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Abstract

Imagine a sequence in which the first letter comes from a binary alphabet, the second letter can be chosen

on an alphabet with 10 elements, the third letter can be chosen on an alphabet with 3 elements and so on.

Such sequences occur in various physical contexts, in which the coding of experimental outcome varies with

scale. When can such a sequence be called random? In this paper we offer a solution to the above question

using the approach to randomness proposed by Algorithmic Information Theory.
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1. Motivation and examples

When it comes to comprehension and practical usefulness, the coding, or translation, from
physics into a formal language may be of decisive importance: depending on the code chosen,
what appears to be a disordered ‘‘mess’’ of data, may become structured and well understood
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(and vice versa). A typical example is the right choice of coordinate system utilizing the symmetry
of a physical property. Thus far, little attention seems to have been given to the careful choice of
number bases employed in coding physical entities; even to the extent that the coding sequence
might use different bases for different positions.

Already Georg Cantor, the creator of naive set theory, considered such coding schemes. To ob-
tain a better understanding, let us, as an example, examine the old British unit system, in which
length can be measured in miles, furlongs, chains, yards, feet, hands, inches, lines [1]. These scales
relate in the following way: 1 mile=8 furlongs=8·10 chains=8·10·22 yards=8·10·22·3
feet=8·10·22·3·4 hands=8·10·22·3·4·3 inches=8·10·22·3·4·3·12 lines. Hence,
the sequence of scales starts with b1=10, b2=8, b3=10, b4=22, b5=3, b6=4, b7=3, b8=12 and
can be continued ad infinitum. For example, the number 0.963(11)232(10)00 � � �0 � � � represents
a length of 9 miles, 6 furlongs, 3 chains, 11 yards, 2 feet, 3 hands, 2 inches and 10 lines.

As a second example, consider a ball in gravitational fall impinging onto a board of nails with
different numbers bn+1 of nails at different horizontal levels (here, n stands for the nth horizontal
level and bn is the basis corresponding to the position n). Let us assume that the layers are ‘‘suf-
ficiently far apart’’ (and that there are periodic boundary conditions realizable by elastic mirrors).
Then, depending on which one of the bn openings the ball takes, one identifies the associated num-
ber (counted from 0 to bn�1) with the nth position xn2{0, . . . ,bn�1} after the point. The resulting
sequence leads to the real number whose Cantor expansion is 0.x1x2 � � �xn � � �.

As a third example we consider a quantum correspondent of the board of nails harnessing irre-
ducible complementarity and the randomness in the outcome of measurements on single particles.
Take a quantized system with at least two complementary observables bA; bB, each one associated
with N different outcomes ai,bj, i, j2{0, . . . ,N�1}, respectively. Notice that, in principle, N could
be a large (but finite) number. Suppose further that bA; bB are ‘‘maximally’’ complementary in the
sense that measurement of bA totally randomizes the outcome of bB and vice versa (this should not
be confused with optimal mutually unbiased measurements [2]).

A real number 0.x1x2 � � �xn � � � in the Cantor expansion can be constructed from successive
measurements of bA and bB as follows. Since all bases bn used for the Cantor expansion are assumed
to be bounded, choose N to be the least common multiple of all bases bn. Then partition the N
outcomes into even partitions, one per different base, containing as many elements as are required
for associating different elements of the nth partition with numbers from the set {0, . . . ,bn�1}.
Then, by measuring
bA; bB; bA; bB; bA; bB; . . .

successively, the nth position xn2{0 , . . . ,bn�1} can be identified with the number associated with
the element of the partition which contains the measurement outcome.

As an example, consider the Cantor expansion of a number in the bases 2, 6, and 9. As the least
common multiple is 18, we choose two observables with 18 different outcomes; e.g., angular
momentum components in two perpendicular directions of a particle of total angular momentum
9
2
�h with outcomes in (units are in �h)
� 9
;�4;� 7

; . . . ;þ 7
;þ4;þ 9

� �
:

2 2 2 2
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Associate with the outcomes the set {0,1,2, . . . ,17} and form the even partitions
ff0; 1; 2; 3; 4; 5; 6; 7; 8g; f9; 10; 11; 12; 13; 14; 15; 16; 17gg;
ff0; 1; 2g; f3; 4; 5g; f6; 7; 8g; f9; 10; 11g; f12; 13; 14g; f15; 16; 17gg;
ff0; 1g; f2; 3g; f4; 5g; f6; 7g; f8; 9g; f10; 11g; f12; 13g; f14; 15g; f16; 17gg
(or any partition obtained by permuting the elements of {0, 1, 2, . . . ,17}) associated with the bases
2, 6, and 9, respectively.

Then, upon successive measurements of angular momentum components in the two perpendic-
ular directions, the outcomes are translated into random digits in the bases 2, 6, and 9,
accordingly.

As the above quantum example may appear ‘‘cooked up’’, since the coding is based on a uni-
form radix N expansion, one might consider successive measurements of the location and the
velocity of a single particle. In such a case, the value xn is obtained by associating with it the click
in a particular detector (or a range thereof) associated with spatial or momentum measurements.
Any such arrangements are not very different in principle, since every measurement of a quantized
system corresponds to registering a discrete event associated with a detector click [3].

This is a generalization of self-similarity with intrinsic scale dependence. Geometric objects of
this type might not scale in a self-similar manner but could be codable by a Cantor expansion.

Consider a generalized Cantor set obtained, for example, by cutting out in the nth construction
step 1/(n+1)th of each of the remaining segments (starting from the real interval [0,1] at n=1) at a
random position of n+1 positions of equal length [4]. In Fig. 1, the construction process is
depicted.

Another example is the generalized Koch curve obtained by inserting in the nth construction
step n+1 scaled down copies of the object obtained in the nth construction step at random posi-
tions. A different variation of the Koch curve is obtained if different objects (as compared to pre-
vious construction steps) are inserted. Any of the above examples can be efficiently coded by
Cantor expansions of random reals. For an efficient encoding, associate with every construction
step a place in the expansion. Then, the basis chosen for this particular place in the expansion
should be identified with the number of different segments in that construction step. For example,
in the generalized Cantor set discussed above, there are n+1 segments at the nth construction
Fig. 1. First construction steps of a generalized Cantor set.
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level; therefore, the basis chosen for the nth position should be n+1. (This linear dependence is
only an example, and much more general functions for the bases are possible.)

It is not too speculative to assume that this might reflect the physical property of different object
formations at different (e.g., length or time) scales, which might be caused by nonsimilar interac-
tions at different scales.
2. Varying alphabets and the Cantor expansion

In what follows we shall present methods to characterize and quantify Cantor encoded stoch-
astic random sequences. Algorithmic Information Theory (see [5–7]) deals with random sequences
over a finite (not necessarily binary) alphabet. A real number is random if its binary expansion is a
binary random sequence; the choice of base is irrelevant (see [7] for various proofs).

Instead of working with a fixed alphabet we can imagine that the letters of a sequence are taken
from a fixed sequence of alphabets. This construction was introduced by Cantor as a generaliza-
tion of the b-ary expansion of reals. More precisely, let
b1; b2; . . . bn; . . .
be a fixed infinite sequence of positive integers greater than 1. Using a point we form the finite or
infinite sequence
0:x1x2 � � � ð1Þ

such that 0 6 xn 6 bn� 1, for all n P 1. Consider the set of rationals
s1 ¼
x1
b1

; s2 ¼
x1
b1

þ x2
b1b2

; . . . ; sn ¼ sn�1 þ
xn

b1b2 � � � bn
; . . . ð2Þ
The above sum is bounded from above by 1,
06 sn 6
Xn

i¼1

bi � 1

b1b2 � � � bi
¼ 1� 1

b1b2 � � � bn
< 1;
so there is a unique real number a that is the least upper bound of all partial sums (2). The se-
quence (1) is called the Cantor expansion of the real a2 [0,1].

If xn=bn�1, for all n P 1, then sn=1�1/(b1b2 � � �bn), so a=1. If bn=b, for all n P 1, then the
Cantor expansion becomes the classical b-ary expansion. If xn=1 and bn=n+1, for all n P 1, then
a=e�2.

The genuine strength of the Cantor expansion unfolds when various choices and interactions on
different scales are considered.

The main result regarding Cantor expansions is the following theorem. Fix an infinite sequence
of scales b1,b2, . . . Assume that we exclude Cantor expansions in which starting from some place
after the point all the consecutive digits are xn=bn�1. Then, every real number a2 [0,1] has a un-
ique Cantor expansion (relative to b1,b2, . . .) and its digits are determined by the following
relations:
q1 ¼ a; x1 ¼ bb1q1c; qnþ1 ¼ bnqn � xn; xnþ1 ¼ bbnþ1qnþ1c:
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Consequently, if we exclude Cantor expansions in which starting from some place after the
point all the consecutive digits are xn=bn�1. then given a2 [0,1] there is a unique sequence
xa2X(f) whose Cantor expansion is exactly a. If x2X(f), then we denote by ax the real whose Can-
tor digits are given by the sequence x, hence xax=x and ax

a

=a.
For more details regarding the Cantor expansion see [1,8].
3. Notation and basic results

We consider N to be the set of non-negative integers. The cardinality of the set A is denoted by
card(A). The base 2 logarithm is denoted by log.

If X is a set, then X* denotes the free monoid (under concatenation) generated by X with e

standing for the empty string. The length of a string w2X* is denoted by jwj. We consider the
space Xx of infinite sequences (x-words) over X. If x=x1x2 � � �xn � � �2Xx, then x(n)=x1x2 � � �xn
is the prefix of length n of x. Strings and sequences will be denoted respectively by x,u,v,w, . . .
and x,y, . . . For w,v2X* and x2Xx let wv,wx be the concatenation between w and v, x,
respectively.

By ‘‘v’’ we denote the prefix relation between strings: wvv if there is a v 0 such that wv 0=v. The
relation ‘‘@’’ is similarly defined for w2X* and x2Xx: w@x if there is a sequence x 0 such that
wx 0=x. The sets pref(x)={w: w2X*,w@x} and pref(B)=¨x2Bpref(x) are the languages of pre-
fixes of x2Xx and B˝Xx, respectively. Finally, wXx={x2Xx: w2pref(x)}. The sets (wXx)w2X*

define the natural topology on Xx.
Assume now that X is finite and has r elements. The unbiased discrete measure on X is the prob-

abilistic measure h(A)=card(A)/r, for every subset of X. It induces the product measure l defined
on all Borel subsets of Xx. This measure coincides with the Lebesgue measure on the unit interval,
it is computable and l(wXx)= r�jwj, for every w2X*. For more details see [7,9,10].

In dealing with Cantor expansions we assume that the sequence of bases b1,b2, . . .bn, . . . is com-
putable, i.e. given by a computable function f : N ! N n f0; 1g. Let Xi={0, . . . , f(i)�1}, for
i P 2, and define the space
X ðf Þ ¼
Y1
i¼1

X i � Nx:
The set
prefðX ðf ÞÞ ¼ fw : w ¼ w1w2 . . .wn;wi 2 X i; 16 i6 ng
plays for X(f) the role played by X* for Xx.
Prefixes of a sequence x2X(f) are defined in a natural way and the set of all (admissible) prefixes

will be denoted by pref(x). As we will report any coding to binary, the length of w=
w1w2 � � �wn2pref(X(f)) is kwk ¼ logð

Qn
i¼1f ðiÞÞ; jwj=n. In X(f) the topology is induced by the sets

[w]f={x2X(f): w2pref(x)} and the corresponding measure is defined by
lð½w�f Þ ¼
Yjwj
i¼1

ðf ðiÞ�1Þ
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for every w2pref(X(f)). An open set is of the form [A]f={x: $n(x(n)2A)}, for some set
A˝pref(X(f)). The open set [A]f is computably enumerable if A is computably enumerable.

The following two lemmas will be useful:

Let 0 6 a<2m and let a, b be two reals in the interval [a Æ2�m, (a+1) Æ2�m]. Then, the first
m bits of a and b coincide, i.e., if a ¼

P1
i¼1xi2

�i and b ¼
P1

i¼1yi2
�i, then xi =yi, for all

i=1,2, . . . ,m.
Let b1,b2, . . . be an infinite sequence of scales and a=j/(b1b2 � � �bm)2[0,1]. Let a, b be two reals in

the interval [a, a+1/(b1b2 � � �bm)]. Then, the first m digits of the Cantor expansions (relative to
b1,b2, . . .) of a and b coincide, i.e., if a ¼

P1
i¼1xi=ðb1b2 � � � biÞ and b ¼

P1
i¼1yi=ðb1b2 � � � biÞ, then

xi =yi, for all i=1, 2, . . . ,m.
4. Definitions of a random sequence relative to the Cantor expansion

In this section we propose five definitions for random sequences relative to their Cantor expan-
sions and we prove that all definitions are mutually equivalent. We will fix a computable sequence
of scales f.

We say that the sequence x2X(f) is Cantor-random if the real number ax is random (in the sense
of Algorithmic Information Theory). e.g., the sequence corresponding to the binary expansion of
a is random.

Next we define the notion of weakly Chaitin–Cantor random sequence. To this aim we intro-
duce the Cantor self-delimiting Turing machine (shortly, a machine), which is a Turing machine C
processing binary strings and producing elements of pref(X(f)) such that its program set (domain)
PROGC={x2{0,1}*: C(x) halts} is a prefix-free set of strings. Sometimes we will write CðxÞ < 1
when C halts on x and CðxÞ ¼ 1 in the opposite case.

The program-size complexity of the string w2pref(X(f)) (relative to C) is defined by HC(w)=min
{jvj: v2R*,C(y)=w}, where min ; ¼ 1. As in the classical situation the set of Cantor self-delim-
iting Turing machines is computably enumerable, so we can effectively construct a machine U

(called universal) such that for every machine C, HU(x) 6 HC(x)+O(1). In what follows we will
fix a universal machine U and denote HU simply by H.

The sequence x2X(f) is weakly Chaitin–Cantor-random if there exists a positive constant c such
that for all n 2 N, HðxðnÞÞP kxk � c.

The sequence x2X(f) is strongly Chaitin–Cantor-random if the following relation holds true:
limn!1ðHðxðnÞÞ � kxkÞ ¼ 1.

The sequence x2X(f) is Martin–Löf-Cantor-random if for every computably enumerable collec-
tion of computably enumerable open sets (On) in X(f) such that for every n 2 N, l(On) 6 2�n we
have x 62 \1

n¼1On.
The sequence x2X(f) is Solovay-Cantor-random if for every computably enumerable collection

of computably enumerable open sets (On) in X(f) such that
P1

n¼1lðOnÞ < 1 the relation x2On is
true only for finitely many n 2 N.

Let us state a theorem. Let x2X(f). Then, the following statements are equivalent:

(1) The sequence x is weakly Chaitin–Cantor-random.
(2) The sequence x is strongly Chaitin–Cantor-random.
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(3) The sequence x is Martin-Löf–Cantor-random.
(4) The sequence x is Solovay–Cantor-random.

These equivalences are direct translations of the classical proofs (see, for example, [7]).
Moreover, we have the following additional relations: Let x2X(f). Then, the sequence x is

weakly Chaitin–Cantor-random if x is Cantor-random. If the function f is bounded, then every
weakly Chaitin–Cantor-random x is also Cantor-random.

Only the equivalence between the notions of Cantor-randomness and weakly Chaitin–Cantor-
randomness will be proven. The argument is modification of the proof idea of Theorem 3 in [11].

Assume first that x2X(f) is not Cantor-random and let a=ax. Let y=y1y2 � � � be the bits of the
binary expansion of a. We shall show that y is not a binary random sequence.

Fix an integer m P 1 and consider the rational
aðmÞ ¼
Xm
i¼1

xi
b1b2 � � � bm

:

We note that w=x1x2 � � �xm is in pref(X(f)) and kwk ¼ logðb1b2 � � � bmÞ.
Further on, 0<a(m)<a and
a � aðmÞ6
X1
t¼mþ1

xt
b1b2 � � � bt

6

X1
t¼mþ1

bt � 1

b1b2 � � � bt
¼ 1

b1b2 � � � bm
:

Next we define the following parameters:
Mm ¼ blogðb1b2 � � � bmÞc; ð3Þ
Mm
am ¼ baðmÞ � 2 c ð4Þ
and we note that
a � aðmÞ6 1

b1b2 � � � bm
6 2�Mm : ð5Þ
We are now in a position to prove the relation: for every integer m P 1,
½aðmÞ; a� � ½am � 2�Mm ; ðam þ 2Þ � 2�MmÞ: ð6Þ

Indeed, in view of (5) and (4) we have a<(am+2) Æ2�Mm as
a � 2�Mm
6 aðmÞ � 2�Mm þ 1 < am þ 2:
Again from (4), am 6 a(m) Æ2Mm.
Using (6), from w=x1x2 � � �xm plus two more bits we can determine y1y2 � � �yMm

, that is, from
the first m digits of the Cantor expansion of a and two additional bits we can compute the first
Mm binary digits of a. In view of a result obtained earlier we obtain a computable function h
on which an input consisting of a binary string v of length 2 and w produces as output y(Mm).

We are ready to use the assumption that y is random while x is not Cantor-random, that is,
there is a universal self-delimiting Turing machine U2 working on binary strings and there is a
positive constant c such that for all n P 1,



928 C.S. Calude et al. / Communications in Nonlinear Science and Numerical Simulation 10 (2005) 921–930
HU2ðyðnÞÞP n� c ð7Þ

and for every positive d there exists a positive integer ld (depending upon d) such that
HðxðldÞÞ6 kxðldÞk � d: ð8Þ

We construct a binary self-delimiting Turing machine C2 such that for every d>0, there exist

two strings ld and v, sld2{0,1}*, such that jvj=2, jsld j6 kxðldÞk � d ¼ logðb1b2 � � � bld Þ � d and
C2(v, sld)=y(Mld

).
Consequently, in view of (7) and (8), for every d we have
Mld � c6HU2ðyðMld ÞÞ6HC2ðyðMld ÞÞ þOð1Þ6 jsld j þ 2þOð1Þ6 logðb1b2 � � � bld Þ þOð1Þ

¼ Mld þOð1Þ � d;
a contradiction.
Recall that a ¼

P1
i¼1xi=ðb1b2 � � � biÞ ¼

P1
i¼1yi2

�i. Now we prove that x is Cantor-random when-
ever y is random. Let m P 1 be an integer and let a2ðmÞ ¼

Pm
i¼1yi2

�i. Given a large enough m we
effectively compute the integer tm to be the maximum integer L P 1 such that
2�m
6

1

b1b2 � � � bL
: ð9Þ
We continue by proving that for all large enough m P 1:
½a2ðmÞ; a� � aðtmÞ �
1

b1b2 � � � btm
; aðtmÞ þ

1

b1b2 � � � btm

� 	
: ð10Þ
We note that a2(m)<a and
a ¼
X1
i¼1

xi
b1b2 � � � bi

6 aðtmÞ þ
X1
i¼tl

xi
b1b2 � � � bi

6 aðtmÞ þ
X1
i¼tl

bi � 1

b1b2 � � � bi
6 aðtmÞ þ

1

b1b2 � � � btm
;

a ¼
X1
i¼1

xi
b1b2 � � � bi

6 aðtmÞ þ
X1
i¼tl

xi
b1b2 � � � bi

6 aðtmÞ þ
X1
i¼tl

bi � 1

b1b2 � � � bi
6 aðtmÞ þ

1

b1b2 � � � btm
:

As a 6 a(tm)+1/(b1b2 � � �btm) we only need to show that a(tm) 6 a2(m)+1/(b1b2 � � �btm). This is
the case as otherwise, by (9), we would have
aðtmÞ > a2ðmÞ þ
1

b1b2 � � � btm
P a2ðmÞ þ 2�m P a;
a contradiction.
In case when f is bounded, assume by contradiction that x is Cantor-random but y is not ran-

dom, that is there exists a positive constant c such that for all n P 1 we have
HðxðnÞÞP logðb1b2 � � � bnÞ � c; ð11Þ
and for every d>0 there exists an integer nd>0 such that
HU2ðyðndÞÞ < nd � d: ð12Þ
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In view of a result stated earlier and (10), there is a computable function F depending upon two
binary strings such that jvj=2, F(y(nd),v)=x(tnd), so the partially computable function F�U2 which
maps binary strings in elements of pref(X(f)) is a Cantor self-delimiting Turing machine such that
for every d>0 there exists a binary string snd of length less than nd�d and a binary string v of
length 2 such that F(U2(snd),v)=x(tnd).

As f is bounded, the difference jtm+1�tmj is bounded. In view of (9), for large m P 1,
b1b2 � � �btm> m�1, so we can write
2�nd þ
Xnd
i¼1

ð1� yiÞ2�i ¼ 1�
Xnd
i¼1

yi2
�i
6 1� 1

b1b2 � � � btnd
; ð13Þ
nd � c� 16 logðb1b2 � � � btnd Þ � c6HUðxðtnd ÞÞ6HF �U2ðxðtnd ÞÞ þOð1Þ6 jsnd j þ 2þOð1Þ
6 nd � d þOð1Þ;
a contradiction.
Does the above result hold true for unbounded functions f? The answer is affirmative and has

been independently obtained by L. Fortnow and A. Nies [12]:
Let x be a binary sequence. If there exists a computable infinite set M of positive integers and c>0

such that for every m2M, HU2(x(m))Pm�c, then x is random.

Here is a sketch of the proof. We construct the following self-delimiting Turing machine C: C(u)
tries to write the input u in the form u=xy such that U2(x) is defined and jU2(x)j+ jyj is the first
element of R larger than jU2(x)j. If all these conditions are satisfied, then C(u)=U2(x)y.

First we note that C is self-delimiting. Secondly, if H(r)< jrj�d, and r is a prefix of a string y
such that the length of w=ry is the smallest element of R larger than jrj, then we have
HC(w)< jrj+ jyj�d. Indeed, if U2(r*)=r, and jr*j=H(r), then C(r*y)=ry and jr*j+ jyj=H(r)+
jyj< jrj+ jyj�d. Next let B be the constant necessary to U to simulate C, that is HU2(u) 6 H-

C(u)+B, for all strings u.
Finally, assume that x is not weakly Chaitin-random, that is, there exists a positive integer m

such that HU2(x(m))<m�(c+B). Consequently, taking t be the smallest element of R larger than
m, we have HU2(x(t)) 6 HC(x(t))+B 6 t�c, a contradiction.

It is interesting to note that in case of unbounded functions f we may have Cantor-random se-
quences x2X(f) which do not contain a certain letter, e.g. 02Xi. Let f(i)=2i+2. Then the measure
of the set F ¼

Q1
i¼1X

0
i, where X

0
i ¼ X i n f0g satisfies lðF Þ ¼

Q1
i¼1ð1� 2�i�1Þ > 0. Thus F contains a

Cantor-random sequence x. However, by construction, x does not contain the letter 0 which is in
every Xi.
5. On the meaning of randomness in Cantor’s setting

So far, a great number of investigations have concentrated on the meaning and definition of
randomness in the standard context, in which bases remain the same at all scales. That is, if
one for instance ‘‘zooms into’’ a number by considering the next place in its expansion, it is always
taken for granted that the same base is associated with different places.
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From a physical viewpoint, if one looks into a physical property encoded into a real in, say,
fixed decimal notation, then by taking the next digit amounts to specifying that physical property
more precisely by a factor of ten. A fixed ‘‘zoom’’ factor may be the right choice if all physical
properties such as forces and symmetries and boundary conditions remain the same at all scales.
But this is hardly to be expected. Take, for instance, a ‘‘fractal’’ coastline. How is it generated?
The origins of its geometry are the forces of the tidal and other forces on the land and coastal
soil. That is, water moving back and forth, forming eddies, washing out little bays, and little bays
within little bays, and little bays within little bays within little bays, . . . , and so on. There may be
some structural components of this flow which result in scale dependence. Maybe the soil-water
system forming the landscape will be ‘‘softer’’ at smaller scales, making bays relatively larger than
their macroscopic counterparts. Indeed, eventually, at least at subatomic scales, the formation of
currents and eddies responsible for the creation of ever smaller bays will break down.

We cannot expect the fractal dimension to saturate at these scales. It is also not possible to de-
fine the Koopman operator in the context of the discussed examples in a straightforward manner.
Although challenging, theses issues remain open and may be the subject of further studies.

In the above cases, the base of the expansion might have to be modified in order to be able to
maintain a proper relation between the coding of the geometric object formed by the physical sys-
tem and the meaning of its number representation in terms of ‘‘zooming’’. All such processes are
naturally stochastic, and therefore deserve a proper and precise formalization in terms of random
sequences in Cantor representations.
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