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Spatial Orientation using Quantum Telepathy
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We implemented the protocol of entanglement assisted orientation in the space proposed by
Brukner et al. (quant-ph/0509123). We used min-max principle to evaluate the optimal entan-
gled state and the optimal direction of polarization measurements which violate the classical bound.
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Bizarre effects of quantum entanglement [1],[2], are
usually dramatized using Bell’s inequalities [3],[4],[5],[6].
These show that correlations between measurements on
two spatially separated systems can be higher than any-
thing allowed by the ”local realistic” (i.e. classical) the-
ories. The way that testing Bell’s inequalities almost in-
variably proceeds is, in very broad terms, as follows. Al-
ice and Bob share a number of entangled pairs, and Alice
measures her systems at the same time as Bob measures
his systems. After that, they communicated classically
their results to each other and compute various corre-
lation functions. When they combine these correlation
functions into a Bell’s inequality, they can then check if
the inequality is violated (signifying the existence of cor-
relations stronger than any classical one). It is crucial
for this experiment that Alice and Bob classically com-
municate with each other. Otherwise they would never
be able to compute the necessary correlation functions
in order to test the inequality. It is absolutely extraor-
dinary, however, that there are applications where Alice
and Bob could utilize stronger than classical correlations
without any form of classical communication. Suppose
that Alice and Bob are far away from each other, but
happen to share some entanglement (this could have been
established when they met at some earlier time). Can
they, using entanglement but without utilizing any clas-
sical communication, move in the direction towards each
other faster than allowed by any local realistic theories?
Namely can they find each other without communica-
tion? Surprisingly, this protocol is possible as shown
very recently by Brukner et al in [7]. The way that
this would proceed is that, depending on the outcomes
of their respective measurements, Alice and Bob would
move in certain directions, and entanglement would en-
sure that the directions are such that they (on average)
approach each other faster than allowed classically and

 
FIG. 1: Two partners (Alice and Bob) are on the two poles
of the Earth: there are three paths and two directions (+ and
-) for each path: each partner have to find the other in the
lack of any classical communication. To achieve their goal the
best strategy is to maximize the probability to take the same
directions, if they choose the same path, and the probability
to take opposite directions if they choose different paths.

yet without communicating with each other. This pro-
tocol clearly exemplifies why entanglement deserves to
be called ”spooky”. The effect could, in fact, be called
”spatial orientation using quantum telepathy”.

In this letter we experimentally demonstrate that
quantum entanglement indeed leads to the faster than
classical orientation in space. Two partners (Alice and
Bob) are on the two poles of the Earth; there are three
paths and two directions (+ and -) for each path: each
partner have to find the other in the lack of any classical
communication (Fig.1). To achieve their goal the best
strategy is to maximize the probability to take the same
directions, if they choose the same path, and the proba-
bility to take opposite directions if they choose different
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FIG. 2: Experimental set-up. A 3mm long β-barium bo-
rate crystal, cut for a Type.II phase-matching, is pumped in
ultrafast regime.The SPDC photon pairs, are generated as co-
herent superposition of |HV 〉 and |V H〉. The HWP changes
the two alternatives in |HH〉 and |V V 〉.The PBS provides the
symmetrization of amplitude probabilities. The temporal su-
perposition of the two alternatives is reached by changing the
length of the trombone (τ ). At the output of the interferom-
eter the Bell state

∣

∣Φ+
〉

is synthesized. By tilting the BBO
crystal and rotating the third HWP it is possible to synthesize
all Bell States or a linear combinationof two of them [15],[16].

paths. The overall probability of success is given by

P =
1

9





3
∑

i=1

Pii (same) +

3
∑

i6=j=1

Pij (opp)



 (1)

where Pij (opp) is the probability that Alice and Bob
take opposite direction, if they choose different paths,
Pii (same) is the probability that they take the same di-
rection if they choose the same path.

The probability of success of any classical protocol is
bounded by the value 7/9, because it was demonstrated
that

β =

3
∑

i=1

Pii (same) +

3
∑

i6=j=1

Pij (opp) ≤ 7 (2)

holds for all local realistic models [7].

To increase the probability of success, Alice and Bob
can share polarization-entangled photon pairs: every
partner independently choose a path at random from the
set {1,2,3}. The choice of the path determines a choice
of direction of polarization measurements: the possible
outputs (+ or -) fix the direction along the path.

The aim of this letter is to use the min-max principle
to evaluate the optimal entangled state and the optimal
direction of polarization measurements which violate the
classical bound.

The min-max principle for self-adjoint transformations
[8] states that the operator norm is bounded by the
minimal and maximal eigenvalues. The norm of the
self-adjoint transformation resulting from the sum of
the quantum counterparts of all the classical terms con-
tributing to a particular Bell inequality obeys the min-
max principle. Thus determining the maximal viola-
tions of classical Bell inequalities amounts to solving an
eigenvalue problem. The associated eigenstates are the
multi-partite states which yield a maximum violation of
the classical bounds under the given experimental setup
[9],[10],[11].

In order to evaluate the quantum counterpart of the
inequality (2), the classical probabilities have to be sub-
stituted by the quantum ones. Let us consider a two
spin 1/2 particles configuration, described by its density
matrix ρ, in which the two particles move in opposite
directions along the y axis and the spin components are
measured in the x-z plane. In such a case, the single
particle spin-up and down observables along ϑi, ϑj , cor-
respond to the projections A± (ϑi), with

A± (ϑ) =
1

2
(I± n (ϑ) σ) (3)

where σ is the vector of the Pauli matrices. The joint
probability qij for finding the left particle in the spin-
up state along the angle ϑi and the right particle in the
spin-up state along the angle ϑj is given by

qij = tr{ρ[A+ (ϑi) ⊗ A+ (ϑj)]}. (4)

Then, substituting in the inequality (2), we obtain

Pii (same) = tr{ρ[A+ (ϑi) ⊗ A+ (ϑi)

+ A− (ϑi) ⊗ A− (ϑi)]},
Pij (opp) = tr{ρ[A+ (ϑi) ⊗ A− (ϑj)

+ A− (ϑi) ⊗ A+ (ϑj)]}. (5)

We are interested in maximal violations of the inequal-
ity (2) with three possible measurements setting per ob-
server: Alice and Bob choose between three dichotomic
observables, determined by three measurements angles
ϑ1, ϑ2, ϑ3. The first possible choice is given by ϑ1 = 0,

FIG. 3: Experimentally reconstructed bounds for eigenval-
ues λ1,2,3,4 (ϕ, ϑ). The bounds for eigenvalues λ3,4 (ϕ, ϑ) were
reached by the linear combination of the Bell states

∣

∣Ψ+
〉

and
∣

∣Φ−

〉

.
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ϑ2 = 2ϕ, ϑ3 = 2ϑ. In this case the eigenvalues λ1,2,3,4,
and the eigenvectors ν1,2,3,4, corresponding to the maxi-
mal violating eigenstates of the self-adjoint operator O33

O33 =
∑

s∈{+,−}

3
∑

i=1

As (ϑi) ⊗ As (ϑi)

+
∑

s6=t∈{+,−}

3
∑

i6=j=1

As (ϑi) ⊗ At (ϑj) (6)

are

λ1 (ϕ, ϑ) = 6 − cos (2ϑ) − cos (2(ϑ − ϕ)) − cos (2ϕ)

λ2 (ϕ, ϑ) = 3 + cos (2ϑ) + cos (2(ϑ − ϕ)) + cos (2ϕ)

λ3 (ϕ, ϑ) =
1

2
{9 − [15 + 2 cos (4ϑ) − 4 cos (2(ϑ − 2ϕ))

− 4 cos (2(2ϑ − ϕ)) + 2 cos (4(ϑ − ϕ))

+2 cos (4ϕ) − 4 cos (2(ϑ + ϕ))]
1/2

}

λ4 (ϕ, ϑ) =
1

2
{9 + [15 + 2 cos (4ϑ) − 4 cos (2(ϑ − 2ϕ))

− 4 cos (2(2ϑ − ϕ)) + 2 cos (4(ϑ − ϕ))

+2 cos (4ϕ) − 4 cos (2(ϑ + ϕ))]
1/2

}

(7)

ν1 =
∣

∣Φ+
〉

ν2 =
∣

∣Ψ−
〉

ν3 = F (ϕ, ϑ)
∣

∣Ψ+
〉

+ G (ϕ, ϑ)
∣

∣Φ−
〉

ν4 = H (ϕ, ϑ)
∣

∣Ψ+
〉

+ I (ϕ, ϑ)
∣

∣Φ−
〉

(8)

where the eigenvectors ν3 and ν4 are given by the super-
position of the Bell’s states |Ψ+〉, |Φ−〉, by the functions
F, G, H, I. The maximum eigenvalue is λ1 (ϕ, ϑ) with
the corresponding eigenvector |Φ+〉, and optimal angles
of measurement given by (60o,−60o) (when we consider
angles less than 90o), where is achieved the value 7.5. The
second eigenvalue λ2 (ϕ, ϑ) with eigenvector |Ψ−〉, deter-
minates the minimum bound for the inequality (2). For
the angles (60o,−60o), the minimum value 1.5 is reached.
The eigenvalues λ3 (ϕ, ϑ) and λ4 (ϕ, ϑ) stay always under
the classical bound 7. For a single value parametrization,
for example, ϑ1 = 0, ϑ2 = 2ϑ, ϑ3 = −2ϑ, the eigenval-
ues λ1,2,3,4, and the eigenvectors ν1,2,3,4, corresponding
to the maximal violating eigenstates of the self-adjoint
operator O33 are

λ1 = 6 − 2 cos (2ϑ) − cos (4ϑ) , ν1 =
∣

∣Φ+
〉

λ2 = 5 + 2 cos (2ϑ) − cos (4ϑ) , ν2 =
∣

∣Ψ+
〉

λ3 = 4 − 2 cos (2ϑ) + cos (4ϑ) , ν3 =
∣

∣Φ−
〉

λ4 = 3 + 2 cos (2ϑ) + cos (4ϑ) , ν4 =
∣

∣Ψ−
〉

(9)

then the entangled state |Φ+〉 provides the violation of
classical bound for ϑ = 60o. In this case to any eigen-
value one Bell state corresponds. In the experimental set-

FIG. 4: The contour plots represent the experimental recon-
struction of β for the bidimesional parametrization (0, 2ϕ, 2ϑ).
Only the state

∣

∣Φ+
〉

violates the classical bound 7. For the

states
∣

∣Φ+
〉

and
∣

∣Ψ−

〉

the corresponding plots represents, also,
the bidimensional eigenvalues λ1,2 (ϕ, ϑ), i.e., the maximum
and the minimum bound of O33. The state

∣

∣Φ−
〉

reaches the
classical bound 7.

up (see Fig.2), a 3mm long β-barium borate crystal, cut
for a TypeII phase-matching [12], [13], [14], is pumped
in ultrafast regime (120 fs) by a train of Ωpump = 410nm
pulses generated by the second harmonic of a Ti:Sa laser.
SPDC (Spontaneous Parametric Down-Converted) pho-
ton pairs at 820 nm (Ωpump/2) are generated with an
emission angle of 3o. After passing through the interfer-
ometer, thanks to temporal engineering and amplitude
symmetrization, we obtain the entangled state

∣

∣Φ+
〉

=
1√
2

(|HH〉 + |V V 〉) (10)

where H (V) stays for Horizontal (Vertical). The pho-
tons are coupled by lenses into single-mode fibers. Cou-
pling efficiency has been optimized by a proper engi-
neering of the pump and the collecting mode in exper-
imental conditions [17]. Dichroic mirrors are placed in
front of the fiber couplers to reduce stray light due to
pump scattering. Half Wave Plates (HWPs) before the
fiber coupler, together with fiber-integrated polarizing
beam splitters (PBSs), project photons in the polariza-
tion basis |s (2ϑ)〉 = cos (ϑ) |H〉+sin (ϑ) |V 〉,

∣

∣s⊥ (2ϑ)
〉

=
sin (ϑ) |H〉 − cos (ϑ) |V 〉. Photons are detected by sin-
gle photon counters (Perkin-Elmer SPCM-AQR-14). A
third HWP (ξ) provides to prepare the superposition of
two Bell states (|Ψ+〉 and |Φ−〉) to experimentally recon-
struct all two-dimensional bounds [16].

The local observables Â±(ϑi) can be rewritten for the
chosen polarization basis

{

|s(2ϑ)〉 ,
∣

∣s⊥(2ϑ)
〉}

as
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Â+ = |s(2ϑ)〉〈s(2ϑ)|
Â− = |s⊥(2ϑ)〉〈s⊥(2ϑ)| (11)

and the correlation functions (4) can be expressed in
terms of coincidence detection probabilities px,y (ϑi, ϑj)
as:

〈A+ (ϑi) ⊗ A+ (ϑi) + A− (ϑi) ⊗ A− (ϑi)〉
= p++ (ϑi, ϑi) + p−− (ϑi, ϑi) (12)

〈A+ (ϑi) ⊗ A− (ϑj) + A− (ϑi) ⊗ A+ (ϑj)〉
= p+− (ϑi, ϑj) + p−+ (ϑi, ϑj) (13)

where x, y = +,− are the two outputs of the integrated
PBS and px,y (ϑi, ϑj) are expressed in terms of coincident
counts:

px,y (ϑi, ϑj) =
Nx,y (ϑi, ϑj)

NTOT
(14)

where Nx,y (ϑi, ϑj) is the number of coincidences mea-
sured by the pair of detectors x, y in the above de-
scribed polarization basis, and NTOT = N++ (ϑi, ϑj) +
N+− (ϑi, ϑj) + N−+ (ϑi, ϑj) + N−− (ϑi, ϑj). In Fig.3

FIG. 5: Experimental reconstruction of β for parametrization
(0, 2ϑ,−2ϑ). A non-ideal state affected by white noise can be

written as: p
∣

∣Φ+
〉 〈

Φ+
∣

∣+ (1−p)
4

I. The maximum experimental
value is β ≃ 7.41 and from the corresponding fit function we
obtained the value p ≃ 0.98.

we show the experimentally reconstructed bounds for
eigenvalues λ1,2,3,4 (ϕ, ϑ). The bounds for eigenvalues
λ3,4 (ϕ, ϑ) are reached by the linear combination of the
Bell states |Ψ+〉 and |Φ−〉. In addition, in Fig.4 we show
the contour plots representing the experimental recon-
struction of the Bell operator β for the bi-dimensional
parametrization (0, 2ϕ, 2ϑ): only the state |Φ+〉 violates
the classical bound 7. For the states |Φ+〉 and |Ψ−〉 the

corresponding plots represents, also, the bi-dimensional
eigenvalues λ1,2 (ϕ, ϑ), i.e., the maximum and the mini-
mum bound of O33. The state |Φ−〉 reaches the classi-
cal bound 7. In Fig.5 we show the experimental recon-
struction of β for the mono-dimensional parametrization
(0, 2ϑ,−2ϑ), and, in particular, the violation of the max-
imum values of the Bell operator β for the state |Φ+〉 .
Due to the experimental imperfections (misalignment
and presence of stray light), the state generated from

the source could be written as p |Φ+〉 〈Φ+| + (1−p)
4 I, in-

cluding a white noise term: from the experimental value
β ≃ 7.41 and the corresponding fit function, we obtained
p ≃ 0.98.

Thus it could seem not surprising that a maximally en-
tangled state is the one violating classical forecasts and
providing a ”speed-up” in spatial orientation, the actual
demonstration of this conclusion is not obvious and could
be not valid for different Bell’s like inequalities. More-
over, the fact that the |Φ+〉 state, and only this maxi-
mally entangled state, violates the inequality (2) is un-
doubtedly not a priori predictable. In this context the
min-max principle definitely appears as a powerful tool.

These experiments were carried out in the Quan-
tum Optics Labs at Elsag spa, Genova, within EC-FET
project QAP-2005-015848. The authors thank Caslav
Brukner for helpful discussions.
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