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Abstract. One advantage of quantum algorithms over classical computation is the possibility to spread out, process, analyse
and extract information in multipartite configurations in coherent superpositions of classical states. This will be discussed
in terms of quantum state identification problems based on a proper partitioning of mutually orthogonal sets of states. The
question arises whether or not it is possible to encode equibalanced decision problems into quantum systems, so that a single
invocation of a filter used for state discrimination suffices to obtain the result.

OUTLINE

The question as to what might be considered the “essence” of quantum computation, and its possible advantages
over classical computation, has been the topic of numerous considerations, both from a physical (e.g., Ref. [1, 2, 3,
4, 5, 6, 7]) as well as from a computer science (e.g., Ref. [8, 9, 10, 11, 12, 13]) perspective. Contributing to this
ongoing research, we will present an analysis of novel propositional structures in quantum mechanics; i.e., on the
issue of what kind of propositions about quantum computers exist which do not correspond to any classical statement.
We will consider coherent superpositions of states and will make explicit use of the fact that in quantum mechanics
information can be coded in or “spread among” entangled multipartite systems in such a way that information about
the single quanta is not useful for (and even makes impossible) a decryption of the quantum computation.

Alas, it is quite evident that not all decision problems have a proper encoding into some quantum mechanical system
such that their resources (computation time, memory usage) is bound by some criterion such as polynomiality or even
finiteness. Take, as a concrete example, a particular type of halting problem: Alice presents Bob a black box with input
and output interfaces. Bob’s task is to find out whether an arbitrary function of n bits encoded in the black box will
ever output "0." As this configuration could essentially get as worse as a busy beaver problem [14], the time it takes
for Alice’s box to ever output a "0" may grow faster than any recursive (i.e., computable [15, 16]) function of n.

Is it possible to characterize the exact domain of functions and propositions about them which can be “reasonably”
(e.g., polynomially) coded into a quantum computation, given an fairly general set of coding strategies, such as unitary
transformations? In what follows, an attempt is made to characterize the class of quantum computable functions
whose computational complexity grows linearly with the number of bits by considering partitioning of states and
the associated propositions and observables [17, 18, 19, 20]. Certain quantum computations such as the Deutsch
algorithm will be expressed as state identification problems, resulting in the systematic construction of a great variety
of computations corresponding to (incomplete) state identifications based on superposition and interference.

The notation of Mermin [21, 6, 22] will be adopted. Consider at first a single qubit in its most general form
|ψ〉= α0|0〉+α1|1〉with |α0|2 + |α1|2 = 1 as a coherent superposition between some “quasi-classical” states |0〉 and |1〉
of the computational basis representable by the set of orthogonal vectors {|0〉 ≡ (1,0)T , |1〉 ≡ (0,1)T} (the superscript
T indicates transposition). A 50:50 mixture of the quasi-classical states is obtained by H|0〉 = (1/

√
2)(|0〉+ |1〉)

or H|1〉 = (1/
√

2)(|0〉− |1〉) where H is the normalized Hadamard matrix 1√
2

(
1 1
1 −1

)
. According to quantum

logic [23, 24, 25], the interpretation of H|0〉 or H|1〉 it is the proposition, “the quant is in the state associated

with the projector (1/2)(1±X),” where 1 is the unitity and X =
(

0 1
1 0

)
is the not-operator. Classically, neither

these states nor the projectors correspond to any opertionalizable physical entity. Quantum mechanically, they have,



for instance, an interpretation in terms of electron or neutron spin states and spin state measurements by a Stern-
Gerlach apparatus, or in terms of photon polarization states and polarization measurements. Since (1/2)(1±X) =

(1/2) [1+σ(θ =±π/2,ϕ = 0)] with σ(θ,ϕ) =
(

cosθ e−iϕ sinθ
eiϕ sinθ −cosθ

)
for the polar angle θ and the azimuthal angle

ϕ, the physical proposition corresponding to H|0〉 and H|1〉 is “along the polar angle±π/2 and azimuthal angle ϕ = 0,
the particle is in a linear polarization (or positive spin) state.”

IDENTIFYING STATES AMONG CONTEXTS

A context can formally be defined [26] as a single (nondegenerate) “maximal” self-adjoint operator C. It has a spectral
decomposition into some complete set of orthogonal projectors Ei which correspond to propositions in the von
Neumann-Birkhoff type sense [23, 27]. That is, C = ∑d

i=1 eiEi with mutually different real ei and some orthgonal
projectors {Ei | i = 1, . . .d} of d-dimensional Hilbert space. In d dimensions, contexts can be viewed as d-pods or
orthogonal bases spanned by the vectors associated with the d mutually orthogonal projectors E1,E2, · · · ,Ed .

The general problem to (uniquely) identify orthogonal pure states among contexts resulting from k particles in
n = 2 or more dimensions per particle has been solved in Ref. [18, 19, 20] via a system of k co-measurable filters Fi,
i = 1, . . . ,k with the following properties:

(F1) Every filter Fi corresponds to an operator (or a set of operators) which generates an equi-n-partition of the d-
dimensional state space into n slices (i.e., partition elements) containing d/n = d1−1/k = nk−1 states per slice.
(Note that d = nk.) A filter is said to separate two eigenstates if the eigenvalues are different.

(F2) From each one of the k partitions of (F1), take an arbitrary element. The intersection of the elements of all
different partitions results in a single one of the d = nk different states.

(F3) The union of all those single states generated by the intersections of (F2) is the entire set of states.

For n = 2, an explicit construction of all the systems of filters and their associated propositions can be given in terms
of projectors and their orthogonal projectors; every one of them projecting onto a d/2-dimensional subspace, such that
the serial composition of any complete set of (orthogonal) projectors (one per filter) yields the finest resolution; i.e.,
some of the d one-dimensional projectors Ei spanning the context C.

The system of filters resolving C is not unique; all such systems of filters can be obtained by permutating the
columns of the matrix whose rows are the diagonal elements of all the filters in diagonalized form. Different contexts
C′ are resolved by different systems of filters which are obtained by transforming Fi, i = 1, . . . ,k through the same
basis transformation which transforms C into C′. Several examples and explicit constructions will be given below.

Take, for instance, three two-state quanta, i.e., the case k = 3, n = 2, and thus d = 23. The three projectors

F1 = diag(1,1,1,1,0,0,0,0),
F2 = diag(1,1,0,0,1,1,0,0),
F3 = diag(1,0,1,0,1,0,1,0),

together with their orthogonal projectors

F′1 = diag(0,0,0,0,1,1,1,1),
F′2 = diag(0,0,1,1,0,0,1,1),
F′3 = diag(0,1,0,1,0,1,0,1),

form the system of three filters {{F1,F′1},{F2,F′2},{F3,F′3}} which have the desired properties (F1)–(F3). Equivalent
filters are obtained by permuting the columns of the diagonal rows of




1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1




. (1)



TABLE 1. The binary functions of one bit considered in Deutsch’s problem.

f 0 1

f0 0 0
f1 0 1
f2 1 0
f3 1 1

Different systems of filters are obtained by permutating the columns of the matrix in Eq. 1; e.g.,



1 1 1 0 0 0 0 1
0 0 0 1 1 1 1 0

1 0 0 1 1 0 0 1
0 1 1 0 0 1 1 0

0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0




,




1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0

0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1




, . . . (2)

In the case of k = 2, any permutation yields the original system of filters.
Different contexts are reached by transforming every single filter operator through the same unitary transformation.

Note that the row permutations and unitary transformations are exhaustive; i.e., there are no other methods available.
For n > 2, the filter operators cannot correspond to projectors, because they are not binary but n-ary. In this case, for
instance, nk different prime numbers can be used as eigenvalues. A more detailed treatment of this case can be found
in Refs. [19, 20].

DEUTSCH’S PROBLEM AND RELATED ALGORITHMS

In what follows, Deutsch’s decision problem to find out whether or not an unknown function f that takes a single
(classical) bit into a single (classical) bit is constant or not, which is equal to finding the parity of f : {0,1} → {0,1},
will be interpreted as a state identification problem, which is solved by the methods discussed in the previous section.
There are four possible bivalent functions of one bit: the constant functions f0 and f3 take any bit value and map it into
either 0 or 1, respectively. The two remaining functions f1 and f2 correspond to the identity 1 and to the not operator
X, and are thus not constant (cf. Table 1). Hence, with respect to constancy, the set of all functions { f0, f1, f2, f3} is
equipartitioned into

FD = {{ f0, f3},{ f1, f2}}. (3)

The first and second elements { f0, f3} and { f1, f2} of this partition can be interpreted as the proposition, “the function
is (not) constant.”

When coding the Deutsch problem and the computation of f into a state identification problem, one task is to map
the binary partition FD in Eq. (3) into a quantum state filter F with equivalent separation properties. Presently, there
does not exist any algorithmic way (only heuristic ones) to obtain such a quantum encoding, nore is any one likely to
exist (cf. the parity problem discussed below).

First note that, as the functions f0 and f3 are two-to-one (i.e., irreversible), the input bit needs to be augmented by a
second bit to maintain reversibility, which is a necessary condition for the unitarity of the state evolution. Usually, this
is accomplished by considering U f (|x〉|y〉) = |x〉|y⊕ f (x)〉, where ⊕ is the modulo-2 addition (without carrying).

The encoding Ansatz enumerated in Table 2 represents the evolution of the single terms contributing to U f (H⊗
H)(X⊗X)(|0〉|0〉), resulting in the two different states

|ψ1〉=±1
2
(|0〉− |1〉)(|0〉− |1〉)≡±1

2
((1,−1)⊗ (1,−1))T =±1

2
(1,−1,−1,1)T (4)

for f0 as well as f3, and

|ψ2〉=±1
2
(|0〉+ |1〉)(|0〉− |1〉)≡±1

2
((1,1)⊗ (1,−1))T =±1

2
(1,−1,1,−1)T (5)



TABLE 2. State evolution of U f (H⊗H)(X⊗X)(|0〉|0〉) for the four functions f0, f1, f2, f3.

1
2
[|0〉|0⊕ f (0)〉 − |0〉|1⊕ f (0)〉 − |1〉|0⊕ f (1)〉 + |1〉|1⊕ f (1)〉]

f0: 1
2
(|0〉|0〉 − |0〉|1〉 − |1〉|0〉 + |1〉|1〉)

f1: 1
2
(|0〉|0〉 − |0〉|1〉 − |1〉|1〉 + |1〉|0〉)

f2: 1
2
(|0〉|1〉 − |0〉|0〉 − |1〉|0〉 + |1〉|1〉)

f3: 1
2
(|0〉|1〉 − |0〉|0〉 − |1〉|1〉 + |1〉|0〉)

for f1 as well as f2. Together with |ψ3〉 = (H⊗H)(|0〉|0〉) ≡ (1/2)(1,1,1,1)T and |ψ4〉 = (H⊗H)(X⊗1)(|0〉|0〉) ≡
(1/2)(1,1,−1,−1)T , the four states in BD = {ψ1,ψ2,ψ3,ψ4} form an orthonormal basis.

Application of two Hadamard-transformations for each one of the two bits finally yields a representation in the
sandard computational basis; i.e.,

(H⊗H)U f (H⊗H)(X⊗X)(|0〉|0〉) =
{ |1〉|1〉 ≡ (0,0,0,1)T for f (0) = f (1),
|0〉|1〉 ≡ (0,1,0,0)T for f (0) 6= f (1). (6)

We are now in the position to formulate the state identification problem corresponding to the Deutsch algorithm.
This is achieved by considering the projector F1 = diag(1,1,0,0), which, together with its orthogonal projector
F′1 = diag(0,0,1,1), constitutes a filter corresponding to the binary partition FD in Eq. (3). Note that a second filter F2,
based on the projections F2 = diag(1,0,1,0) and F′2 = diag(0,1,0,1), completes the system of filters. It is unable to
separate |11〉 from |01〉, but separates |00〉 and |10〉 from |01〉 and |11〉.

Alternatively, we may consider the state identification problem without the final Hadamard transformations as,
“find the observables which separate ψ1 from ψ2.” The complete state identification problem should also contain the
observables separating ψ3 from ψ4, but in Deutsch’s problem one is not primarily interested in uniquely identifying
the function itself; rather in its (non)constancy. Hence, it is not necessary to employ the entire system of two
filters, but rather a single filter constructed to separate f0, f3 from f1, f2. This is achieved by transforming the two
operators F1 = diag(1,1,0,0) and F2 = diag(1,0,1,0) associated with a binary search type state separation in the basis
B = {(1,0,0,0)T ,(0,1,0,0)T ,(0,0,1,0)T ,(0,0,0,1)T} through UF1U−1 = FD

1 and UF2U−1 = FD
2 , where

U =
1
2




1 1 1 1
1 −1 1 −1

−1 1 1 −1
−1 −1 1 1


 (7)

is the unitary transformation which corresponds to a basis change B→UB = BD. It is straightforward to check that, by
the eigenvalue spectrum, FD

1 separates between ψ1 and ψ3 from ψ2 and ψ4 (and at the same time, FD
2 separates between

ψ1 and ψ2 from ψ3 and ψ4). Hence, FD
1 generates a partition {{ψ1,ψ3},{ψ2,ψ4}} of the set {ψ1,ψ3,ψ2,ψ4} of

orthogonal states. (FD
2 generates the partition {{ψ1,ψ2},{ψ3,ψ4}}.) The states ψi, however, do not directly correspond

to the functions f j in the Deutsch partition in Eq. (3); they rather represent joint properties of these functions, such as
constancy.

Another encoding strategy of the Deutsch problem can be based upon a immediate identification of { f0, f1, f2, f3}
with the four states of the computational basis B. The nontrivial part in this case is the mapping of the functions
fi on to B; e.g., by constructing unitary transformations depending on fi and acting on |00〉, such as for instance
V f |00〉= | f (0) f (1)〉. Once this has been achieved, in order to express constancy, the filter would then have to separate
the orthogonal (Bell) states ϕ1,4 ≡ (1,0,0,±1)T from ϕ2,3 ≡ (0,1,±1,0)T ; a rather straightforward task.

Still another encoding strategy would be to invoke the phase oracle U f (|x〉⊗H|1〉) = (−1) f (x)|x〉⊗H|1〉. The result-
ing states are enumerated in Table 3. The phases result in the orthogonality of the two linear subspaces corresponding
to f0 and f3, with respect to f1 and f2.

In a very similar manner, one could discuss the Bernstein-Vazirani algorithm, as well as the Deutsch-Josza and
Simon’s decision problems (in the latter cases with the proviso discussed later, since the algorithm is not deterministic).
Note that this method exhausts all possible decision problems based on equipartitioning of state spaces, but does not
give a direct hint about the type of classical algorithmic problem which are solvable that way.



TABLE 3. The phase factors of (−1) f (x)|xy〉.
(−1) f (x)

f |0〉 |1〉
f0 + +
f1 + −
f2 − +
f3 − −

TABLE 4. Listing of the 16 binary functions of two variables x,y with their parity bits “±”.

± f 00 01 10 11

+ f0 0 0 0 0
− f1 0 0 0 1
− f2 0 0 1 0

· · ·
+ f15 1 1 1 1

PARITY CHECKING

Deutsch’s problem is just the simplest in a particular class of problems: check the parity of an unknown binary function
f : {0,1}k → {0,1} of k bits. There are 22k

such functions. The parity of a function f of k bits depends on whether
the number of functional values of f (x1, . . . ,xk) = 1 on all x1, . . . ,xk ∈ {0,1} is even or odd, denoted by “+” and “−,”
respectively.

Consider, for the sake of an example, two bits x,y and an unknown function f (x,y) of all the 222
= 16 binary

functions partly listed in Tab. 4. The set of 16 functions can be equipartitioned into two groups of 8 functions, according
to positive and negative parity; i.e.,

FP = {{ f0, f5, f6, f7, f8, f9, f10, f15} ,{ f1, f2, f3, f4, f11, f12, f13, f14}} . (8)

One might be tempted to speculate that the corresponding proposition corresponds to some realizable quantum filter
which separates the two parity classes by some quantum implementation U f in a single run. Motivation for this
comes from the direct and “local,” or “isolated” evaluation of the functional values; without any recursion, iteration,
or additional functional and contextual relation between the values. Despite these indications, the parity of a function
has been proven quantum computationally hard [28, 11, 29, 30, 31]: It is only possible to go from 2k classical queries
down to 2k/2 quantum queries, thereby gaining a factor of 2.

Classically, parity checking grows exponentially 2k with the number k of bits of the functional arguments, as there is
no other was than to compute the functional values on the entire set of 2k arguments. Quantum mechanically, one may
interpret this problem as a particular instance of a generalized Grover algorithm with an unknown number of special
states, which can be solved by applying the quantum Fourier transform.

By making use of the phase oracle U f (|x〉⊗H|1〉) = (−1) f (x)|x〉⊗H|1〉, one obtains, after a second application of
a Hadamard transformation,

(1⊗1⊗H)U f (1⊗1⊗H) |x,y〉|1〉= (−1) f (x,y)|x,y〉|1〉. (9)

Table 5 lists the results of this transformation. As long as the function is “unbalanced,” such that the number of values
of f (x1, . . . ,xk) = 1 is small compared to 2k, a quadratic speedup is achievable. However, this condition does in general
not apply.

GENERALIZED DEUTSCH ALGORITHMS

In what follows we shall present a type of quantum algorithm which is directly motivated by the state identification
problem. Consider the class of binary functions of two variables which are the sums of two (or more) binary functions
of one variable; e.g.,

fi j(x,y) = fi(x)+ f j(y); 0≤ i, j ≤ 3. (10)



TABLE 5. The phases from Eq. (9).

(−1) f (x)

± f |00〉 |01〉 |10〉 |11〉
+ f0 + + + +
− f1 + + + −
− f2 + + − +
− f3 + − + +
− f4 − + + +
+ f5 + + − −
+ f6 + − + −
+ f7 − + + −
+ f8 + − − +
+ f9 − + − +
+ f10 − − + +
− f11 + − − −
− f12 − + − −
− f13 − − + −
− f14 − − − +
+ f15 − − − −

TABLE 6. The phases from the phase oracle applied to Eq. (10).

(−1) fi(x)+ f j(y)

f |00〉 |01〉 |10〉 |11〉
f00 + + + +
f01 + − + −
f02 − + − +
f03 − − − −
f10 + + − −
f11 + − − +
f12 − + + −
f13 − − + +
f20 − − + +
f21 − + + −
f22 + − − +
f23 + + − −
f30 − − − −
f31 − + − +
f32 + − + −
f33 + + + +

The binary functions fi, f j of one bit are the same as in Deutsch’s problem listed in Table 1. The corresponding unitary
transformations given by U fi j = U fi ⊗U f j . In this case, the phase oracle yields phases which are listed in Table 6.

The four orthogonal vectors resulting from the phase enumeration in Table 6 form a basis B′ = {ϕ1,ϕ2,ϕ3,ϕ4},
with

ϕ1 = (1,1,1,1)T ,
ϕ2 = (1,1,−1,−1)T ,
ϕ3 = (1,−1,1,−1)T ,
ϕ4 = (1,−1,−1,1)T .

. (11)

Consider the decision problems corresponding to the following propositions:

(D1) The function fi j(x,y) is constant in the first argument.
(D2) The function fi j(x,y) is constant in the second argument.
(D3) The function fi j(x,y) is constant in the first argument and not constant in the second argument, or it is constant

in the second argument and not constant in the first argument.



(D4) The function fi j(x,y) is constant in the first argument and constant in the second argument, or it is not constant
in the second argument and not constant in the first argument.

The partitions corresponding to these decision problems are

F1 = {{ f00, f01, f02, f03, f30, f31, f32, f33} ,{ f10, f11, f12, f13, f20, f21, f32, f33}} , (12)
F2 = {{ f00, f10, f20, f30, f03, f13, f23, f33} ,{ f01, f11, f21, f31, f02, f12, f22, f32}} , (13)
F3 = {{ f01, f02, f10, f13, f20, f23, f31, f32} ,{ f00, f03, f11, f12, f21, f22, f30, f33}} , (14)
F4 = {{ f00, f03, f11, f12, f21, f22, f30, f33} ,{ f01, f02, f10, f13, f20, f23, f31, f32}} . (15)

Thus any filter which resolves the associated decision problem at once has to separate (1) ϕ1 and ϕ3 from ϕ2 and
ϕ4, (2) ϕ1 and ϕ2 from ϕ3 and ϕ4, (3) ϕ2 and ϕ3 from ϕ1 and ϕ4, (4) ϕ1 and ϕ4 from ϕ2 and ϕ3, respectively.

Again, the strategy is to find the unitary transform

U′ =
1
2




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


 , (16)

which yields a basis change B→ U′B = B′. Then, measurement of F′ = (U′)−1FiU′ with

F1 = diag(1,0,1,0), (17)
F2 = diag(1,1,0,0), (18)
F3 = diag(0,1,1,0), (19)
F4 = diag(1,0,0,1), (20)

solves the decision problems (D1)–(D4), respectively. This method can be generalized to more than two arguments in
a straightforward manner.

INFORMATION SPREAD AMONG QUANTA

So why can the parity of a function not be efficiently coded quantum mechanically? In Ref. [11], Beals et al. argue that
exponential quantum speed-up can be obtained for partial functions (e.g., problems involving a promise on input 1),
whereas such speedups cannot be obtained for any total function. Another ansatz for an explanation, put forward by
Orus et al. in Ref. [30], is majorization: The probability distribution associated with the quantum state is step-by-step
majorized until it is maximally ordered. Then a measurement provides the solution with high probability.

We propose here that the lack of efficient quantum algorithms is due to the nonexistence of mappings of functions
f and decision problems into suitable unitary transformations U f which could be used for a system of states and
of filter(s) resolving those states corresponding to that particular algorithmic problem and no other one. To give an
example, in order for a quantum computation to resolve the equipartition in Eq. (8) by some equivalent quantum
state filter, any such filter must be based upon an encoding of the functional parity into some orthogonal set of
states. Thereby, in order for the encoding to be efficient, it should not require the separate functional evaluation of
all classical cases. On the contrary, the mapping f 7→U f , as well as states and filters need to be conceptualized in a
way which leaves the single functional values undefined, but concentrates on the structural property of parity alone:
the even or odd number of occurrence of certain functional values (0 or 1) on the entirety of outputs. If the filters
could resolve singular functional values in the standard computational basis, they would essentially model classical
information. Any such state preparation or measurement would make impossible the encoding of information “spread
among” multipartite states as mentioned above, which seems to be one of the advantages of quantum computing.
In this paradigm, entanglement and the suitable superposition of multipartite states become related concepts, as no
multipartite state which can be factored could be used to “spread” information among the quanta (or a group of
quanta) corresponding to these factors.

1 A partial function is a function which is not defined for some of its domain.



In general, while all classical computable recursive functions f and decision problems can be coded quantum
mechanically, there is no guarantee that a problem can be coded efficiently by mapping it into the quantum domain. By
an efficient coding of a (binary or n-ary) decision problem we mean that some quantum circuit U f exists which outputs
a state which is uniquely identifiable by a single filter (or at least by a polynomial number of filters), the outcome of
which corresponds to the solution of this problem.

While the parity of a binary function of more than one observable has already been mentioned as an example of
quantum computationally “hard” problems, it appears not totally unreasonable to speculate that functional recursions
and iterations represent an additional burden on efficiency. Recursions may require a space overhead to keep track
of the computational path, in particular if the recursion depth cannot be coded efficiently. From this point of view,
quantum implementations of the Ackermann or the Busy Beaver functions, to give just two examples, may even
be less efficient than classical implementations, where an effective waste management can get rid of many bits; in
particular in the presence of a computable radius of convergence.

STATE IDENTIFICATION AND DENSE CODING

Let us also briefly mention another issue related to state identification if there is a mismatch between the context in
which information is prepared and a different context, in which this information is retrieved. Based on such a context
mismatch, a “dense coding” scheme has been proposed [32] to probabilistically encode “more” than one classical bits
into one quantum bit (despite Holevo’s bound). This method is based on the fact that the qubit states |0〉 and |1〉 span
the computational basis {(1,0)T ,(0,1)T}, as already mentioned before, and that any coding of a qubit state which is
neither orthogonal nor collinear, such as (cos(π/8),sin(π/8))T , results in a probability of detecting it in the original
states governed by its projection onto them. The argument is about efficiency of state identification in the classical and
quantum case for “misaligned” systems of states.

Alas, when speaking about coding and representation efficiency of statistical raw data, it is mandatory to take an
issue into account which changes the classical framework rather dramatically. As has been pointed out repeatedly by
Summhammer [33, 34], the “true” probability of the occurrence of a (classical) bit is unknown. Frequency counts
are just approximations to this value. As it turns out, if a finite amount of information is used to characterize the
probability p by the actually observed relative frequencies L/N, where N is the number of experiments and L is the
number of occurrences, then the accuracy varies as a function of p. Thus, a representation of the data has to be chosen
which guarantees a constant rate of accuracy over the entire probability range. This results in a redefinition of the
functional representation of the relative frequency which is very similar to the quantum mechanical representation by
vectors and projectors in Hilbert space. (Compare Mermin’s representation [21, 6, 22] of classical information theory
and reversible operations on classical bits in linear vector spaces in some analogy to the quantum formalism.) From
this point of view, taking the finite coding of probabilities by relative frequencies into account, the classical and the
quantum “dense” coding schemes become equivalent.

SUMMARY

We have presented an analysis of quantum computations in terms of state identification whose complexity grows
linearly with the number of bits. Thereby, we have characterized this domain by partitions of state space, as well as by
unitary transformations of the associated filter systems. Such systems are not bound by the individual classical values,
as information about the (parallelized) result of a computation may be “spread among” the quanta in a way which
makes it impossible to reconstruct the result by measuring the quanta separately. At the same time, such distributed
information could be analyzed a single (or a few) measurement(s) by proper filters resolving the computed proposition.

The method does not yield a constructive, operational method for deciding whether or not (and if so, how) functions
or decision problems of practical interest can be efficiently coded into quantum algorithms. From a foundational
point of view it is interesting to realize that, while every suitable equipartitioning of state space is equivalent to some
proposition which can be interpreted as an outcome of some quantum computation, not all decision problems or
functional evaluations which can be rephrased as state partitions can be translated efficiently into the quantum domain.
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