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Abstract

Bell-type inequalities and violations thereof reveal the fundamental differences between standard prob-

ability theory and its quantum counterpart. In the course of previous investigations ultimate bounds on

quantum mechanical violations have been found. For example, Tsirelson’s bound constitutes a global upper

limit for quantum violations of the Clauser-Horne-Shimony-Holt (CHSH) and the Clauser-Horne (CH) in-

equalities. Here we investigate a method for calculating the precise quantum bounds on arbitrary Bell-type

inequalities by solving the eigenvalue problem for the operator associated with each Bell-type inequality.

Thereby, we use the min-max principle to calculate the norm of these self-adjoint operators from the maxi-

mal eigenvalue yielding the upper bound for a particular set of measurement parameters. The eigenvectors

corresponding to the maximal eigenvalues provide the quantum state for which a Bell-type inequality is

maximally violated.
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I. INTRODUCTION

One of the most puzzling features of quantum mechanics is the violation of so-called Bell-type

inequalities representing a cornerstone of our present understanding of quantum probability the-

ory [1]. As pointed out by John Bell [2] such a violation, as predicted by quantum mechanics,

requires a radical reconsideration of basic physical principles like the assumption of local realism.

However, Bell-type inequalities have already a long tradition dating back to George Boole’s work

on “conditions of possible experience” [3, 4], dealing with the question of necessary and sufficient

conditions on probabilities of logically interconnected events [42]. Take for example the state-

ments: “The probability of rain in Växjö is about 80%” and “The probability of rain in Vienna is

90%”. Nobody would believe that the joint probability of rain in both places could be just 10%

— the claim that the joint probability is very much lower than the single probabilities is appar-

ently counterintuitive. The question remains: Which numbers could be considered reasonable and

consistent? Boole’s requirements on the (joint) probabilities are expressed by certain equations or

inequalities relating those (joint) probabilities.

Since Bell’s investigations [2, 5] into bounds on classical probabilities and their relation to

quantum mechanical predictions, similar inequalities for particular physical setups have been dis-

cussed in great number and detail (see for example Refs. [6–9]). Furthermore, violations of

Bell-type inequalities, as predicted by quantum mechanics, have been experimentally verified in

different areas of physics [10–13] to a very good degree of accuracy.

However, whereas these bounds are interesting for an inspection of the violations of classi-

cal probabilities by quantum probabilities, the issue of the validity of quantum probabilities and

their experimental verification is completely different. Recently, Bovino et al. [14] conducted an

experiment based on numerical studies by the current authors [15] and triggered by a proposal

of Cabello [16] to verify bounds on quantum probabilities depending on a particular choice of

measurements.

In what follows we shall present analytical as well as numerical studies on such quantum

bounds allowing for further experimental tests of different kinds of Bell-type inequalities.
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II. CORRELATION POLYTOPES

At first we shall start from a geometrical derivation of bounds on classical probabilities

given by linear inequalities in terms of correlation polytopes [17–21]. Considering an arbi-

trary number of classical events a1,a2, . . . ,an one can assign to each event a certain probability

p1, p2, . . . , pn and probabilities p12, . . . for the joint events a1 ∩ a2, . . .. These probability values

can be collected to form the the components of a vector p = (p1, p2, . . . , pn, p12, . . .), where each

pi, pi j (i, j = 1, . . . ,n) can take values in the interval [0,1]. Since the events a1, a2, . . . are as-

sumed to be independent, each single probability pi can also take its extremal value 0 or 1 and

the vectors comprising all possible combinations of extremal values (pi = 0,1 and pi j = pi p j) can

be regarded as rows of a truth table; with the symbols “0” and “1” corresponding to “false” and

“true,” respectively.

Any classical probability distribution; i. e., any vector p, can be represented as a convex sum

over the extremal probability distributions given by the row entries of the truth table. It can there-

fore be regarded as some point p ∈C where C = conv(K) is a convex polytope defined by the set

of all points that can be written as a convex sum extending over all vectors associated with row

entries in the truth table. More formally,

conv(K) =

{

2n

∑
i=1

λixi

∣

∣

∣

∣

∣

λi ≥ 0,
2n

∑
i=1

λi = 1

}

(1)

with

K = {x1,x2, . . . ,x2n}=
{(

t1, t2, . . . , tn, txty, . . .
) ∣

∣ ti ∈ {0,1}, i = 1, . . . ,n
}

. (2)

Here, the terms txty, . . . stand for arbitrary products associated with the joint propositions which

are considered. Exactly what terms are considered here depends on the particular physical config-

uration.

In a next step towards the linear inequalities sought one utilizes the Minkowsky-Weyl repre-

sentation theorem [22, p.29] stating that every convex polytope in Euclidean real space has a dual

description: either as the convex hull of its extreme points - in our case the rows of the truth table

- or as the intersection of a finite number of half-spaces. Each half space can be described by a

linear inequality. To obtain the inequalities from the vertices one has to solve the so-called hull

problem. These inequalities coincide with Boole’s “conditions of possible experience”; i. e., they

constitute the bounds of classical probabilities. The set of inequalities obtained is maximal and
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complete, as no other system of inequalities exists which characterizes the correlation polytope

completely and exhaustively.

For particular physical setups these inequalities correspond to Bell-type inequalities. Therefore

correlation polytopes provide a constructive way of finding the entire set of Bell-type inequalities

for a given physical configuration [23, 24], although from a computational complexity point of

view the problem remains intractable [25].

As an example, we consider the derivation of the well known Clauser-Horne inequality [7]:

Given a source emitting pairs of correlated spin-1/2 particles either in the positive or in the neg-

ative y-direction, the spin of both particles can be measured in arbitrary directions perpendicular

to the propagation direction; i. e., restricted to the x–z plane. Implementing two measurement

directions on each side labeled by the angles α, β for the particle propagating in the negative y

direction (left hand side) and γ, δ for the particle propagating along the positive y axis (right hand

side), we obtain the probabilities for measuring “spin-up” for each particle and measurement di-

rection pα, pβ, pγ, pδ. The joint probabilities for measuring “spin-up” on the left while measuring

“spin-up” on the right in coincidence – but in general with different measurement directions –

are denoted by pαγ, pαδ, . . . The probability distribution vector for this situation is consequently

p = (pα, pβ, pγ, pδ, pαγ, pβγ, pβδ, pαδ) and the truth table (comprising the extremal probabilities)

consists of 24 = 16 rows by inserting pα, pβ, pγ, pδ ∈ {0,1}. The corresponding polytope is eight

dimensional. By solving the hull problem, which for this simple setup can easily be done, we ob-

tain inequalities like 0 ≤ pα, pαγ ≤ 1, pα+ pγ − pαγ ≤ 1; and in the similar manner for pβ, pγ, pδ.

Additionaly, inequalities of the form

−1 ≤ pαγ + pαδ + pβγ − pβδ − pα − pδ ≤ 0 (3)

also represent bounds of this correlation polytope. The inequality (3), termed Clauser-Horne

(CH) inequality, and the inequalities containing all permutations of the parameters, are violated

by quantum theory for particular choices of the angles and for specific quantum states. They

constitute therefore a demarcation criteria between classical and non-classical probabilities, such

as the ones encountered in quantum theory.

4



III. VIOLATION OF BELL-TYPE INEQUALITIES

Similar to the bounds on classical probabilities given by the Bell-type inequalities, there exist

bounds on quantum probabilities which will be the subject of the following discussion. There have

been investigations in the analytic aspects of bounds on quantum probabilities, most prominently

by Tsirelson [21, 26] and recently by others in Refs. [16, 19, 27, 28], but also numerical [15] and

experimental [14] test have been performed. The quantum probabilities do not violate Bell-type

inequalities maximally [29–31]. Take, for example, the well known Clauser-Horne-Shimony-Holt

(CHSH) inequality [43]

|E(α,γ)+E(β,γ)+E(β,δ)−E(α,δ)| ≤ 2, (4)

where E(µ,ν) denotes the correlation function for two particle correlations with possible values

in the interval [−1,1] when measuring their spin/polarization in coincidence along the directions

µ and ν, respectively. The global limit for a quantum violation of this inequality is 2
√

2 [21, 32];

quantum theory does not allow a higher value, no matter which state and which measurement

directions are chosen. However, in principle, the four terms on the left hand side of Eq. (4) could

be set such that a value of 4 can be obtained by appropriate choices of ±1 for the correlation

functions.

Popescu and Rohrlich [29] investigated the case where “physical locality” is assumed without

referring to a specific physical model (such as quantum mechanics), whether realistic or not. In

this context, “physical locality” means that the marginal probabilities for measuring an observable

on one side should be independent of the observable measured on the other side, which is a natural

assumption for a Lorentz invariant theory. The maximal value of the left hand side of Eq. (4)

has been shown to be 4 as well, which is beyond the quantum bound 2
√

2 and we can conclude

that quantum mechanics does not exploit the whole range of violations possible in a theory con-

forming to relativistic causality. Still, in our opinion, the nagging question remains why quantum

mechanics does not violate the inequality to a higher degree.

In what follows, we will restrict our attention to the simpler task to explore the quantum bounds

on violations of Bell-type inqualities for particular given measurement directions and arbitrary

states. It turns out that the equations for the analytic description of the quantum bounds can be

derived by solving an eigenvalue problem. Intuitively it cannot be expected that it is feasible to

achieve a maximal violation of some inequality for any set of measurements just by choosing a

single appropriate state.
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The quantum mechanical description of the physical scenario discussed above involves spin

measurements represented by projection operators

F(θ) =
1

2
(12 +~σ(θ)) , (5)

with ~σ(θ) =





cosθ sinθ

sinθ −cosθ



, θ denoting the direction of measurement in the x–z plane, and

12 standing for the two-dimensional identity matrix. For an even more general description we

would have to take all possible two-dimensional projection operators into account, corresponding

to measurements in arbitrary directions. As this generalization is straightforward and does not

lead to any more insight, we will work with this restricted set of measurements parameterized in

Eq. (5).

F(θ) acts on one of the two particles. This implies that we have to choose a tensor product

of two Hilbert spaces to represent the state vectors corresponding to possible state configurations;

i. e., H = H1 ⊗H2. The representation of a single-particle measurement in H is then

q(θ) =
1

2
(12 +~σ(θ))⊗12 or 12 ⊗

1

2
(12 +~σ(θ)) (6)

for a measurement on the particle emitted in the negative y-direction (H1), or in the positive y-

direction (H2), respectively. Two-particle measurements are implemented by applying F(θ) on

both H1 and H2; i. e.,

q(θ,θ′) =
1

2
(12 +~σ(θ))⊗ 1

2

(

12 +~σ(θ′)
)

, (7)

corresponding to a measurement of the joint probabilities. This setup can easily be enlarged to sys-

tems comprising more than two particles by the tensor product of the appropriate Hilbert spaces,

but for the sake of simplicity we will restrict ourselves to bipartite systems.

The general method for obtaining the quantum violations of Bell-type inequalities is then to

replace the classical probabilities by projection operators in Eqs. (6,7) in a certain Bell-type in-

equality to obtain the Bell-operator, which is a sum of projection operators. In the case of the CH

inequality one obtains

−1 ≤ q(θα,θγ)+q(θα,θδ)+q(θβ,θγ)−q(θβ,θδ)−q(θα)−q(θδ)≤ 0. (8)

In a second step one calculates the quantum mechanical expectation values by

〈q(θ)〉= Tr[Wq(θ)], (9)
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where W is a positive definite, Hermitian and normalized density operator denoting the state of

the system. For some W and set of angles {θα,θβ,θγ,θδ} one obtains a violation of a classical

inequality.

In general the Bell-operators can be written in the form

O = ∑
i1,i2,...,iN

bi1i2...iN Pi1 ⊗Pi2 ⊗ . . .PiN , (10)

with real valued coefficients bi1i2...iN . Here N is the number of particles involved and the Pi are

either projection operators denoting a measurement on particle i or the identity when no mea-

surement is performed on the i-th particle. Since (A⊗B)† = A† ⊗B† = A⊗B and (A+B)† =

A† +B† = (A+B) for arbitrary selfadjoint operators A,B, the Bell-operator O is also self-adjoint

with real eigenvalues. However, the eigenvalues of O cannot be deduced from the eigenvalues of

the constituents Pi1 ⊗Pi2 ⊗ . . .Pin in the sum in Eq. (10) since these are not commuting in general

and therefore are not diagonalizable simultaneously.

One can make use of the min-max principle [33, §90], stating that the bound of a self-adjoint

operator is equal to the maximum of the absolute values of its eigenvalues. Thus, the problem of

finding the maximal violation possible for a particular choice of measurements can be solved via

an eigenvalue problem. The maximal eigenvalue corresponds to the maximal violation and the

associated eigenstates are the multi-partite states which yield a maximum violation of the classical

bounds under the given experimental (parameter) setup [44].

For a demonstration of the method let us start with the trivial setup of two particles measured

along a single (but not necessarily identical) direction on either side. The vertices are (p1, p2, p12 =

p1 p2) for p1, p2 ∈ {0,1} and thus (0,0,0), (0,1,0), (1,0,0), (1,1,1); the corresponding face (Bell-

type) inequalities of the polytope spanned by the four vertices are given by p12 ≤ p2, 0 ≤ p12 ≤ 1,

and p1 + p2 − p12 ≤ 1.

The classical probabilities have to be substituted by the quantum ones; i.e.,

p1 → q1(θ) =
1
2
[12 +σ(θ)]⊗12,

p2 → q2(θ) = 12 ⊗ 1
2
[12 +σ(θ)] ,

p12 → q12(θ,θ
′) = 1

2
[12 +σ(θ)]⊗ 1

2
[12 +σ(θ′)] .

(11)

It follows that the self-adjoint transformation corresponding to the classical Bell-type inequality
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(p1 + p2 − p12 ≤ 1) is given by

O11(0,θ) = q1(0)+q2(θ)−q12(0,θ) =















1 0 0 0

0 1 0 0

0 0 cos2 θ
2

sinθ
2

0 0 sinθ
2

sin2 θ
2















. (12)

The eigenvalues of O11 are 0 and 1, irrespective of θ, the maximal value of O11 predicted by

the min-max principle does not exceed the classical bound 1.

Now we shall enumerate analytical quantum bounds for the more interesting cases comprising

two or three distinct measurement directions on either side yielding the quantum equivalents of

the Clauser-Horne (CH) inequality, as well as of the inequalities discussed in [23, 35, 36].

For two measurement directions per side, we obtain the operator O22 based on the CH-

inequality [Eq. (3)] upon substitution of the classical probabilities by projection operators:

O22(α,β,γ,δ) = q13(α,γ)+q14(α,δ)+q23(β,γ)−q24(β,δ)−q1(α)−q3(γ).

The eigenvalues of the self-adjoint transformation in (13) are

λ1,2,3,4(α,β,γ,δ) =
1

2

(

±
√

1± sin(α−β)sin(γ−δ)−1
)

, (13)

yielding the maximal bound ‖O22‖ = maxi=1,2,3,4 λi. The eigenstates corresponding to maximal

violating eigenstates are maximally entangled for general measurement angles lying in the x–z-

plane [28].

The numerical simulation of the bounds of the CH-inequality is based on the generation of

arbitrary bipartite density matrices W ; i. e., 4×4 Hermitian positive matrices with trace equal to

one. Since one can write a Hermitian positive matrix W as the square of a self-adjoint matrix, W =

B2. The normalized matrix W ′ =W/Tr[W] can thus be explicitly parameterized by 16 parameters

b1,b2, . . . ,b16 ∈ R; i. e.,

W ′ =
1

∑4
i=1 b2

i +2∑16
j=5 b2

j















b1 b5 + ib6 b11 + ib12 b15 + ib16

b5 − ib6 b2 b7 + ib8 b13 + ib14

b11 − ib12 b7 − ib8 b3 b9 + ib10

b15 − ib16 b13 − ib14 b9 − ib10 b4















2

. (14)

For a particular choice of projection operators, one can then generate random states W ′ in order

to find the maximal violation possible for the current set of projection operators. In Figure 1,
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both the analytic and the numerical bounds are depicted for measurement directions α = 0, β =

2θ, γ = θ and δ = 3θ dependent on a single parameter θ ∈ [0,π]. In addition, the well-known

maximal violation for the singlet-state at θ = π/4 and θ = 3π/4 is drawn.

numerical quantum bounds
analytic quantum bounds

classical bounds
singlet state

θ[rad]

H
C

H
(θ

)

32.521.510.50

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

-1.2

FIG. 1: Numerical simulation of the bounds of the CHSH-inequality

The extension to three measurement operators for each particle merely yields one additional

non-equivalent inequality (with respect to symmetries) [35, 36]

I33 = p14 + p15 + p16 + p24 + p25 − p26 + p34 − p35 − p1 −2p4 − p5 ≤ 0 (15)

among the 684 inequalities [23] representing the faces of the associated classical correlation poly-

tope. The associated operator for symmetric measurement directions is given by

O33(0,θ,2θ,0,θ,2θ) = q14(0,0)+q15(0,θ)+q16(0,2θ)+q24(θ,0)+q25(θ,θ)−q26(θ,2θ)+

+q34(2θ,θ)−q35(2θ,θ)−q1(0)−2q4(0)−q5(θ)

= 1
4















−4sin2 θ 0 0 0

0 −5−2cosθ−3cos2θ+2cos3θ 4cos2 θ
2

2sinθ+3sin2θ−2sin3θ

0 4cos2 θ
2

−2(3+ cos2θ) −2sinθ

0 2sinθ+3sin2θ−2sin3θ −2sinθ 2sin2 θ
2

cos2 θ
2
(4cosθ−3)















,

(16)

in the Bell basis {|φ+〉, |ψ+〉, |ψ−〉, |φ−〉} ≡ {(1,0,0,0)T ,(0,1,0,0)T ,(0,0,1,0)T ,(0,0,0,1)T}
with |ψ±〉 = 1/

√
2(|01〉± |10〉) and |φ±〉 = 1/

√
2(|00〉± |11〉). In this basis, O33 can be decom-

posed into a direct sum of a one-dimensional and a three-dimensional matrix O33 = o1 ⊕o3, thus

simplifying the calculations of the real eigenvalues. By using the Cardano method [37], these can
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be calculated to be

λ1 = −sin2 θ,

λ2 = −2
√

|u|cos
ξ

3
− b

3
,

λ3,4 =
√

|u(x)|
[

cos
ξ

3
± sin

ξ

3

]

− b

3
. (17)

Here, u = 1/9(3c − b2) and cosξ = 1
54

(

9bc − 2b3 − 27d
)

/
(

u
√

|u|
)

where b = −Tro3, c =

1/2
(

Tr2o3 −Tro2
3

)

, d = −deto3. (For convenience we have omitted the dependencies on θ.)

In Figure 2, the eigenvalues are plotted as functions of the parameter θ. The maximum violation

Π�2 Π 3Π�2 2Π

Θ@radD

-3

-2.5

-2

-1.5

-1

-0.5

Λ

Λ4

Λ3

Λ2

Λ1

FIG. 2: Eigenvalues of O33 in dependence of the relative angle θ.

of 1/4 is obtained for θ = π/3 with the eigenvector corresponding to λ3

|Ψmax〉=
√

3

2
|φ−〉+ 1

2
|ψ+〉. (18)

|Ψmax〉 is maximally entangled, but in contrast to the CH-inequality, this is in general not the

case for eigenstates corresponding to the maximal eigenvalue at θ 6= π/3.

IV. RELATION TO EXPERIMENTS

The analytical quantum bound of the CH-operator has been enumerated by Cabello [16] as well

as by the current authors [28] and experimentally verified by Bovino et al. [14] using polarization-

entangled photon pairs. The ansatz of Cabello for the experimental realization made use of the fact

that the eigenstates leading to maximal violations are maximally entangled. Thus when applying
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a unitary transformation U(θ) of the form

U(θ) =





sinθ −cosθ

cosθ sinθ





onto an initial state |ψ−〉= 1√
2
(|01〉−|10〉), one obtains all maximally violating states for different

θ values |ψ(θ)〉=U(θ)⊗12|ψ−〉.
However, in the case of O33, this scheme has to be extended, since the maximal violating states

are not maximally entangled in general. Such states cannot be created from maximal entangled

initial states by a local unitary operation U2×2 ∈ SU(2)⊗ SU(2), since such a factorized trans-

formation does not change the degree of entanglement. To obtain states constituting the quantum

bounds, one has to apply unitary transformations U4 ∈ SU(4) to the initial state comprising also

non-local operations which cannot be written as a tensor product of two unitary single-particle

operators.

A simplification for an experimental verification of the quantum bounds of Bell-type inequali-

ties is due to the fact that maximal violating states are pure. Therefore, it is sufficient to generate

initial states with variable degree of entanglement. Utilizing the Schmidt-decomposition, which is

always possible for a bipartite state, one can write any pure state in the form |ψ〉= ∑k λk|k1〉⊗|k2〉
where |k j〉 are orthonormal basis states for particle 1 and 2, respectively, and ∑k λ2

k = 1. The

weights of the λk’s are a measure of the degree of entanglement comprising the special cases

where λ1 = λ2 = 1/
√

2 for a maximally entangled state and λ1 = 0, λ2 = 1 (or vice versa) for

a separable state. Having a source producing such states in a particular basis one can obtain all

other pure states by applying a local unitary operation U2×2 ∈ SU(2)×SU(2). Appropriate pho-

ton sources have been suggested for example by White et al. [38] and Barbieri et al. [39] and

could therefore be used to trace the bounds on arbitrary bipartite Bell-type inequalities in the same

manner as in the experiment of Bovino et al. [14].

V. CONCLUSION

In conclusion we have shown how to obtain analytically the quantum bounds on Bell-type in-

equalities for a particular choice of measurement operators. We have also presented a numerical

simulation for obtaining these bounds for the CH-inequality. We have provided a quantitative

analysis and derived the exact quantum bounds for bipartite inequalities involving two or three
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measurements per site. The generalization to an arbitrary number of measurement parameters is

straightforward as the dimensionality of the eigenvalue problem remains constant. For more than

two particles the dimension of the matrix associated with a Bell-type operator increases exponen-

tially. However, one may conjecture that such matrices can be decomposed into a direct sum of

lower dimensional matrices.

In the context of this conference we also believe that the analytic expressions of the quan-

tum bounds could serve as consistency criteria of mathematical models proposed to show that

a violation of Bell-type inequalities does not necessarily imply the absence of a possible local-

realistic theory from the logical point of view. It is claimed that violations can be achieved without

abandoning a local and realistic position assuming for example time-dependencies of the random

parameters [40], or “chameleon” effects [41]. Still, any appropriate model has to be in accor-

dance with quantum mechanics not only qualitatively, but also quantitatively, and hence should

reproduce also the “fine structure” of the quantum bounds as discussed above.

Finally, although there is no theoretical evidence for a stronger-than-quantum violation what-

soever, its mere possibility justifies the sampling of the fine structure of the quantum bounds from

the experimental as well as the theoretical point of view in order to understand and verify the

restriction imposed by quantum theory.
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