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Abstract The trivalent functions of a trit can be grouped into equipartitions of three

elements. We discuss the separation of the corresponding functional classes by quantum

state identifications.

Keywords Trivalent decision problems � Quantum computation �
Quantum decision problems � Quantum state identification � Entanglement �
Generalized Deutsch problem

1 Quantum computation by state identification

One of the advantages of quantum computation (Gruska 1999; Nielsen and Chuang 2000;

Mermin 2007; Bennett et al. 1997; Ozhigov 1998; Beals et al. 2001; Cleve 2000; Fortnow

2003) over classical algorithms (Rogers 1967; Odifreddi 1989) is due to the fact that

throughout a quantum computation, some classically useful information can be encoded by

distributing it over different particles or quanta, such that (Mermin 2003; Svozil 2006)

• measurements of single quanta are irrelevant, yield ‘‘random’’ results, and even destroy

the original information (by asking complementary questions);

• well defined correlations exist and can be defined among different particles or quanta—

even to the extend that a state is solely defined by propositions about collective (or

relative) properties of the particles or quanta involved; and

• identifying a given state of a quantized system can yield information about collective
(or relative) properties of the particles or quanta involved.
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That is, unlike classical physical states, quantum states can also be characterized with

respect to propositions and properties not encoded into a single quantum, but ‘‘spread

among’’ quanta in an entangled multi-partite state (Zeilinger 1999; Brukner and Zeilinger

1999a, b, 2003; Donath and Svozil 2002; Svozil 2002, 2004). Stated differently, according

to Brukner et al. (2002), the essence of entanglement can be identified by two

observations: the finiteness of the amount of information per participating quantum, and

the possibility that ‘‘the information in a composite system resides more in the correlations
than in properties of individuals.’’ This is also evident from the fact that entangled states

cannot be represented as the product of the individual states of the participating quanta

(cf. Mermin 2007, Sect. 1.5).

Suppose one is interested in a decision problem which could be associated with some

‘‘collective’’ property or behaviour; related to or involving, for instance,

• a function over a wide range of its arguments,

• which is of ‘‘comparative’’ nature; that is, only the relative functional values count;

• for which the single functional values are irrelevant; e.g., are of no interest, ‘‘annoying’’

or are otherwise unnecessary.

Then it is not completely unreasonable to speculate that one could use the kind of

distributive information capacity encountered in the quantum physics of multipartite states

for a more effective (encryption of the) solution.

The potentiality to quantum mechanically solve decision problems by quantum com-

puting an appropriate multipartite state is not only present in binary decision problems of

the usual type, such as Deutsch’s algorithm (Deutsch 1985; Deutsch and Jozsa 1992; Cleve

et al. 1998; Nielsen and Chuang 2000; Mermin 2007). It can be extended to d-ary decision

problems on dits. (For the related state determination problem, see Zeilinger 1999, footnote

6, and Svozil 2002.)

In what follows we shall consider as the simplest of such problems the trivalent

functions of one trit. We shall group them in three functional classes corresponding to an

equipartition of the set of functions into three elements. We then investigate the possibility

to separate each of these classes by quantum state identifications (Donath and Svozil 2002;

Svozil 2002).

A strategy to identify an observable associated with the solution of a decision problem

can be implemented via the method of general state identification (Donath and Svozil

2002; Svozil 2002, 2004) as follows (Svozil 2006):

1. Re-encode the behaviour of the algorithm or function involved in the decision problem

into an orthogonal set of states, such that every distinct function results in a single
distinct state orthogonal to all the other ones. Suppose that this is impossible because

the number of functions exceeds the number of orthogonal states, then

(a) one could attempt to find a suitable representation of the functions in terms of the

base states; e.g., the generalized Deutsch algorithm in Svozil (2006).

(b) Alternatively, the dimension of the Hilbert space could be increased by the

addition of auxiliary Qbits. The latter method is hardly feasible for general q-ary

functions of n dits, since the number of possible functions increases with qdn
; as

compared to the dimension dn of the Hilbert space of the input states.

In our case of trivalent (q = 3) functions of a single (n = 1) trit (d = 3), there

are 27 such functions on three-dimensional Hilbert space. [For the original

Deutsch algorithm computing the parity (constancy or nonconstancy) of the four

binary functions of one bit, there are 221 ¼ 4 such functions.] For a one-to-one
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correspondence between functions and orthogonal states, trivalent decision

problems among the 27 trivalent functions of a single trit require three three-state

quanta associated with the set of 33 = 27 states corresponding to some

orthogonal base in C
3 � C

3 � C
3:

2. Create three equipartitions containing three elements per partition—thus, every such

partition element contains nine orthogonal states—such that

(a) one of the partitions corresponds to the solution of the decision problem.

(b) The other two partitions ‘‘complete’’ the system of partitions such that the set

theoretic intersection of any three arbitrarily chosen elements of the three

partition with one element per partition always yields a single base state.

3. Formally, the three partitions correspond to a system of three co-measurable filter
operators Fi; i ¼ 1; 2; 3 with the following properties:

(F1) Every filter Fi corresponds to an operator (or a set of operators) which generates

one of the three equipartitions. (A filter is said to separate two eigenstates if

their eigenvalues are different.)

(F2) From each one of the three partitions of (F1), take an arbitrary element. The

intersection of these elements of all different partitions (one element per

partition) results in a single one of the 27 different states.

(F3) The union of all those single states generated by the intersections of (F2) is the

entire set of states.

4. As the first partition corresponds to the solution of the decision problem, the

corresponding first filter operator corresponds to the ‘‘quantum oracle’’ operator

solving the decision problem on the set of states corresponding to the different cases or

branches involved—one state per case or branch.

Ideally, in order for the above strategy to work in three-dimensional Hilbert space of

a single Qtrit, one should find a function g on the set of trivalent functions of a trit

‘‘folding’’ the decision problem into a single triple of orthogonal vectors. However, as

has been already pointed out, because the number of functions may exceed the

dimension of the Hilbert space, this task might be impossible. For some decision

problem, it might still be possible to find a suitable vector representation for the

functional values. Another possibility might be the enlargement of Hilbert space by the

inclusion of more auxiliary Qbits.

2 Options for ‘‘folding’’ the decision problem into a single Qtrit

For the sake of demonstration, let us again consider our example of trivalent functions of a

single trit. Formally, we shall consider the functions

f : f�; 0;þg ! f�; 0;þg

which will be denoted as triples

ðf ð�Þ; f ð0Þ; f ðþÞÞ:

There are 331 ¼ 27 such functions. They can be enumerated in lexicographic order

‘‘- \ 0 \ ?’’ as in Table 1.
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The trits will be coded by elements of some orthogonal base in C
3: Without loss of

generality we may take ð1; 0; 0Þ ¼ j�i; ð0; 1; 0Þ ¼ j0i; ð0; 0; 1Þ ¼ jþi:
For a given ‘‘quantum oracle’’ function

g : f�; 0;þg ! C

we represent a function f : f�; 0;þg ! f�; 0;þg by a linear subspace of C3 generated by

the vector

gðf ð�ÞÞj�i þ gðf ð0ÞÞj0i þ gðf ðþÞÞjþi;

i.e., by the vector

tðgðf ð�ÞÞ; gðf ð0ÞÞ; gðf ðþÞÞÞ:
In order to be able to implement the first, re-encoding, step of the above strategy, we

will be searching for a function g such that the subspaces representing functions

f�; 0;þg ! f�; 0;þg are nonzero and form the smallest possible number—ideally only

one—of orthogonal triples.

First, let us show that we may find a function g such that we obtain three orthogonal

triples of orthogonal vectors, each one of the three triples containing nine triples of the

form (f(-), f(0), f(?)) associated with cases of the functions f which can grouped into

three partitions of three triples of the form (f(-), f(0), f(?)). Let the values of g be the
ffiffiffi

13
p

(in the set of complex numbers). Let us, for the sake of simplicity and briefness of notation,

denote a ¼ e2pi=3 ¼ �1
2
ð1� i

ffiffiffi

3
p
Þ: Then the values of g are a; a2 ¼ a� ¼ e�2pi=3 ¼ � 1

2
ð1þ

i
ffiffiffi

3
p
Þ and a3 = 1. Moreover, aa� ¼ 1 and aþ a� ¼ �1: Then, the ‘‘quantum oracle’’

function g might be given by the following table:

and (if we identify ‘-’ with ‘-1’ and ‘?’ with ‘?1’) might be expressed by

gðxÞ ¼ ax ¼ e2pix=3:

g maps the 27 triples of functions (f(-), f(0), f(?)) into nine groups of three triples of

functions, such that triples within the nine groups are assigned the same vector (except a

nonzero multiple) by the scheme enumerated in Table 2. In every column we obtain an

orthogonal triple of vectors

Table 1 Enumeration of all tri-
valent functions of a single trit in
lexicographic order ‘‘-
\ 0 \ ?’’

f0 : ð�;�;�Þ f9 : ð0;�;�Þ f18 : ðþ;�;�Þ
f1 : ð�;�; 0Þ f10 : ð0;�; 0Þ f19 : ðþ;�; 0Þ
f2 : ð�;�;þÞ f11 : ð0;�;þÞ f20 : ðþ;�;þÞ
f3 : ð�; 0;�Þ f12 : ð0; 0;�Þ f21 : ðþ; 0;�Þ
f4 : ð�; 0; 0Þ f13 : ð0; 0; 0Þ f22 : ðþ; 0; 0Þ
f5 : ð�; 0;þÞ f14 : ð0; 0;þÞ f23 : ðþ; 0;þÞ
f6 : ð�;þ;�Þ f15 : ð0;þ;�Þ f24 : ðþ;þ;�Þ
f7 : ð�;þ; 0Þ f16 : ð0;þ; 0Þ f25 : ðþ;þ; 0Þ
f8 : ð�;þ;þÞ f17 : ð0;þ;þÞ f26 : ðþ;þ;þÞ

x - 0 ?

g(x) a* 1 a
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t1 ¼ fð1; 1; 1Þ; ð1; 1; aÞ; ð1; 1; a�Þg;
t2 ¼ fð1; a; a�Þ; ð1; a; 1Þ; ð1; a�; 1Þg;
t3 ¼ fð1; a�; aÞ; ða; 1; 1Þ; ða�; 1; 1Þg:

Moreover, vectors from different orthogonal triples are apart by the same angle /, for

which cos / ¼
ffiffiffi

3
p

=3:
Now, let us prove by contradiction that in general the function g cannot be defined in

such a way that we obtain at most two orthogonal triples of subspaces. This implies that g
cannot ‘‘generate’’ a single triple of orthogonal vectors or subspaces,—with nine different

functions (f(-), f(0), f(?)) per element of that triple—required for the method of com-

putation by state identification in three-dimensional Hilbert space.

For the sake of contradiction, let us suppose that this proposition is false, e.g., that there

is a function g such that we obtain at most two orthogonal triples of subspaces.

First, all values g(-), g(0), g(?) are nonzero [if, e.g., g(-) = 0 then the vector (g(-),

g(-), g(-)) assigned to the function (-, -, -) is a zero vector]. Hence, we obtain a vector

(g(-), g(-), g(-)) that is a nonzero multiple of the vector (1, 1, 1).

Second, g(-), g(0), g(?) cannot have the same value (in this case we obtain only one

subspace generated by the vector (1, 1, 1)).

Let us show that the vectors assigned to the functions (-, -, 0) and (-, 0, 0) are not

orthogonal. Indeed, if (g(-), g(-), g(0)) and (g(-), g(0), g(0)) are orthogonal, then they

have a zero scalar product 0 ¼ gð�Þgð�Þ� þ gð�Þgð0Þ� þ gð0Þgð0Þ� ¼ jgð�Þj2 þ
gð�Þgð0Þ� þ jgð0Þj2 and therefore g(-) g(0)* is a negative real number. Hence 0 ¼
jgð�Þj2 � jgð�Þj � jgð0Þj þ jgð0Þj2 ¼ jgð�Þj � 1

2
jgð0Þj

� �2þ3
4
jgð0Þj2 and therefore g(0) = 0

that is impossible.

Let us show that all values g(-), g(0), g(?) are different. Indeed, let, e.g., g(-) = g(0).

Since g(-), g(0), g(?) cannot have the same value, we obtain g(?) = g(-) and therefore

the vectors (g(-), g(-), g(?)) and (g(-), g(?), g(?)) are not multiples of the vector (1, 1,

1) and do not generate the same subspace. Analogously as in the previous paragraph we

can show that the vectors (g(-), g(-), g(?)) and (g(-), g(?), g(?)) are not orthogonal,

hence they do not belong to one orthogonal triple and therefore at least one of these vectors

is orthogonal to (1, 1, 1). Let, e.g., (g(-), g(-), g(?)) is orthogonal to (1, 1, 1). Then we

obtain a zero scalar product 0 = 2 g(-) ? g(?) and therefore the vector (g(-), g(-),

g(?)) is a multiple of (1, 1, -2). The subspace making an orthogonal triple with subspaces

generated by vectors (1, 1, 1) and (1, 1, -2) is generated by (1, -1, 0). But, since all values

g(-), g(0), g(?) are nonzero, this subspace is not obtained.

Table 2 Enumeration of the map g of all trivalent functions (f(-), f(0), f(?)) into nine groups of three
triples of functions, such that triples within the nine groups are assigned the same vector (except a nonzero
multiple)

ð�;�;�Þ
ð0; 0; 0Þ
ðþ;þ;þÞ

9

=

;

7!ð1; 1; 1Þ
ð�;�; 0Þ
ð0; 0;þÞ
ðþ;þ;�Þ

9

=

;

7!ð1; 1; aÞ
ð�;�;þÞ
ð0; 0;�Þ
ðþ;þ; 0Þ

9

=

;

7!ð1; 1; a�Þ

ð�; 0;þÞ
ð0;þ;�Þ
ðþ;�; 0Þ

9

=

;

7!ð1; a; a�Þ
ð�; 0;�Þ
ð0;þ; 0Þ
ðþ;�;þÞ

9

=

;

7!ð1; a; 1Þ
ð�;þ;�Þ
ð0;�; 0Þ
ðþ; 0;þÞ

9

=

;

7!ð1; a�; 1Þ

ð�;þ; 0Þ
ðþ; 0;�Þ
ð0;�;þÞ

9

=

;

7!ð1; a�; aÞ
ð0;�;�Þ
ðþ; 0; 0Þ
ð�;þ;þÞ

9

=

;

7!ða; 1; 1Þ
ðþ;�;�Þ
ð�; 0; 0Þ
ð0;þ;þÞ

9

=

;

7!ða�; 1; 1Þ
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We have shown that the subspaces assigned to functions (-, -, 0) and (-, 0, 0) are not

orthogonal and do not coincide (otherwise g(-) = g(0)). Hence they do not belong to one

orthogonal triple and at least one of them should belong to an orthogonal triple with the

space generated by the vector (1, 1, 1). Let, e.g., (g(-), g(-), g(0)) is orthogonal to the

vector (1, 1, 1). Then we obtain a zero scalar product 0 = 2 g(-) ? g(0). Analogously

(using the transformations ð�; 0Þ!ð�;þÞ and ð�; 0Þ!ð0;þÞ) we can show that one of the

vectors (g(-), g(-), g(?)) and (g(-), g(?), g(?)) ((g(0), g(0), g(?)) and (g(0), g(?),

g(?)), resp.) is orthogonal to the vector (1, 1, 1) and therefore 0 = 2 g(-) ? g(?) or

0 = g(-) ? 2g(?) (0 = 2 g(0) ? g(?) or 0 = g(0) ? 2 g(?), resp.). Since all values g(-),

g(0), g(?) are different and 0 = 2 g(-) ? g(0), we obtain that 0 6¼ 2gð�Þ þ gðþÞ and

0 6¼ gð0Þ þ 2gðþÞ: Hence 0 = g(-) ? 2 g(?) and 0 = 2 g(0) ? g(?). The system of

equations 0 = 2g(-) ? g(0), 0 = g(-) ? 2 g(?) and 0 = 2 g(0) ? g(?) has the only

solution g(-) = g(0) = g(?) = 0, which results in a complete contradiction.

3 Increasing the dimension of state space by additional quanta

The geometric constraints obtained in the last section can be interpreted as the impossi-

bility to ‘‘fold’’ a decision problem into an appropriate quantum state identification in low-

dimensional Hilbert space. As has been mentioned already, this can be circumvented by the

introduction of additional quanta, thereby increasing the dimension of Hilbert space. In that

way, the functions of a small number of bits can be mapped one-to-one onto orthogonal

quantum states. However, this strategy fails for a large number of arguments, since the

ratio of the number of q-ary functions of n dits to the dimension of the Hilbert space of n
dits d�nqdn

increases fast with growing n.

One possibility of mapping the 27 trivalent functions of one trit into the 27 orthogonal

base states of the Hilbert space spanned by three Qtrits is

jhðf ð�ÞÞi � jhðf ð0ÞÞi � jhðf ðþÞÞi;

with h = id being the identity function. A reversible implementation of this function can

be given by

h :
Y

x2f�;0;þgjxij0i
!
Y

x2f�;0;þgjxij0� hðf ðxÞÞi ¼
Y

x2f�;0;þgjxijhðf ðxÞÞi;

where ‘‘�’’ stands for modulo-two addition.

For the sake of demonstration, consider the following trivalent decision problem

associated with the three triples of vectors t1, t2, and t3 as follows:

Given some trivalent function of a single trit fiðxÞ; i 2 f0; . . .; 26g; x 2 f�; 0;þg:
Find the triple of vectors t among the three triples t1, t2 and t3, such that gðfiÞ 2 t:

4 Summary

In summary we find that, in three-dimensional Hilbert space, we cannot solve the type of

trivalent decision problems discussed above by a single query. Such a behaviour has

already been observed for the problem to find the parity of an unknown binary function
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f : f0; 1gk ! f0; 1g of k bits, which turned out to be quantum computationally hard (Farhi

et al. 1998; Beals et al. 2001; Miao 2001; Orus et al. 2004; Stadelhofer et al. 2005). We

conjecture that this hardness increases with the number d of possible states of a single bit.

We have also explicitly discussed a trivalent decision problem which can be interpreted

as the solution of a quantum state identification problem.
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