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Abstract

Unlike classical information, quantum knowledge is restricted to the outcome of
measurements of maximal observables corresponding to single contexts.
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1 Introduction

The violation of classical bounds [1,2] on joint quantum probabilities enumer-
ated by Bell [3,4], Clauser-Horn-Shimony-Holt (CHSH) [5,6] and others [7–10],
the Kochen-Specker (KS) [11–19] as well as the Greenberger-Horn-Zeilinger
(GHZ) [20–22] theorems provide constructive, finite proofs that observables
outside of a single quantum context cannot consistently co-exist. Here, the
term context refers to a maximal collection of co-measurable observables as-
sociated with commuting operators. Every context can also be characterized
by a single (but nonunique) maximal operator. All operators within a context
are functions thereof (see Ref. [23], Sec. II.10, p. 90, English translation p. 173
and Ref. [24], Sec. 84). In quantum logic [25–28], contexts are represented
by Boolean subalgebras or blocks pasted together to form the Hilbert lattice.
(For the sake of nontriviality, Hilbert spaces of dimension higher than two
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are considered.) In an algebraic sense, a context represents a “classical mini–
universe,” which is distributive and allows for as many two–valued states —
interpretable as classical truth assignments — as there are atoms.

By definition, no direct measurement of observables “outside” of a single con-
text is possible. Therefore, any assumption about the physical existence of
such observables results in the invocation of counterfactuals. For example,
Einstein, Podolsky and Rosen (EPR) [29] suggested to measure and counter-
factually infer two contexts simultaneously by considering elements of physical
reality which cannot be measured simultaneously on the same quantum. In
this respect, quantum physics relates to scholastic philosophy. Indeed, in an
informal paper [11] announcing KS, Specker explicitly referred to the “infu-
turabilities” of scholastic philosophy.

Related to counterfactuals is the idea of a (divine) omniscience “knowing” all
the factuals and counterfactuals in the naive sense that “if a proposition is
true, then an omniscient agent (such as God) knows that it is true.” Already
Thomas Aquinas considered questions such as whether God has knowledge of
non-existing things (Ref. [30], Part 1, Question 14, Article 9) or things that
are not yet (Ref. [30], Part 1, Question 14, Article 13).

In classical physics, there is just one global context which is trivially consti-
tuted by all conceivable observables. Hence, there is no conceptual or prin-
cipal reason to assume counterfactuals; sometimes they are just considered
for convenience (saving the experimenter from measuring redundant observ-
ables). The empirical sciences implement classical omniscience by assuming
that in principle all observables of classical physics are (co-)measurable with-
out any restrictions. No distinction is made between an observable obtained by
an “actual” and a “potential” measurement. Precision and (co-)measurability
are limited only by the technical capacities of the experimenter. The prin-
ciple of empirical classical omniscience has given rise to the realistic believe
that all observables “exist,” regardless of the state preparations and obser-
vations. Physical (co-)existence is thereby related to the realistic assumption
[31] (sometimes referred to as the “ontic” [32] viewpoint) that such physical
entities exist even without being experienced by any finite mind.

Formally, counterfactuals and classical omniscience are supported by the fol-
lowing two properties.

(i) Boolean logics and absence of complementarity: Historically, the discovery
of the uncertainty principle and quantum complementarity marked a first
departure from classical omniscience. A formal expression of complemen-
tarity is the nondistributive algebra of quantum observables. Alas, nondis-
tributivity of the empirical logical structure is no sufficient condition for
the impossibility of omniscience. For example, both generalized urn models
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[33,34] as well as equivalent [35] finite automata [36–39] exhibit complemen-
tarity, yet they possess two–valued states interpretable as omniscience; i.e.,
as global truth assignments with a consistent value “0” (false) or “1” (true)
for every observable.

(ii) “Abundance” of two–valued states interpretable as omniscience of the sys-
tem: Thereby, any such “dispersionless” two–valued state — associated with
a classical “truth table” — can be defined on all observables, regardless of
whether they have been actually observed or not.

In contrast, quantum propositions neither satisfy distributivity, nor do they
support two–valued states. Recall Schrödinger’s interpretation of the quantum
wave function (in §7 of Ref. [40]) in terms of a “catalogue of expectations.”
Every page of this catalogue of expectations is represented by a single context.
In quantum mechanics, (as well as in quasi-classical models [35]), due to com-
plementarity, contexts are not global, and the structure of contexts as well as
the probability measures on them [41,42] pose many challenging questions.

2 “Scarcity” of two–valued states

Gleason’s theorem [41,42] states that the quantum probabilities can be derived
from the assumption that classical probability theory holds within contexts.
Yet, unlike classical systems, they are no convex combination of global two–
valued states. Formally, this is due to the fact that the quantum propositions
do not support globally defined two–valued states.

What happens if one insist in the use of two–valued states outside of a sin-
gle context by considering quantum propositional structures still allowing “a
few” two–valued states? In this case, the invocation of counterfactuals and
the “scarcity” of two–valued states accounts for some consequences which, de-
pending on the disposition of the recipient, appear “mindboggling” to absurd.

By bundling together propositional structures giving rise to such “mindbog-
gling” properties, one arrives at the KS conclusion. For such finite composi-
tions of observables, the mere assumption of a globally defined truth table
results in a complete contradiction. Alas, by contemplating the situation not
bottom–up as usually, but top–down; i.e., from the point of view of KS, it is
not too difficult to derive “mindboggling” statements from absurdities. Indeed,
the principle of explosion (stating that ex falso quodlibet, or contradictione se-
quitur quodlibet) which, due to the pasting construction of Hilbert lattices,
holds also in quantum logic, implies that “anything follows from a contradic-
tion.”
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Fig. 1. Four-star configuration in four-dimensional Hilbert space a) Greechie dia-
gram representing atoms by points, and contexts by maximal smooth, unbroken
curves. b) Dual Tkadlec diagram representing contexts by filled points, and inter-
connected contexts by lines.

2.1 Dual Greechie and Tkadlec diagrams

For a proof of the “scarcity” of two–valued states, Greechie diagrams symbol-
izing one-dimensional projectors by points and contexts by maximal smooth
unbroken curves are considered. The “dual” Tkadlec diagrams [43] symbolize
entire contexts by points, and links between contexts by lines joining them.

Tkadlec diagrams suggest the most compact representation of a context in
terms of a single maximal operator. Note that, for the n-dimensional Hilbert
space, an n-star configuration represents n different contexts joined in n dif-
ferent atoms of the center context; see Fig. 1.

2.2 The “one–zero” rule

For the sake of presentation of such properties, consider the proof that, for the
observables depicted in Fig. 2, the occurrence of an outcome corresponding to
K (abbreviated by “K occurs”) implies that E cannot occur. This property,
which has been already exploited by KS [12, Γ1], will be called the “one-zero
rule.”

2.3 The “one–one/zero–zero” rule

For another example, consider two collections of observables as above, which
are combined by “gluing” them together in two contexts. The geometry based
upon the Γ3-configuration in KS [12] is depicted in Fig. 3. In this case one
obtains the “one-one” and “zero-zero rules,” stating that K occurs if and only
if K ′ occurs.

For a quantum falsification of the one-zero and the one-one/zero-zero rules it
suffices to record a single pair of outcomes which does not obey these classical
predictions. This can for instance been demonstrated in an EPR-type setup
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Fig. 2. Configuration of observables in three-dimensional Hilbert space implying
that whenever K is true, E must be false. The seven interconnected contexts
a = {A, B,C}, b = {C, D, E}, c = {E, F,G}, d = {G,H, I}, e = {I, J,K},
f = {K, L,A}, g = {B,H, M}, consist of the 13 projectors associated with
the one dimensional subspaces spanned by [18] A = (1,

√
2,−1), B = (1, 0, 1),

C = (−1,
√

2, 1), D = (−1,
√

2,−3), E = (
√

2, 1, 0), F = (1,−√2,−3),
G = (−1,

√
2,−1), H = (1, 0,−1), I = (1,

√
2, 1), J = (1,

√
2,−3), K = (

√
2,−1, 0),

L = (1,
√

2, 3), M = (0, 1, 0). a) Greechie diagram representing atoms by points,
and contexts by maximal smooth, unbroken curves. Only a single observable per
context can be true. Noncontextuality requests that link observables in different
contexts are either true or false in all of these context. Then, whenever K is true,
E cannot be true, since then at least one of the two contexts a and d would contain
only outcomes which do not occur. b) Dual Tkadlec diagram representing contexts
by filled points, and interconnected contexts by lines.

of two spin one particles in a singlet state

1√
3
(− |0, 0〉+ | − 1, 1〉+ |1,−1〉),

and observables corresponding to E and K, or to K and K ′. Generalized
beam splitters are possible realizations [44–46]. This adds to the evidence
accumulated already by Bell, KS and GHZ, that we are not living in a classical
world.

2.4 The absence of two–valued states

The simplest known proof [19,47] of KS is in four-dimensional real Hilbert
space and requires nine intricately interwoven contexts — every observable is
in exactly two different contexts — drawn in Fig. 4. In order to appreciate the
proofs (by contradiction), note that

5



e ee e

e e

e e

e e

e e

e ee e

e e

e e

e e

e e
e e

e

A A′

B B′

C C ′

D D′

E E ′

F F ′

G G′

H H ′

I I ′

J J ′
K K ′

L L′

M M ′
a a′

b b′
c c′

d d′

e e′
f f ′

g g′
N

h

i

j

a)

u

u

u

u

u

u u

u uu u

u u

u u

u u

b f ′c e′

d d′

e c′f b′

a a′
g g′

h

i

j

b)

Fig. 3. Configuration of observables implying that the occurrences of K and K ′

coincide. a) Greechie diagram representing atoms by points, and contexts by max-
imal smooth, unbroken curves. The coordinates of the “primed” points A′–M ′ are
obtained by interchanging the first and the second components of the unprimed
coordinates A–M enumerated in Fig. 2; and N = (0, 0, 1). The two contexts h and
i linking the primed with the unprimed observables allow the following argument:
Whenever K occurs, then by the one-zero rule E cannot occur; moreover N can-
not occur, hence K ′ must occur. Conversely, by symmetry whenever K ′ occurs, K
must occur. b) Dual Tkadlec diagram representing contexts by filled points, and
interconnected contexts by lines.

(i) the proofs require the assumption of counterfactuals; i.e., of “potential” ob-
servables which, due to quantum complementarity, are incompatible with
the “actual” measurement context; yet could have been measured if the
measurement apparatus were different. These counterfactuals are organized
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Fig. 4. Proof of the Kochen-Specker theorem [19,47] in four-dimensional real vector
space. The nine tightly interconnected contexts a = {A, B,C, D}, b = {D,E, F, G},
c = {G, H, I, J}, d = {J,K, L,M}, e = {M,N,O, P}, f = {P, Q,R, A},
g = {B, I,K, R}, h = {C,E, L,N}, i = {F,H, O,Q} consist of the 18 projec-
tors associated with the one dimensional subspaces spanned by A = (0, 0, 1,−1),
B = (1,−1, 0, 0), C = (1, 1,−1,−1), D = (1, 1, 1, 1), E = (1,−1, 1,−1),
F = (1, 0,−1, 0), G = (0, 1, 0,−1), H = (1, 0, 1, 0), I = (1, 1,−1, 1),
J = (−1, 1, 1, 1), K = (1, 1, 1,−1), L = (1, 0, 0, 1), M = (0, 1,−1, 0), N = (0, 1, 1, 0),
O = (0, 0, 0, 1), P = (1, 0, 0, 0), Q = (0, 1, 0, 0), R = (0, 0, 1, 1). a) Greechie diagram
representing atoms by points, and contexts by maximal smooth, unbroken curves.
b) Dual Tkadlec diagram representing contexts by filled points, and interconnected
contexts are connected by lines. (Duality means that points represent blocks and
maximal smooth curves represent atoms.) The nine contexts in four dimensional
Hilbert space are interlinked in a four-star form; hence every observable proposi-
tion occurs in exactly two contexts. Thus, in an enumeration of the four observable
propositions of each of the nine contexts, there appears to be an even number of
true propositions. Yet, as there is an odd number of contexts, there should be an
odd number (actually nine) of true propositions.

into groups of interconnected contexts which, due to quantum complemen-
tarity, are incompatible and therefore cannot be measured simultaneously;
not even in Einstein-Podolsky-Rosen (EPR) [29] type setups [48].

(ii) The proofs by contradiction have no direct experimental realizations. As
has already been pointedly stated by Robert Clifton [49], “how can you
measure a contradiction?”

(iii) So–called “experimental tests” inspired by Bell-type inequalities [50–52],
KS [53,54] as well as GHZ [55] measure the incompatible contexts which
are considered in the proofs one after another; i.e., temporally sequentially,
and not simultaneously. Hence, different contexts can only be measured on
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different particles.

3 Alternatives

The following alternatives present some ways to cope with these findings:

(i) abandonment of classical omniscience: in this view, it is wrong to assume
that all observables which could in principle (“potentially”) have been mea-
sured also co–exist, irrespective of whether or not they have or even could
have been actually measured. Realism might still be assumed for a single
context, in particular the one in which the system was prepared;

(ii) abandonment of realism: in this view, it is wrong to assume that physical
entities exist even without being experienced by any finite mind. Quite
literary, with this assumption, the proofs of KS and similar decay into thin
air because there are no counterfactuals or unobserved physical observables
or inferred (rather than measured) elements of physical reality.

(iii) contextuality; i.e., the abandonment of context independence of measure-
ment outcomes [56–58]: it is wrong to assume (cf. Ref. [56], Sec. 5) that the
result of an observation is independent not only of the state of the system
but also of the complete disposition of the apparatus. Compare also Bohr’s
remarks [59] about “the impossibility of any sharp separation between the be-
havior of atomic objects and the interaction with the measuring instruments
which serve to define the conditions under which the phenomena appear.”

It should come as no surprise that realists such as Bell favor contextuality
rather than giving up realism or classical omniscience. Nonetheless, to this
date there does not exist a single experimental finding to support contextu-
ality, and, as pointed out above, contextuality is only one of at least three
possibilities to interpret quantum probability theory.

The simplest configuration testing contextuality corresponds to an arrange-
ment of five observables A,B,C,D,K with two comeasurable, mutually com-
muting, contexts {A,B,C} and {A,D, K} interconnected at A. This proposi-
tional structure L12 can be represented in three-dimensional Hilbert space by
two tripods with a single common leg. Indeed, if contextuality is a physically
meaningful principle for the finite systems of observables employed in proofs
of KS, then contextuality should already be detectable in this simple system
of observables. It would be a challenging task to realize the L12 quantum log-
ical structure experimentally in an EPR-type setup, and falsify contextuality
there.

Furthermore, in extension of the two-context configuration, also systems of
three interlinked contexts such as {A,B,C}, {A,D, K} and {K,L, M} inter-
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connected at A and K could be considered. Note that too tightly intercon-
nected systems such as {A,B, C}, {A,D, K} and {K,L, C} have no repre-
sentation in a 3-dimensional Hilbert space. However, for a greater dimension
than three, we can take, e.g., A = (1, 0, 0, 0), B = (0, 1, 0, 0), C = (0, 0, 1, 0),
D = (0, 1, 1, 0), K = (0, 0, 0, 1), L = (1, 1, 0, 0).

4 Summary

If one believes in the physical existence of counterfactuals, a lot of puzzling and
mindboggling properties can be derived, bordering to mystery, if not to ab-
surdity. Take, for example the one-zero rule discussed above: a noncontextual
argument shows that certain outcomes are correlated.

Formally, this is due to the “scarcity” of two–valued states on the linear sub-
spaces of Hilbert states. Worse yet, by considering a larger, finite group of
observables, it can be shown that, with the assumption of noncontextuality,
no such state exists.

Alas, it is not too difficult to derive “mindboggling” statements from absur-
dities. Indeed, the principle of explosion suggests that “anything follows from
a contradiction.”

It is not unreasonable to doubt the usefulness of contextuality as a resolu-
tion of the imminent inconsistencies and complete contradictions originating
in the assumption of the physical (co-)existence of observables in different
contexts. Contextuality might not even be measurable in the simplest cases
where it could be falsified by simultaneous EPR-type measurements of two in-
terlinked contexts. A detailed discussion on realism versus empiricism and the
issues related to contextuality in EPR-type configurations can also be found in
Refs. [60,61]; see also Khrennikov’s findings about couterfactuals in EPR-type
setups [62].

It appears most natural to abandon the notion that not all classical observables
are quantum observables; that quantum omniscience is limited to a single
context; that a quantized system has only observable physical properties in
the context in which it was prepared; and that one should accept the obvious
fact that one cannot squeeze information from an ignorant system or agent.
If one tries nevertheless, then all one obtains are random, erratic outcomes.
Indeed, it is not totally unreasonable to speculate that contextuality is a “red
herring;” that it appears to be one of the biggest and most popular delusions in
the foundations of the quantum (which is rich in mindboggling speculations),
devised by Bell and other realist to retain some form of classical realistic
nonsensical omniscience.
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[40] E. Schrödinger, “Die gegenwärtige Situation in der Quantenmechanik,”
Naturwissenschaften 23, 807–812, 823–828, 844–849 (1935), English translation
in [68] and [63, pp. 152-167].
http://wwwthep.physik.uni-mainz.de/ matschul/rot/schroedinger.pdf

[41] A. M. Gleason, “Measures on the closed subspaces of a Hilbert space,” Journal
of Mathematics and Mechanics 6, 885–893 (1957).

12
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