4)

+ 2 sin τ
[
sin τ cos(θ1 + θ2 − θ3 − θ4)

+
√
3 cos τ sin(θ1 − θ2) sin(θ3 − θ4)

]}

E(τ ; θ̂, ϕ̂) = 1
3

{
cos θ1(cos θ2{3 cos θ3 cos θ4

+ [2 cos(2τ) + 1] cos(ϕ3 − ϕ4) sin θ3 sin θ4}
+ 2 sin θ2 sin τ

[
cos θ3 cos(ϕ2 − ϕ4) sin θ4

(√
3 cos τ + sin τ

)

− cos θ4 cos(ϕ2 − ϕ3) sin θ3
(√

3 cos τ − sin τ
)])

+ sin θ1 (cos θ3 {cos θ4[2 cos(2τ) + 1] cos(ϕ1 − ϕ2) sin θ2

+ 2 cos θ2 cos(ϕ1 − ϕ4) sin θ4 sin τ
(
sin τ −

√
3 cos τ

)}

+ sin θ3
[
2 cos θ2 cos θ4 cos(ϕ1 − ϕ3) sin τ

(√
3 cos τ + sin τ

)

+ sin θ2 sin θ4
{
2 cos(ϕ1 + ϕ2 − ϕ3 − ϕ4) sin

2 τ

+ .[cos(2τ) + 2] cos(ϕ1 − ϕ2) cos(ϕ3 − ϕ4)

+
√
3 sin(2τ) sin(ϕ1 − ϕ2) sin(ϕ3 − ϕ4)}])}
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Figure 7. Probabilities and expectation values for (a) τ = 0, θ1 = θ,
θ2 = θ3 = θ4 = 0, (b) τ = 0, θ1 = θ, θ2 = θ3 = 0, θ4 = π, (c) τ = π

2
,

θ1 = θ2 = −θ3 = θ4 = θ, (d) τ = π
2
, θ1 = −θ3 = θ4 = θ, θ2 = π

4
,

(e) τ = π
4
, θ1 = −θ3 = θ4 = θ, θ2 = π

4
, (f) τ = π

4
, θ1 = −θ3 = θ4 = θ,

θ2 = 0. Dashed (dash dotted) lines indicate probabilities to find an even

(odd) number of “−” outcomes, solid lines depict expectation functions
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Table 6. Probabilities and expectation functions for finding an odd or even
number of spin “−”-states with selection. “±i” stands for the observation
of spin state plus or minus on the ith particle

Three-partite GHZM state ([7])

P± = 1
4
[1 + 2E] , P± = 1

4
[1− 2E] , E± = P± − P±

E±(θ1, θ2, θ3, ϕ1, ϕ2, ϕ3|±3) =
1
2
[cos θ1 cos θ2 ±3 cos (ϕ1 + ϕ2 + ϕ3) sin θ1 sin θ2 sin θ3]

Four-partite singlet states

EρΨ2,4,1
(θ̂, ϕ̂|±4) =

1
12

± 1
2
EρΨ2,4,1

(θ̂, ϕ̂)

EρΨ2,4,1
(θ̂| ±3 ±4) =

1
12

{
2(±31)(±41) cos(θ1 + θ2 − θ3 − θ4)

+ cos(θ1 − θ2) [1 + (±31)(±41) cos(θ3 − θ4)]
}

EρΨ2,4,1
(θ̂, ϕ̂| ±3 ±4) =

1
12

{cos θ1(2(±31)(±41) sin θ2 [cos θ4 cos(ϕ2 − ϕ3) sin θ3

+ cos θ3 cos(ϕ2 − ϕ4) sin θ4]

+ cos θ2 [1 + 3(±31)(±41) cos θ3 cos θ4

− (±31)(±41) cos(ϕ3 − ϕ4) sin θ3 sin θ4])

+ sin θ1(cos(ϕ1 − ϕ2) sin θ2 [1− (±31)(±41) cos θ3 cos θ4

+ (±31)(±41) cos(ϕ3 − ϕ4) sin θ3 sin θ4]

+ 2(±31)(±41) [cos θ2 cos θ4 cos(ϕ1 − ϕ3) sin θ3

+ cos θ2 cos θ3 cos(ϕ1 − ϕ4) sin θ4

+ cos(ϕ1 + ϕ2 − ϕ3 − ϕ4) sin θ2 sin θ3 sin θ4])}
EρΨ2,4,1

(θ̂| ±2 ±4) =
1
12

{
(±21)(±41)

[
2 cos(θ1 + θ2 − θ3 − θ4)

+ cos(θ1 − θ2) cos(θ3 − θ4)
]− 2 cos(θ1 − θ3)

}

EρΨ2,4,1
(θ̂, ϕ̂| ±2 ±4) =

1
12

{cos θ1((±21)(±41) sin θ3 [2 cos θ4 cos(ϕ2 − ϕ3) sin θ2

− cos θ2 cos(ϕ3 − ϕ4) sin θ4]

+ cos θ3 [−2 + 3(±21)(±41) cos θ2 cos θ4

+ 2(±21)(±41) cos(ϕ2 − ϕ4) sin θ2 sin θ4])

+ sin θ1((±21)(±41) cos θ3 [− cos θ4 cos(ϕ1 − ϕ2) sin θ2

+ 2cos θ2 cos(ϕ1 − ϕ4) sin θ4]

+ sin θ3(2 [−1 + (±21)(±41) cos θ2 cos θ4] cos(ϕ1 − ϕ3)

+ (±21)(±41)(2 cos(ϕ1 + ϕ2 − ϕ3 − ϕ4)

+ cos(ϕ1 − ϕ2) cos(ϕ3 − ϕ4)) sin θ2 sin θ4))}

observation of spin state plus or minus on the ith particle. Table 6 contains the
results of the associated expectation values and joint probabilities for finding an
odd or even number of spin “−”-states.

Two or three observables could also be grouped together to form a “con-
densed” observable. For instance, for each individual quadruple of outcomes
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{o1, o2, o3, o4} the values of the first and the second, as well as of the third and
the fourth particle could be multiplied to obtain two other, dichotomic observ-
ables o1o2 and o3o4, respectively. More generally, one could take all partitions of
4, such that the outcomes of all particles within an element of the partition are
multiplied. As the single outcomes occur at random, their resulting products
and thus the new condensed observable would also represent random variables.
Since the multiplication is associative, the resulting condensed correlations are
just the four-partite correlations discussed so far.

5. Summary

In summary, we have discussed an algorithmic procedure to enumerate all
singlet states of N particles of arbitrary spin. We have then explicitly enumer-
ated the first cases for spin one-half and spin one and discussed their symmetries.
These results have then be applied for a calculation of the quantum probabilities
and expectation functions of four spin one-half particles in four arbitrary direc-
tions. We conclude by pointing out that all discussed configurations could, as a
proof of principle, be locally realized by generalized beam splitters [12, 13, 14].
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