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I. INTRODUCTION

Suppose someone claims that the chances of rain in Vi-
enna and Budapest are 0.1 in each one of the cities alone, and
the joint probability of rainfall in both cities is 0.99. Would
such a proposition appear reasonable? Certainly not, for even
intuitively it does not make much sense to claim that it rains
almost never in one of the cities, yet almost always in both of
them. The worrying question remains: which numbers could
be considered reasonable and consistent? Surely, the joint
probability should not exceed any single probability. This
certainly appears to be a necessary condition, but is it a suf-
ficient one? In the middle of the 19th century Boole, in re-
sponse to such queries, formulated a theory of “conditions of
possible experience”[1,2] which dealt with this problem.
Boole’s requirements on the(joint) probabilities of logically
connected events are expressed by certain equations or in-
equalities relating those(joint) probabilities.

Since Bell’s investigations[3–5] into bounds on classical
probabilities, similar inequalities for a particular physical
setup have been discussed in great number and detail. In
what follows, the classical bounds are referred to as “Bell-
type inequalities.” Whereas these bounds are interesting if
one wants to inspect the violations of classical probabilities
by quantum probabilities, the validity of quantum probabili-
ties and their experimental verification is a completely dif-
ferent issue. Here we shall present detailed numerical studies
on the bounds of quantum probabilities which, in analogy to
the classical bounds, are experimentally testable.

A. Correlation polytopes

In order to establish bounds on quantum probabilities, let
us recall that Pitowsky has given a geometrical interpretation
of the bounds of classical probabilities in terms of correlation
polytopes[6–10] [see also Froissart[11] and Tsirelson(also
spelled Cirel’son) [12,13]].

Consider an arbitrary number of classical events
a1,a2, . . . ,an. Take some(or all of) their probabilities and

some(or all of) the joint probabilitiesp1,p2, . . . ,pn,p12, . . .,
and identify them with the components of a vectorp
=sp1,p2, . . . ,pn,p12, . . .d formed in Euclidean space. Since
the probabilitiespi, i =1, . . . ,n, are assumed to be indepen-
dent, every single one of their extreme cases 0,1 is feasible.
The combined values ofp1,p2, . . . ,pn of the extreme cases
pi =0,1, together with the joint probabilitiespij =pipj, can
also be interpreted as rows of a truth table; with 0 and 1
corresponding to “false” and “true,” respectively. Moreover,
any such entry corresponds to atwo-valued measure(also
calledvaluation, 0-1-measureor dispersionless measure).

In geometrical terms, any classical probability distribution
is representable by some convex sum over all two-valued
measures characterized by the row entries of the truth tables;
that is, it corresponds to some point on the face of the clas-
sical correlation polytopeC=convsKd which is defined by
the set of all points whose convex sum extends over
all vectors associated with row entries in the truth tableK.
More precisely, consider the convex hull convsKd
=hoi=1

2n
lixi uli ù0,oi=1

2n
li =1j of the set

K = hx1,x2, . . . ,x2nj

= ˆst1,t2, . . . ,tn,txty, . . .duti P h0,1j,i = 1, . . . ,n‰.

Here, the termstxty, . . . stand for arbitrary products associ-
ated with the joint propositions which are considered. Ex-
actly what terms are considered depends on the particular
physical configuration.

By the Minkoswki-Weyl representation theorem(Ref.
[14], p. 29), every convex polytope has a dual(equivalent)
description: (i) either as the convex hull of its extreme
points, i.e., vertices,(ii ) or as the intersection of a finite
number of half spaces, each one given by a linear inequality.
The linear inequalities, which are obtained from the setK of
vertices by solving the so-calledhull problem, coincide with
Boole’s conditions of possible experience.

For particular physical setups, the inequalities can be
identified with Bell-type inequalities which have to be satis-
fied by all classical probability distributions. These condi-
tions are demarcation criteria, i.e., they are complete and
maximal in the sense that no other system of inequalities
exists which characterizes the correlation polytopes com-
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pletely and exhaustively(that is, the bounds on probabilities
cannot be enlarged and improved). Generalizations to the
joint distributions of more than two particles are straightfor-
ward. Correlation polytopes have provided a systematic, con-
structive way of finding the entire set of Bell-type inequali-
ties associated with any particular physical configuration
[15,16], although from a computational complexity point of
view [17], the problem remains intractable[9].

B. Quantum probabilities

Just as the Bell-type inequalities represent bounds on the
classical probabilities or expectation values, there exist
bounds on quantum probabilities. In what follows we shall
concentrate on these quantum plausibility criteria, in particu-
lar on the bounds characterizing the demarcation line for
quantum probabilities.

Although being less restrictive than the classical prob-
abilities, quantum probabilities do not violate the Bell-type
inequalities maximally[18–20]. Tsirelson[12,13,21] as well
as Pitowsky[22] have investigated the analytic aspect of
bounds on quantum correlations. Analytic bounds can also be
obtainedvia the minmax principle(Ref. [23], Sec. 90), stat-
ing that the bound(or norm) of a self-adjoint operator is
equal to the maximum of the absolute values of its eigenval-
ues. The eigenvectors correspond to pure states associated
with these eigenvalues. Thus, the minmax principle is for the
quantum correlation functions what the Minkoswki-Weyl
representation theorem is for the classical correlations.
Werner and Wolf[24], as well as Cabello[25], have consid-
ered maximal violations of correlation inequalities, and have
also enumerated quantum states associated with extreme
points of the convex set of quantum correlation functions.

The maximal violation of the Clauser-Horne-Shimony-
Holt (CHSH) inequality involving expectation values of bi-
nary observables is related to Grothendieck’s constant[26].
But the demarcation criteria for quantum probabilities are
still far less understood than their classical counterparts. In a
broader context, Cabello has described a violation of the
CHSH inequality beyond the quantum-mechanical(Tsirel-
son’s) bound by applying selection schemes to particles in a
Greenberger-Horne-Zeilinger state[27,28], yet here we only
deal with the usual quantum probabilities of events which are
not subject to selection procedures.

To be more precise, consider the set of all single-particle
probabilities qi =trfWsEi ^ Idg and trfWsI ^ Fidg, as well as
the two-particle joint probabilitiesqij =trfWsEi ^ Fjdg, where
someEi, Fj are projection operators on a Hilbert spaceH and
W is some state onH ^ H. Again, generalizations to the joint
distributions of more than two particles are straightforward.
An analog to the classical correlation polytopeC is the set of
all quantum probabilities:

Q = hsq1,q2, . . . ,qn,qxy, . . .du,

qi = trfWsEi ^ Idg or trfWsI ^ Fidg, s1d

qij = trfWsEi ^ Fjdg,

with EiEi =Ei, FjFj =Fj, W†=W, trsWd=1, andkuuWuulù0,
i , j =1, . . . ,n for all uulPH ^ H. The vertices of classical cor-
relation polytopes C coincide with points
of Q, if Ei ,Fj P hdiags0, . . . ,0d ,I=diags1, . . . ,1dj, where
diagsa,b, . . .d stands for the diagonal matrix with diagonal
entriesa,b, . . .; in these cases,W may be arbitrary. A proof of
the convexity ofQ can be found in Ref.[22]. Notice, how-
ever, that geometrical objects derived from expectation val-
ues need not be, and in fact are not, convex, as an example
below shows.

One could obtain an intuitive picture ofQ by imagining it
as an object(in high dimensions) created from “soap sur-
faces” which is suspended on the edges ofC, and which is
blown up with air: the original polytope faces which are
hyperplanes get “bulged” or “curved out” such that, instead
of a single plane per face, a continuity of tangent hyper-
planes is necessary to characterize it[21].

II. NUMERICAL STUDIES

In what follows, we shall first consider the parametriza-
tion of projections and states. The numerically calculated
expectation values obey the Tsirelson bound, exceeding the
values for the classical CHSH inequality. Then, we shall deal
with the Clauser-Horne(CH) inequality and a higher-
dimensional example taken from Ref.[15] in more detail,
followed by an attempt to depict the convex bodyQ itself.

A. Parametrization

Consider a two-spin-1/2 particle configuration, in which
the two particles move in opposite directions along they axis
and the spin components are measured in thex-z plane, as
depicted in Fig. 1. In such a case, the single-particle spin
observables alongu correspond to the projectionsEi andFj;
i.e., Ei ,Fj =Esuid ,Fsu jd with

Esud = Fsud =
1

2
fI + nsud · sg =

1

2
S1 + cosu sin u

sin u 1 − cosu
D ,

s2d

wheres is the vector composed from the Pauli spin matri-
ces.

Any state represented by the operatorW must be(i) self-
adjoint W†=W, (ii ) of trace class trsWd=1, and(iii ) positive

FIG. 1. Measurements of spin components corresponding to the
projectionsEi andFj.
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semidefinitekuuWuulù0 (in another notation,u†Wuù0) for
all vectorsuPH ^ H. For the state to be pure, it must be a
projectorW2=W or equivalently, trsW2d=1.

In order to be able to parametrizeW, we recall(e.g., Ref.
[23], Sec. 72) that a necessary and sufficient condition for
positiveness is the representation as the square of some self-
adjoint B, i.e., W=B2. In n dimensions,B can be param-
etrized byn2 real independent parameters. Finally,W can be
normalized byW/ trsWd. Thus, for a two-particle problem
associated withn=4,

W=
1

o
i=1

4

bi
2 + 2o

j=5

16

bj
2

31
b1 b5 + ib6 b11 + ib12 b15 + ib16

b5 − ib6 b2 b7 + ib8 b13 + ib14

b11 − ib12 b7 − ib8 b3 b9 + ib10

b15 − ib16 b13 − ib14 b9 − ib10 b4

2
2

s3d

for b1,b2, . . . ,b16PR.
The probability for finding the left particle in the spin-up

state along the angleui is given byqi =trhWfEsuid ^ Igj. qj

=trhWfI ^ Fsu jdgj is the probability for finding the particle on
the right-hand side alongu j in the spin-up state.qij
=trhWfEsuid ^ Fsu jdgj denotes the joint probability for find-
ing the left as well as the right particle in the spin-up state
alongui andu j, respectively. The associated expectation val-
ues are given byEsa ,bd=trhWfsa ^ sbgj, where sa

=nsad ·s, and nsad ,nsbd are unit vectors pointing in the
directions of spin measurementa andb, respectively.

B. Violations of Bell-type inequalities

We can utilize the parametrizations of measurement op-
eratorsEi ,Fj from Eq. (2) and of statesW from Eq. (3) to
find violations of Bell-type inequalities. The general proce-
dure is to choose a particular set of projection operators and
randomly generate arbitrary statesW. Having created a cer-
tain number of states, another set of projection operators can
be chosen as measurement operators. A proper parametriza-
tion of the two sets representing samples of measurement
operators and states yields the basis for expressing the maxi-
mal violations which reflect the quantum hull. The choice of
projection operators depending continuously on one param-
eter corresponds to a smooth variation of the measurement
directions.

Restriction of the different measurement directions to the
x-z plane perpendicular to the propagation direction of the
particles(cf. Fig. 1) permits a two-dimensional visualization
of the quantum hull. An extension to more than one param-
eter associated with other measurement directions is straight-
forwardly implementable. On inspection we find that, despite
the shortcomings in the visualization, no new insights can be
gained with respect to the model calculations presented here.
Thus, we adhere to these elementary configurations of mea-
surements in thex-z plane described above.

1. CHSH case

In a first step, we shall concentrate on the expectation
values rather than on probabilities. Consider the CHSH
operator CHSHsa ,b ,g ,dd=sasg+sbsg+sbsd−sasd

giving rise to a sum of expectation values trfW
3 CHSHsa , b , g , ddg = Esa ,gd + Esb ,gd + Esb ,dd − Esa ,dd.
Here,a, b andg, d denote coplanar measurement directions
on the left- and right-hand sides of a physical setup accord-
ing to Fig. 1, with a=u1, b=u2, and g=u4, d=u5, respec-
tively.

The quantum expectation values obey the Tsirelson bound
[31] iCHSHsa ,b ,g ,ddiø2Î2 for the configurationa=0,
b=2u, g=u, d=3u along 0øuøp. (The classical CHSH
bound from above is 2.) The particular parametrization in-
cludes the well-known measurement directions for obtaining
a maximal violation for the singlet state atu=p /4 and 3p /4.
An analytic expression of the quantum hull for the full range
of u is obtained by solving the minmax problem(Ref. [23],
Sec. 90) for the CHSH operator, i.e.,

HCHSHsud = ± Î2f3 − coss4udg ø 2Î2. s4d

The quantum hullHCHSH, along with the singlet state curve,
is depicted in Fig. 2.

2. CH case

Next we study the quantum hull corresponding to the CH
inequality −1øCHø0, with CH=p13+p14+p24−p23−p1
−p4. As this inequality is essentially equivalent to the CHSH
inequality discussed above if the expectation values are ex-
pressed by probabilities[32], we could in principle produce
the same plot as in Fig. 2 by the same choice of parametri-
zation and a relabeling of the axes.

Again, the minmax principle yields the analytic expres-
sion for the hull, i.e.,

HCHsud =
1

2
F±Î3 − coss2ud

2
− 1G . s5d

Thus, in terms of probabilities, the upper bound admitted by
quantum mechanics isHCHsudø sÎ2−1d /2, corresponding
to the Tsirelson bound of 2Î2 in the CHSH case.

FIG. 2. The quantum hullHCHSH as a function of a single pa-
rameteru.
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To explore the quantum hull also for general configura-
tions where the singlet state does not violate the inequality
maximally, we restrict the projection operatorsEi ,Fj by
E1s0d, E2sud=F1sud, F2s2ud to variations of one parameteru.
In Fig. 3 the quantum hullHCH of CH obtained by substitut-
ing p throughq is plotted along 0øuøp. We can observe a
maximum atu=p /2 that does not coincide with the maxi-
mum value reached by the singlet state.

3. Two-particle three-observable case

As a third example, consider a quantum hull associated
with the configuration involving two spin-1/2 particles and
three measurement directions. One of the 684 Bell-type in-
equalities enumerated in Ref.[15] is −p14+p15+p16+p24
+p26+p34+p35−p36ø +p1+p2+p4+p5. The associated quan-
tum operator is given by

O = − E1 ^ I − E2 ^ I − I ^ F1 − I ^ F2 − E1 ^ F1 + E1 ^ F2

+ E1 ^ F3+ E2 ^ F1 + E2 ^ F3 + E3 ^ F1 + E3 ^ F2

− E3 ^ F3. s6d

Taking trsWOd with a symmetric choice of measurement
directions E1=F1=Es0d, E2=F2=Esud, E3=F3=Es2ud en-
sures a violation of the inequality for the singlet state at
u=2p /3 f15g. The associated quantum hullHO is depicted
in Fig. 4.

The three examples depicted in Figs. 2–4 provide tests of
the validity of quantum mechanics in the usual Bell-type
inequality setup. They clearly exhibit a dependence of the
quantum hull on the measurement directions; i.e., a particular
set of projection operators determines the maximal possible
violation of a Bell-type inequality, although the choice of a
state is only restricted by fundamental quantum mechanical
requirements.

C. Quantum correlation polytope

So far, we have considered certain quantum hulls associ-
ated with the faces of classical correlation polytopes, as well
as bounds on expectation values, but we have not yet de-
picted the convex bodyQ itself. In what follows, we shall get
a view (albeit, due to the complexity of the contributions to
Q, a not very sharp one) of the quantum correlation polytope
for the two particles and two measurement directions per
particle configuration. Note that classically, the correspond-
ing CH polytope, denoted byCs2d, is bound by the 24

vertices s0,0,0,0,0,0,0,0d, s0,1,0,0,0,0,0,0d , . . . ,
s1,1,1,1,1,1,1,1d. These vertices are also elements
of the quantum body Qs2d consisting of vectors
sq1,q2,q3,q4,q13,q23,q14,q24d according to Eq.(1).

Consider a two-dimensional cut through the quantum
body Qs2d by restricting q1=q2=q3=a and q13=q14=q24

=b,a,b=const, i.e., by taking vectors of the form
sa,a,a,q4,b,q23,b,bd. These restrictions allow for a set of
statesW and corresponding projection operatorsEi ,Fj [33]
such that six out of eight quantum probabilities have a defi-
nite value and the remaining probabilitiesq4 andq23 can vary
within the quantum bounds. Numerically, after generating
arbitrary states and arbitrary projection operators, a postse-
lection is required for conformity to these restrictions. To
find sufficiently many vectors, we specify the constantsa,b
only up to a given tolerance value«. More precisely, only
states and projection operators yieldingq1=q2=q3=a±« and
q13=q14=q24=b±« for somea,c are chosen.

We have seta=1/2, b=3/8, and thetolerance to«
= ±0.015. Note that this choice implicates the existence of
vectors inQs2d which are outsideCs2d, since the CH in-
equality is violated forq23,1/8 andq4=1/2.

Figure 5 depicts a projection of the quantum bodyQs2d
on the plane spanned byq4 and q23. Since the inequalities
constituting the boundary lines have to be modified to ac-
count for «, the size ofCs2d is enlarged to the dotted lines
instead of the dashed lines indicating classical inequalities.
Due to the nonuniform distribution of generated states, some
regions are only sparsely populated. Nevertheless one can
observe clearly points outside the classical polytopeCs2d.
We stress the importance of this first glance onQs2d, since it
constitutes the quantum analogy of the classical correlation
polytopeCs2d, which has been the basis of numerous experi-
ments.

III. CONCLUSION

Starting from the correlation polytopes which represent
the restrictions of classical probabilities, we have used a gen-

FIG. 3. Quantum hullHCH as a function of a single parameteru.

FIG. 4. Quantum hullHO as a function of a single parameteru.
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eral parametrization of quantum states and measurement op-
erators to explore the quantum analog. On the basis of the
fundamental Bell-type inequalities, the quantum bounds have
been visualized for specific configurations. We have pre-
sented a two-dimensional cut through an eight-dimensional
quantum body clearly exhibiting regions of nonclassical
probability values.

The quantum bounds predicted in this paper suggest ex-
perimental tests in at least two possible forms. First, our
calculations provide an explicit way to construct quantum
states, which, for the measurement setups associated with the
orientation of Stern-Gerlach apparatus or polarizing beam
splitters, yieldmaximalviolations of the classical bounds by
quantized systems. This is an extension of Tsirelson’s origi-
nal findings[12,13]. Based on the parametrization introduced

above, Cabello has proposed such measurements[25] with a
suitable set of maximally entangled states. These bounds of
quantum correlations have been experimentally tested and
verified by Bovinoet al. [29].

Apart from the concrete experiments mentioned above,
there is a remote possibility of violations of the quantum
bounds. At the moment, these speculations of stronger-than-
quantum correlations[18–20] appear hypothetical at best,
since there is no theoretical indication that they may be re-
alized physically(besides postselection schemes). The situa-
tion in this respect is clearly different from the classical
bounds in Bell-type inequalities. Although Bell’s inequality
does not compare classical probability theory with a specific
theory either, an experimentalist can utilize these predictions
because of the stronger-than-classical correlations of quan-
tum mechanics. For instance, in the CHSH case, the experi-
menter chooses quantum mechanical setup and preparation
procedures such that the quantum mechanical sum of corre-
lations violates this bound most strongly. Stated pointedly,
Bell’s inequality tells the experimentalist what to measure,
but there is no empirical evidence supporting any experiment
to trespass and falsify the quantum bounds. Nevertheless, it
is interesting to know the quantum predictions exactly; not
only from a principal or hypothetical point of view. Empiri-
cal implementations such as the Bovinoet al. [29] experi-
ment test the fine structure of the quantum limits beyond the
Tsirelson bound.
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