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Correlations in an Einstein-Podolsky-Rosen-Bohm experiment can be made stronger than quantum correla-
tions by allowing a single bit of classical communication between the two sides of the experiment.
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From an operational point of view, the nonlocal quantum
correlations giving rise to violations of Bell-type inequalities
amount to the fact that certain joint events at spacelike sepa-
rated locations occur with greater or smaller frequencies than
can possibly be expected from classical, local realistic mod-
els. Two detectors at different locations register pairs of par-
ticles or particle properties more frequently or infrequently
as can be explained by the usual classical assumptions such
as value definiteness.

With the rise of quantum algorithms and quantum-
information theory �1�, the emphasis shifted to the commu-
nication cost and to the quantum communication complexity
related to those quantum correlations. The question of the
expense of obtaining quantum-type correlations from classi-
cal systems was stimulated by quantum �2� and classical
�3–6� teleportation. In a recent Letter �7�, Toner and Bacon,
based on Refs. �4,8�, argue that classical systems could
mimic quantum systems by reproducing the cosine law for
correlation functions with the exchange of just one bit of
classical information.

The formal coincidence of the quantum correlation func-
tion with classical correlations augmented with the exchange
of a single classical bit might indicate a deep structure in
quantum correlations. One could, for instance, speculate that
two-partite quantum systems may be capable of conferring a
single bit, a property which is reflected by the cosine form of
the expectation function. In what follows it will be argued
that, while this may still be the case for the Toner-Bacon
protocol �7�, in general the exchange of a single classical bit
can give rise to stronger than quantum correlations.

Since the systems discussed are entirely planar, whenever
possible, polar angles are used to represent the associated
unit vectors. The same symbols denote polar angles �without
hat� and the associated vectors �with hat�. Consider two cor-
related and spatially separated classical subsystems sharing
common directions �i, i=1, . . . which are chosen indepen-
dently of each other and are distributed uniformly. All pa-
rameters �i are assumed to be identical on each one of the
two subsystems. There are two measurement directions a and
b of two dichotomic observables with values “−1” and “1” at
two spatially separated locations. The measurement direction
a at “Alice’s location” is unknown to an observer “Bob”

measuring b and vice versa. A two-particle correlation func-
tion E��� with �= �a−b� is defined by averaging the product
of the outcomes O�a�i, O�b�i�−1,1 in the ith experiment,
i.e., E���= �1/N��i=1

N O�a�iO�b�i.
The following nonadaptive, memoryless protocols could

give rise to stronger-than-quantum correlations by allowing
the exchange of a single bit per experiment. The protocols
are similar to the one discussed by Toner and Bacon �7�, but
require only a single share �, and an additional direction

����, which is obtained by rotating �̂ clockwise around the
origin by an angle � which is a constant shift for all experi-
ments. That is, ����=�+�. Alice’s observable is given

by �=sgn�â · �̂�=sgn�cos�a−���. The bit communicated

by Alice is given by c���=sgn�â · �̂�sgn�â · �̂����=sgn�cos�a
−���sgn cos�a−�����. Bob’s observable is defined by ����
=sgn�b̂ · ��̂+c����̂�����. This protocol becomes Toner and
Bacon’s if � is allowed to vary randomly, with uniform dis-
tribution.

The strongest correlations are obtained for �=� /2, i.e., in
the case where the two directions associated with � and �
=�+� /2 are orthogonal and the information obtained by
c�� /2� is about the location of a within two opposite quad-
rants. Let H�x� stand for the Heaviside step function of x.

The effective shift in the parameter direction �̂→ �̂± �̂�

yields a correlation function of the form
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To obtain a better understanding for the shift mechanism, in

Fig. 1 a configuration is drawn which, without the shift �̂

→ �̂− �̂�, sgn�b̂ · �̂�=sgn cos�b−�� would have contributed
the factor −1. The shift results in a positive contribution

sgn�b̂ · ��̂− �̂��� to the expectation value. This shift mecha-
nism always yields the strongest correlations ±1 as long as
the angle � does not lie between � /4 and 3� /4.

For general 0���� /2, Fig. 2 depicts numerical evalua-
tions which fit the correlation function*Electronic address: svozil@tuwien.ac.at

PHYSICAL REVIEW A 72, 050302�R� �2005�

RAPID COMMUNICATIONS

1050-2947/2005/72�5�/050302�3�/$23.00 ©2005 The American Physical Society050302-1

http://dx.doi.org/10.1103/PhysRevA.72.050302


E��,�� =�
− 1 for 0 � � �

�

2

− 1 +
2

�
	� −

�

2

 for

�

2
	 � �

1

2
�� − ��

− 2	1 −
2

�
�
 for

1

2
�� − �� 	 � �

1

2
�� + ��

1 +
2

�
	� − � +

�

2

 for

1

2
�� + �� 	 � � � −

�

2

1 for � −
�

2
	 � � � .

�
�2�

Its domains are depicted in Fig. 3. For all nonzero �, E�� ,��
correlates stronger than quantized systems for some values of
�. For �=� /2, the Clauser-Horne-Shimony-Holt �CHSH� in-
equality �E�a ,b�+E�a ,b��+E�a� ,b�−E�a� ,b����2 for a=�,
a�=3� /4, b=0, b�=� /4 is violated by 3, a larger value than
the Tsirelson bound for quantum violations 22. This is due
to the fact that, phenomenologically, the strategy allows for
certain joint events to occur with greater or smaller frequen-
cies as can be expected from quantum entangled state mea-
surements. For �=0, the classical linear correlation function
E���=2� /�−1 is recovered, as can be expected.

The average over all 0���� /2 yields a very similar, but
not identical, behavior as the quantum cosine correlation
function. More precisely, assume two independent, uni-

formly distributed shares �1 and �2, and a single communi-

cated bit H�c��̂1 , �̂2�� with c��̂1 , �̂2�=sgn�â · �̂1�sgn�â · �̂2�
=sgn cos�a−�1�sgn cos�a−�2� per measurement of

sgn�â · �̂1�sgn�b̂ · ��̂2−c�̂1��. The associated correlation func-
tion is

E��� =
1

�2��2 � d�̂1d�̂2 sgn�â · �̂1�sgn�b̂ · ��̂2 − c�̂1��

=
1

2�2 � d�̂1 sgn�â · �̂1� � d�̂2 sgn�b̂ · ��̂2 − �̂1�� .

�3�

FIG. 2. �Color online� Classical and stronger-than-
quantum correlation functions obtained through the exchange
of a single bit in the memoryless regime for values of �
� �0,� /10,� /5 ,3� /10,2� /5 ,� /2� between 0 �straight line� and
� /2 �cf. Eq �1��.

FIG. 3. �Color online� Domains of the correlation function
E�� ,��. Consecutive sections from left to right cover the domains
of Eq. �2� from bottom to top: �1� 0���� /2, �2� � /2	��

1
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FIG. 1. Demonstration of the shift mechanism. Concentric

circles represent the measurement directions â and b̂ �outer circle�,
as well as parameter directions �̂ and �̂� �inner circle� and their
associated projective sign regions. The four measurement regions

spanned by â and b̂ are indicated by “±1,” respectively. Positive and

negative octants spanned by �̂ and �̂� are indiated in the inner

circle by “
,” respectively. In this configuration, the shift �̂→ �̂

− �̂� pushes �̂ into a positive region.
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The elemination of c at the cost of the prefactor 2 on the
right-hand side of Eq. �3� is achieved by using the symme-

tries of the outcome under the exchange �̂1↔−�̂1 and

�̂2↔−�̂2 as outlined in Ref. �7�. Note that, although the cor-
relation function E��� is nonlocal �Bob’s output depends on
c, which contains a�, after some recasting, despite the pref-
actor of 2 which accounts for nonlocality, it appears to be
perfectly local, since it is the product of two sign functions
containing merely a and �separately� b, respectively. �The
two parameters �1 ,�2 are common shares.�

The �2 integration can be performed by arranging b̂ along

the positive y axis �0, 1� and by the parametrization �̂1

= �sin t , cos t� and �̂2= �sin � , cos ��. The positive contribu-
tions amount to A+=2�0

t d�=2t; thus the negative contribu-
tions are A−=2�−A+, and the entire integral is �A+

−A−� / �2��=2t /�−1=2 cos−1�b̂ · �̂1� /�−1.
For the �1 integration, â is arranged along the positive y

axis �0, 1�, b̂ along �sin r , cos r�, and �̂1 along �sin � , cos ��.
Since cos−1�cos�x��= �x� for −1�x�1, one obtains for the
correlation value �4/�2��0

�d� sgn�cos ����−r�. After evaluat-

ing all cases, the �̂1 integration, for 0��= �a−b���, yields
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which is plotted in Fig. 4. An alternative derivation of Eq. �4�
is via �2/���0

�/2d� E�� ,�� with E�� ,�� from Eq. �2�. The
difference to the cosine law obtained by Toner and Bacon �7�
is due to the reduced dimensionality of the problem.

Let us briefly sketch a protocol requiring memory which,
by the exchange of more than one bit, could give rise to
maximal violations �9� of the CHSH inequality. The protocol
is based on locating and communicating information about
Alice’s measurement direction to Bob, who then rotates his
subsystem �or alternatively his measurement direction� so as
to obtain the desired correlation function.

When compared to the protocol discussed by Toner
and Bacon �7� or to the memoryless protocol introduced
above, the adaptive protocols share some similarities. Both
exchange very similar information, as can, for instance,

be seen by a comparison between c2 above and the bit
c=sgn cos�a−�1�sgn cos�a−�2� exchanged in the Toner and
Bacon protocol. After the exchange of just a few bits, the
adaptive protocols appear to be more efficient from the com-
munication complexity point of view. However, these strate-
gies require memory. Operationally, this presents no problem
for Alice and Bob, but if one insist on nonadaptive, single
particle strategies, these protocols must be excluded.

In summary we have found that, as long as adaptive pro-
tocols requiring memory at the receiver side are allowed, the
CHSH inequality can be violated maximally. Furthermore,
we have presented a type of memoryless, nonadaptive proto-
col giving rise to stronger-than-quantum correlations which
does not yield maximal violations of the CHSH inequality
but rather violates it by 3, as compared to the quantum Tsire-
lson bound 22. The question still remains open whether
memoryless single bit exchange protocols exist which violate
the CHSH inequality maximally, i.e., by 4. Another open
question is the effect of information exchange between en-
tangled quantum subsystems.
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FIG. 4. The correlation E��� of Eq. �4� as a function of �= �a
−b� for the memoryless exchange of a single bit per experiment in
the planar configuration. Note that, although the shape resembles
the quantum cosine law, the function is piecewise quadratic.
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