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INTRODUCTION

The purpose of this paper is to deepen the understanding of the importance of Gleason’s
theorem in connection with probability distributions and the density matrix formalism,
as well as the discussion of non-Gleason type probabilities. Before we present example
calculations from frame functions via probability distributions to density matrices and
vice versa we review some theory, starting with a short characterization of density
matrices and proceeding with a discussion of Gleason theorem.

Quantum states

In what follows, only real Hilbert spaces will be considered. Within von Neumann’s
Hilbert space framework [1], the state of a given quantized system can always be
expressed by a density operator. A system in a pure state |ψ〉 ≡ x is fully characterized
by a state vector x. Its density operator is the projector ρ = |ψ〉〈ψ| ≡ xT ⊗ x, where
the superscript T indicates transposition, and ⊗ stands for the dyadic or tensor product.
Generally, the density operator of the mixed state is defined as a convex combination
ρ = ∑m

i=1 pi|ψi〉〈ψi| of normalized pure state vectors {|ψi〉}, where 0 ≥ pi ≥ 1 and
∑m

i=1 pi = 1. The density operator is a positiv definite Hermitian operator with unit trace.
According to the Born rule, the expectation value 〈A〉 of an observable A is the trace of
ρA; i.e., 〈A〉= tr(ρA). In particular, if A is a projector E corresponding to an elementary
yes-no proposition “the system has property Q,” then 〈E〉 = tr(ρE) corresponds to the
probability of that property Q if the system is in state ρ . The equations ρ2 = ρ and
tr(ρ2) = 1 are only valid for pure states, because ρ is not idempotent for mixed states.



Gleason’s theorem

One way of interpreting Gleason’s theorem [2, 3, 4, 5, 6, 7] is to view it as a derivation
of the Born rule from fundamental assumptions about quantum probabilities, guided by
quantum theory, in order to assign consistent and unique probabilities to all possible
measurement outcomes. With these provisos, Gleason proved that there is no alternative
to the Born rule for Hilbert spaces of dimension greater than two.

Before we introduce Gleason’s Theorem, we have to define a measure ε on our real
or complex Hilbert space. A measure is a mapping which assigns a nonnegative real
number ε(E) to each projector E such that, if Ei are mutually orthogonal, then the
measure of σ = ∑i Ei has to satisfy the (sub-)additivity property ε(σ) = ∑i ε(Ei). Any
such measure is determined by its values on the one dimensional projections. Consider a
unit vector x and the associated one dimensional projector Ex = xT ⊗x, then the measure
ε is determined by the real-valued positive function f (x) = ε(Ex) on the unit sphere.
The weight W of the function f is defined as the measure of the identity projection;
i.e., W = ε(1). Then the function satisfies ∑i f (ei) = W for each orthonormal basis {ei}.
These functions are called frame functions of weight W .

For quantum probability theory, the value of the weight W is necessarily 1. The
physical meaning of a frame function f (x) is the probability of the proposition associated
with the projector Ex for a given quantum system in a state associated with f . Gleason’s
Theorem can be stated as follows: Let H be a Hilbert space of dimension greater than
two. Let f be a frame function. Then there exists a unique density operator (i.e., a
positive operator of trace class) ρ on H such that f (x) = tr(ρEx) = ∑i〈ei|ρEx|ei〉 =
∑i, j〈ei|ρ|e j〉〈e j|Ex|ei〉 = ∑i, j〈ei|ρ |e j〉〈e j|x〉〈x|ei〉 = 〈ρx|x〉 is a quadratic form of x for
all projectors Ex associated with elementary yes-no propositions.

Let us summarize what could be called the essence of Gleason’s Theorem. Roughly
speaking, from the assumption of quasi-classical probabilities for co-measurable events
associated with commuting operators (projectors) follows the Born rule of quantum
probabilities. In other words, if we want a (positive) probability measure to be totally
(sub-)additive on all subspaces or projections (of a Hilbert space of finite dimension
greater than two) which are co-measurable, then the only possibility is the density
matrix formalism. Stated differently, the Born quantum probability rule follows from
elementary assumptions about quantum mechanics, the representation of observables
by self-adjoint operators in Hilbert spaces, and from the quasi-classical consistent
assignment of probabilities for compatible measurement outcomes.

Note that classically the domain for which the frame (probability) function is (sub-
)additive extends over all observables. Moreover, any classical probability distribution
can be written as the convex sum of a set of singular, two-valued measures. The Kochen-
Specker [8] theorem states that, for Hilbert spaces of dimension greater than two, no
two-valued measure and thus no such represention exists.



THE EASY PART: CALCULATION OF FRAME FUNCTIONS
FROM DENSITY OPERATORS

To calculate a frame function from a given density operator, one has to use the formula
f (x) = 〈ρx|x〉 explicitly, as given by Gleason’s Theorem in a straightforward calculation.

Pure states

The most elementary example is the state corresponding to |Ψ〉 ≡ (1,0,0). Since
the associated density operator is the projector corresponding to the diagonal matrix
ρΨ = diag(1,0,0), with x = (x1,x2,x3), the frame function ist just fΨ(x) = x2

1.
As another example, consider the four Bell basis states |Ψ±〉 ≡ (1/

√
2)(1,0,0,±1)

and |Φ±〉 ≡ (1/
√

2)(0,1,±1,0).
The associated density matrices are given by

ρΨ± = 1√
2




1
0
0
±1


⊗ 1√

2
(1,0,0,±1) = 1

2




1 0 0 ±1
0 0 0 0
0 0 0 0
±1 0 0 1


 ,

ρΦ± = 1√
2




0
1
±1
0


⊗ 1√

2
(0,1,±1,0) = 1

2




0 0 0 0
0 1 ±1 0
0 ±1 1 0
0 0 0 0


 .

(1)

For x = (x1,x2,x3,x4), the associated frame functions turn out to be

fΨ±(x) = 1
2 (x1± x4)

2 ,

fΦ±(x) = 1
2 (x2± x3)

2 .
(2)

Mixed states composed of orthogonal projections and non orthogonal
projections

Consider a mixture

ρ = pΨ+|Ψ+〉+ pΦ+ |Φ+〉=
1
2




pΨ+ 0 0 pΨ+

0 pΦ+ pΦ+ 0
0 pΦ+ pΦ+ 0

pΨ+ 0 0 pΨ+


 (3)

of the two orthogonal Bell states |Ψ+〉 and |Φ+〉, with pΨ+ + pΦ+ = 1. The correspond-
ing frame function is f (x) = (1/2)

{
pΨ+(x1 + x4)2 + pΦ+(x2 + x3)2}.

The eigenvalues of the density matrix are pΨ+ and pΦ+ , and in its diagonalized
form the matrix, is given by diag(pΨ+ , pΦ+,0,0). The associated frame function is
f (x) = pΨ+x2

1 + pΦ+x2
2.



Let us now consider an example in which the projectors are not orthogonal.

ρ = a|ϕ1〉+b|ϕ2〉,
|ϕ1〉 = diag(1,0,0),

|ϕ2〉 = 1
2




1 1 0
1 1 0
0 0 0


 ,

(4)

such that

ρ =
1
2




a+ b
2

b
2 0

b
2

b
2 0

0 0 0


 . (5)

The associated frame function is f (x) = ax2
1 + b

2(x1 +x2)2. Of course we can diagonalize
this matrix too, and obtain

ρ = diag

(
1
2

+

√
1
4
− ab

2
,
1
2
−

√
1
4
− ab

2
,0

)
, (6)

so that the frame function is

f (x) =

(
1
2

+

√
1
4
− ab

2

)
x2

1 +

(
1
2
−

√
1
4
− ab

2

)
x2

2. (7)

THE HARD PART: DENSITY OPERATORS FROM FRAME
FUNCTIONS

The previous section dealt with the straightforward task of finding a frame function from
a given quadratic form. Now we shall deal with the less straightforward inverse problem;
i.e., finding the quadratic form associated from a given frame function, or probability dis-
tribution. By Gleason’s theorem we know that all frame functions correspond to positive
symmetric quadratic forms. In general, the problem can be answered by enumerating the
solution of the system of linear equations

f (x) = 〈x|ρ|x〉. (8)

We present some examples. Consider the frame function

f (x) =
1
7

[
3x2

1 +2(x2− x3)
2
]
. (9)

For this function the density operator has the form

ρ =
1
7




3 0 0
0 2 −2
0 −2 2


 , (10)



which is the sum of two orthogonal projectors

E1 = diag(1,0,0)

E2 = 1
2




0 0 0
0 1 −1
0 −1 1


 ,

(11)

with statistical weights 3/7 and 4/7 for E1 and E2, respectively.
As a nonorthogonal case, consider the function

f (x) =
1

12

[
4x2

1 +3(x1− x2)
2 +(x2− x3)

2
]
. (12)

Inspection shows that this function is a positive quadratic form; hence f (x) is a frame
function. The density operator of the system has the following form

ρ =
1

12




7 −3 0
−3 4 −1
0 −1 1


 . (13)

This density operator is not generated by orthogonal states anymore.

General classification of frame functions

The signature of a real quadratic form f (y) = yT Ay or of a symmetric bilinear form
is the number of positive, negative, and zero eigenvalues of the corresponding matrix
A. Sylvester’s law of inertia states that the signature is an invariant of the quadratic
form; i.e., it is independent of the choice of basis. Stated differently [9, p. 1062],
when a quadratic form associated with the matrix A is reduced by a nonsingular linear
transformation S such that A′ = SAST (S is a nonsingular matrix) to

f ′(y) = yT A′y = y2
1 + y2

2 + · · ·+ y2
P− y2

P+1− y2
P+2−·· ·− y2

P+N , (14)

the numbers P and N of positive and negative squares appearing in the reduction is an
invariant of the quadratic form and does not depend on the method of reduction.

So far we have seen that every symmetric quadratic form gives rise to a frame function
f (x). By Sylvester’s law of inertia we know that we can find a Sylvester basis for every
symmetric quadratic form in which the diagonal matrix has only positive, negative,
and zero entries. With the probabilistic interpretation, our quadratic forms ρ have to
be positive definite, and thus the negative value can be omitted. Hence, for the n-
dimensional case, all quadratic forms, and thus all frame functions, are isomorphic (up to
a coordinate changes and permutations) to n+1 types of frame functions corresponding
the different signatures of the resulting density operators.
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FIGURE 1. Examples for a non-Gleason type probability measure for n spin one-half state propositional
systems L(xi), i = 1, · · · ,n which are not comeasurable. The superscript i represents the ith measurement
direction. (a) Full circles indicate the atoms with probability measure 1. There exists a classical but
no quantum realization of this state. (b) Full squares indicate atoms with probability measure 1/2. The
quantum realization is the “most ignorant state.”

NON-GLEASON TYPE PROBABILITIES

In what follows, two examples for non-Gleason type probability measures on quantized
systems will be discussed. A common feature of such probabilities is that they are not
“smooth” and are based on singular distributions.

Two-dimensional cases

As in two dimensions, single lattices are not tied together at common basis elemens,
there exists the possibility of non-Gleason type probability measures; i.e., measures
which have singular, separating distributions and thus can be embedded into “classical”
Boolean algebras. One particular example [10], depicted as Greechie diagram, in which
orthogonal bases are represented by smooth lines, connecting the basis elements which
are represented by circles. is drawn in Figure 1(a). Its probability measure is P(xi−) = 1
and P(xi

+) = 1−P(xi−) = 0 for i = 1, . . . ,n. There is no quantum realization for this
classic probability measure; yet it cannot be excluded by Gleason’s theorem. Whether
these non-Gleason type states are pure artifacts of two-dimensional Hilbert spaces or
have a physical meaning remains an open problem. One indication that such state is
impossible to attain quantum mechanically is a principle [11, 12, 13] stating that an
elementary quantum mechanical system in two-dimensional Hilbert space can carry only
one classical bit. The configuration drawn in Figure 1(b) has a quantum realization by
the state ρ = diag(1/2,1/2) corresponding to the null information.
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FIGURE 2. Greechie diagram of the Wright pentagon [14]. Filled squares indicate probability 1
2 .

Three-dimensional cases

Another example of a suborthoposet which is embeddable into the three-dimensional
real Hilbert lattice C(R3) has been given by Wright [14]. Its Greechie diagram of the
pentagonal form is drawn in Figure 2. An explicit embedding is [15]

a0 = Span(
√√

5,
√

2+
√

5,
√

3+
√

5),
b0 = Span(

√√
5,−

√
2+

√
5,

√
3−√5),

a1 = Span(−
√√

5,−
√
−2+

√
5,
√

2),
b1 = Span(0,

√
2,

√
−2+

√
5),

a2 = Span(
√√

5,−
√
−2+

√
5,
√

2),
b2 = Span(−

√√
5,−

√
2+

√
5,

√
3−√5),

a3 = Span(−
√√

5,
√

2+
√

5,
√

3+
√

5),
b3 = Span(

√
5+

√
5,

√
3−√5,2

√
−2+

√
5),

a4 = Span(0,−
√
−1+

√
5,1),

b4 = Span(−
√

5+
√

5,
√

3−√5,2
√
−2+

√
5).

(15)

Wright showed that the probability measure

P(ai) =
1
2
, P(bi) = 0, i = 1,2,3,4 (16)

as depicted in Figure 2 is no convex combination of other pure states. Note that these
configuration corresponds to a sublattice (but not to a subalgebra) of the full Hilbert
lattice of quantum propositions. Sublattices may always allow more states than the full
lattice. Therefore, the above probability measure cannot be expected to be consistently
extendable to the entire Hilbert lattice.



SUMMARY

We propose to put Gleason’s theorem to constructive use in deriving quantum states
from frame functions indentified as probability distributions. Thus, there exists a direct,
constructive route from experimental frequency counts to the quantum states compat-
ible with these counts. In this interpretation, Gleason’s theorem presents an inductive
element.

Since in two-dimensional Hilbert space there is no possible joint connection of one
basis with any other basis, there is no structure assuring the continuity supporting a
Gleason-type argument. This is the reason for the impossibility to base the Born rule
on the assumptions made by Gleason. From three dimensions onwards, bases can be
interlinked in one or more common leg(s); and systems of bases can be cyclic, as
exploited in the Kochen-Specker proof. It is not unreasonable to spaculate that, as for
two-dimensional Hilbert space there is no strong support of the Born rule by Gleason’s
theorem, it would be very interesting to find any empirical evidence for its violation.
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