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Abstract

The trivalent functions of a trit can be grouped into equipartitions of
three elements. We discuss the separation of the corresponding functional
classes by quantum state identifications.

1 Quantum computation by state identification

One of the advantages of quantum computation [1, 2, 3, 4, 5, 6, 7, 8] over
classical algorithms [9, 10] is due to the fact that throughout a quantum com-
putation, some classically useful information can be encoded by distributing it
over different particles or quanta, such that [11, 12]

• measurements of single quanta are irrelevant, yield “random” results, and
even destroy the original information (by asking complementary ques-
tions);

• well defined correlations exist and can be defined among different particles
or quanta — even to the extend that a state is solely defined by propo-
sitions about collective (or relative) properties of the particles or quanta
involved; and
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• identifying a given state of a quantized system can yield information about
collective (or relative) properties of the particles or quanta involved.

That is, unlike classical physical states, quantum states can also be charac-
terized with respect to propositions and properties not encoded into a sin-
gle quantum, but “spread among” quanta in an entangled multi-partite state
[13, 14, 15, 16, 17, 18, 19]. Stated differently, according to Brukner, Zukowski
and Zeilinger [20], the essence of entanglement can be identified by two obser-
vations: the finiteness of the amount of information per participating quantum,
and the possibility that “the information in a composite system resides more in
the correlations than in properties of individuals.” This is also evident from the
fact that entangled states cannot be represented as the product of the individual
states of the participating quanta (cf. Ref. [3], Sect. 1.5).

Suppose one is interested in a decision problem which could be associated
with some “collective” property or behaviour; related to or involving, for in-
stance,

• a function over a wide range of its arguments,

• which is of “comparative” nature; that is, only the relative functional
values count;

• for which the single functional values are irrelevant; e.g., are of no interest,
“annoying” or are otherwise unnecessary.

Then it is not completely unreasonable to speculate that one could use the
kind of distributive information capacity encountered in the quantum physics
of multipartite states for a more effective (encryption of the) solution.

The potentiality to quantum mechanically solve decision problems by quan-
tum computing an appropriate multipartite state is not only present in binary
decision problems of the usual type, such as Deutsch’s algorithm [21, 22, 23, 2, 3].
It can be extended to d-ary decision problems on dits. (For the related state
determination problem, see Ref. [13], footnote 6, and Ref. [18].)

In what follows we shall consider as the simplest of such problems the triva-
lent functions of one trit. We shall group them in three functional classes cor-
responding to an equipartition of the set of functions into three elements. We
then investigate the possibility to separate each of these classes by quantum
state identifications [17, 18].

A strategy to identify an observable associated with the solution of a decision
problem can be implemented via the method of general state identification [17,
18, 19] as follows [12]:

1. Re-encode the behaviour of the algorithm or function involved in the de-
cision problem into an orthogonal set of states, such that every distinct
function results in a single distinct state orthogonal to all the other ones.
Suppose that this is impossible because the number of functions exceeds
the number of orthogonal states, then
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(a) one could attempt to find a suitable representation of the functions
in terms of the base states; e.g., the generalized Deutsch algorithm
in Ref. [12].

(b) Alternatively, the dimension of the Hilbert space could be increased
by the addition of auxiliary Qbits. The latter method is hardly feasi-
ble for general q-ary functions of n dits, since the number of possible
functions increases with qdn

, as compared to the dimension dn of the
Hilbert space of the input states.
In our case of trivalent (q = 3) functions of a single (n = 1) trit
(d = 3), there are 27 such functions on three-dimensional Hilbert
space. [For the original Deutsch algorithm computing the parity
(constancy or nonconstancy) of the four binary functions of one bit,
there are 221

= 4 such functions.] For a one-to-one correspondence
between functions and orthogonal states, trivalent decision problems
among the 27 trivalent functions of a single trit require three three-
state quanta associated with the set of 33 = 27 states corresponding
to some orthogonal base in C3 ⊗ C3 ⊗ C3.

2. Create three equipartitions containing three elements per partition — thus,
every such partition element contains nine orthogonal states — such that

(a) one of the partitions corresponds to the solution of the decision prob-
lem.

(b) The other two partitions “complete” the system of partitions such
that the set theoretic intersection of any three arbitrarily chosen el-
ements of the three partition with one element per partition always
yields a single base state.

3. Formally, the three partitions correspond to a system of three co-measurable
filter operators Fi, i = 1, 2, 3 with the following properties:

(F1) Every filter Fi corresponds to an operator (or a set of operators)
which generates one of the three equipartitions. (A filter is said to
separate two eigenstates if their eigenvalues are different.)

(F2) From each one of the three partitions of (F1), take an arbitrary el-
ement. The intersection of these elements of all different partitions
(one element per partition) results in a single one of the 27 different
states.

(F3) The union of all those single states generated by the intersections of
(F2) is the entire set of states.

4. As the first partition corresponds to the solution of the decision problem,
the corresponding first filter operator corresponds to the “quantum oracle”
operator solving the decision problem on the set of states corresponding
to the different cases or branches involved — one state per case or branch.
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f0 : (−−−)
f1 : (−− 0)
f2 : (−−+)
f3 : (−0−)
f4 : (−00)
f5 : (−0+)
f6 : (−+−)
f7 : (−+ 0)
f8 : (−+ +)

f9 : (0−−)
f10 : (0− 0)
f11 : (0−+)
f12 : (00−)
f13 : (000)
f14 : (00+)
f15 : (0 +−)
f16 : (0 + 0)
f17 : (0 + +)

f18 : (+−−)
f19 : (+− 0)
f20 : (+−+)
f21 : (+0−)
f22 : (+00)
f23 : (+0+)
f24 : (+ +−)
f25 : (+ + 0)
f26 : (+ + +)

Table 1: Enumeration of all trivalent functions of a single trit in lexicographic
order “− < 0 < +.”

Ideally, in order for the above strategy to work in three-dimensional Hilbert
space of a single Qtrit, one should find a function g on the set of trivalent
functions of a trit “folding” the decision problem into a single triple of orthogonal
vectors. However, as has been already pointed out, because the number of
functions may exceed the dimension of the Hilbert space, this task might be
impossible. For some decision problem, it might still be possible to find a
suitable vector representation for the functional values. Another possibility
might be the enlargement of Hilbert space by the inclusion of more auxiliary
Qbits.

2 Options for “folding” the decision problem
into a single Qtrit

For the sake of demonstration, let us again consider our example of trivalent
functions of a single trit. Formally, we shall consider the functions

f : {−, 0, +} → {−, 0, +}

which will be denoted as triples
(
f(−), f(0), f(+)

)
.

There are 331
= 27 such functions. They can be enumerated in lexicographic

order “− < 0 < +” as in Table 2.
The trits will be coded by elements of some orthogonal base in C3. Without

loss of generality we may take (1, 0, 0) = |−〉, (0, 1, 0) = |0〉, (0, 0, 1) = |+〉.
For a given “quantum oracle” function

g : {−, 0,+} → C
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we represent a function f : {−, 0, +} → {−, 0, +} by a linear subspace of C3

generated by the vector

g
(
f(−)

) |−〉+ g
(
f(0)

) |0〉+ g
(
f(+)

) |+〉 ,
i.e., by the vector (

g(f(−)), g(f(0)), g(f(+))
)
.

In order to be able to implement the first, re-encoding, step of the above
strategy, we will be searching for a function g such that the subspaces represent-
ing functions {−, 0, +} → {−, 0, +} are nonzero and form the smallest possible
number — ideally only one — of orthogonal triples.

First, let us show that we may find a function g such that we obtain three
orthogonal triples of orthogonal vectors, each one of the three triples containing
nine triples of the form

(
f(−), f(0), f(+)

)
associated with cases of the func-

tions f which can grouped into three partitions of three triples of the form(
f(−), f(0), f(+)

)
. Let the values of g be the 3

√
1 (in the set of complex

numbers). Let us, for the sake of simplicity and briefness of notation, denote
α = e2πi/3 = − 1

2 (1 − i
√

3). Then the values of g are α, α2 = α∗ = e−2πi/3 =
− 1

2 (1 + i
√

3) and α3 = 1. Moreover, αα∗ = 1 and α + α∗ = −1. Then, the
“quantum oracle” function g might be given by the following table:

x − 0 +
g(x) α∗ 1 α

and (if we identify ‘−’ with ‘−1’ and ‘+’ with ‘+1’) might be expressed by

g(x) = αx = e2πix/3 .

g maps the 27 triples of functions
(
f(−), f(0), f(+)

)
into nine groups of three

triples of functions, such that triples within the nine groups are assigned the
same vector (except a nonzero multiple) by the scheme enumerated in Table 2.
In every column we obtain an orthogonal triple of vectors

t1 = {(1, 1, 1), (1, 1, α), (1, 1, α∗)} ,
t2 = {(1, α, α∗), (1, α, 1), (1, α∗, 1)} ,
t3 = {(1, α∗, α), (α, 1, 1), (α∗, 1, 1)} .

Moreover, vectors from different orthogonal triples are apart by the same angle
φ, for which cos φ =

√
3/3.

Now, let us prove by contradiction that in general the function g cannot
be defined in such a way that we obtain at most two orthogonal triples of
subspaces. This implies that g cannot “generate” a single triple of orthogonal
vectors or subspaces, — with nine different functions

(
f(−), f(0), f(+)

)
per

element element of that triple — required for the method of computation by
state identification in three-dimensional Hilbert space.

For the sake of contradiction, let us suppose that this proposition is false,
e.g., that there is a function g such that we obtain at most two orthogonal triples
of subspaces.
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(−,−,−)

(0, 0, 0)

(+, +, +)




7→ (1, 1, 1)

(−,−, 0)

(0, 0, +)

(+, +,−)




7→ (1, 1, α)

(−,−, +)

(0, 0,−)

(+, +, 0)




7→ (1, 1, α∗)

(−, 0, +)

(0, +,−)

(+,−, 0)




7→ (1, α, α∗)

(−, 0,−)

(0, +, 0)

(+,−, +)




7→ (1, α, 1)

(−, +,−)

(0,−, 0)

(+, 0, +)




7→ (1, α∗, 1)

(−, +, 0)

(+, 0,−)

(0,−, +)




7→ (1, α∗, α)

(0,−,−)

(+, 0, 0)

(−, +, +)




7→ (α, 1, 1)

(+,−,−)

(−, 0, 0)

(0, +, +)




7→ (α∗, 1, 1)

Table 2: Enumeration of the map g of all trivalent functions
(
f(−), f(0), f(+)

)
into nine groups of three triples of functions, such that triples within the nine
groups are assigned the same vector (except a nonzero multiple).

First, all values g(−), g(0), g(+) are nonzero [if, e.g., g(−) = 0 then the
vector

(
g(−), g(−), g(−)

)
assigned to the function (−,−,−) is a zero vector].

Hence, we obtain a vector
(
g(−), g(−), g(−)

)
that is a nonzero multiple of the

vector (1, 1, 1).
Second, g(−), g(0), g(+) cannot have the same value (in this case we obtain

only one subspace generated by the vector (1, 1, 1)).
Let us show that the vectors assigned to the functions (−,−, 0) and (−, 0, 0)

are not orthogonal. Indeed, if
(
g(−), g(−), g(0)

)
and

(
g(−), g(0), g(0)

)
are or-

thogonal, then they have a zero scalar product 0 = g(−) g(−)∗ + g(−) g(0)∗ +
g(0) g(0)∗ = |g(−)|2 +g(−) g(0)∗+ |g(0)|2 and therefore g(−) g(0)∗ is a negative
real number. Hence 0 = |g(−)|2−|g(−)| · |g(0)|+ |g(0)|2 =

(|g(−)|− 1
2 |g(0)|)2 +

3
4 |g(0)|2 and therefore g(0) = 0 that is impossible.

Let us show that all values g(−), g(0), g(+) are different. Indeed, let, e.g.,
g(−) = g(0). Since g(−), g(0), g(+) cannot have the same value, we obtain
g(+) 6= g(−) and therefore the vectors

(
g(−), g(−), g(+)

)
and

(
g(−), g(+), g(+)

)
are not multiples of the vector (1, 1, 1) and do not generate the same sub-
space. Analogously as in the previous paragraph we can show that the vectors(
g(−), g(−), g(+)

)
and

(
g(−), g(+), g(+)

)
are not orthogonal, hence they do

not belong to one orthogonal triple and therefore at least one of these vectors
is orthogonal to (1, 1, 1). Let, e.g.,

(
g(−), g(−), g(+)

)
is orthogonal to (1, 1, 1).

Then we obtain a zero scalar product 0 = 2 g(−) + g(+) and therefore the
vector

(
g(−), g(−), g(+)

)
is a multiple of (1, 1,−2). The subspace making an

orthogonal triple with subspaces generated by vectors (1, 1, 1) and (1, 1,−2) is
generated by (1,−1, 0). But, since all values g(−), g(0), g(+) are nonzero, this
subspace is not obtained.
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We have shown that the subspaces assigned to functions (−,−, 0) and (−, 0, 0)
are not orthogonal and do not coincide (otherwise g(−) = g(0)). Hence they
do not belong to one orthogonal triple and at least one of them should be-
long to an orthogonal triple with the space generated by the vector (1, 1, 1).
Let, e.g.,

(
g(−), g(−), g(0)

)
is orthogonal to the vector (1, 1, 1). Then we ob-

tain a zero scalar product 0 = 2 g(−) + g(0). Analogously (using the trans-
formations (−, 0) → (−, +) and (−, 0) → (0,+)) we can show that one of
the vectors

(
g(−), g(−), g(+)

)
and

(
g(−), g(+), g(+)

)
(
(
g(0), g(0), g(+)

)
and(

g(0), g(+), g(+)
)
, resp.) is orthogonal to the vector (1, 1, 1) and therefore

0 = 2 g(−) + g(+) or 0 = g(−) + 2 g(+) (0 = 2 g(0) + g(+) or 0 = g(0) + 2 g(+),
resp.). Since all values g(−), g(0), g(+) are different and 0 = 2 g(−) + g(0), we
obtain that 0 6= 2 g(−)+g(+) and 0 6= g(0)+2 g(+). Hence 0 = g(−)+2 g(+) and
0 = 2 g(0)+g(+). The system of equations 0 = 2 g(−)+g(0), 0 = g(−)+2 g(+)
and 0 = 2 g(0) + g(+) has the only solution g(−) = g(0) = g(+) = 0, which
results in a complete contradiction.

3 Increasing the dimension of state space by ad-
ditional quanta

The geometric constraints obtained in the last section can be interpreted as
the impossibility to “fold” a decision problem into an appropriate quantum
state identification in low-dimensional Hilbert space. As has been mentioned
already, this can be circumvented by the introduction of additional quanta,
thereby increasing the dimension of Hilbert space. In that way, the functions
of a small number of bits can be mapped one-to-one onto orthogonal quantum
states. However, this strategy fails for a large number of arguments, since the
ratio of the number of q-ary functions of n dits to the dimension of the Hilbert
space of n dits d−nqdn

increases fast with growing n.
One possibility of mapping the 27 trivalent functions of one trit into the 27

orthogonal base states of the Hilbert space spanned by three Qtrits is

|h(
f(−)

)〉 ⊗ |h(
f(0)

)〉 ⊗ |h(
f(+)

)〉 ,
with h = id being the identity function. A reversible implementation of this
function can be given by

h :
∏

x∈{−,0,+} |x〉|0〉 →
→ ∏

x∈{−,0,+} |x〉|0⊕ h(f(x))〉 =∏
x∈{−,0,+} |x〉|h(f(x))〉 ,

where “⊕” stands for modulo-two addition.
For the sake of demonstration, consider the following trivalent decision prob-

lem associated with the three triples of vectors t1, t2, and t3 as follows:

Given some trivalent function of a single trit fi(x), i ∈ {0, . . . , 26},
x ∈ {−, 0, +}. Find the triple of vectors t among the three triples t1,
t2 and t3, such that g(fi) ∈ t.
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4 Summary

In summary we find that, in three-dimensional Hilbert space, we cannot solve
the type of trivalent decision problems discussed above by a single query. Such
a behavior has already been observed for the problem to find the parity of an
unknown binary function f : {0, 1}k → {0, 1} of k bits, which turned out to
be quantum computationally hard [24, 6, 25, 26, 27]. We conjecture that this
hardness increases with the number d of possible states of a single bit.

We have also explicitly discussed a trivalent decision problem which can be
interpreted as the solution of a quantum state identification problem.
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[16] Č. Brukner and A. Zeilinger, “Information and fundamental elements of
the structure of quantum theory,” in Time, Quantum and Information,
L. Castell and O. Ischebek, eds. (Springer, Berlin, 2003), pp. 323–355.

[17] N. Donath and K. Svozil, “Finding a state among a complete set of orthog-
onal ones,” Physical Review A (Atomic, Molecular, and Optical Physics)
65, 044 302 (2002).
http://dx.doi.org/10.1103/PhysRevA.65.044302

[18] K. Svozil, “Quantum information in base n defined by state partitions,”
Physical Review A (Atomic, Molecular, and Optical Physics) 66, 044 306
(2002).
http://dx.doi.org/10.1103/PhysRevA.66.044306

[19] K. Svozil, “Quantum information via state partitions and the context trans-
lation principle,” Journal of Modern Optics 51, 811–819 (2004).
http://dx.doi.org/10.1080/09500340410001664179
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