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Testing the bounds on quantum probabilities
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Bounds on quantum probabilities and expectation values are derived for experimental setups associated with
Bell-type inequalities. In analogy to the classical bounds, the quantum limits are experimentally testable and
therefore serve as criteria for the validity of quantum mechanics.
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[. INTRODUCTION some(or all of) the joint probabilitiesp;,pa, - - - ,Pns P12y - -

. o nd identify them with the components of a vectpr
Suppose someone claims that the chances of rain in Vﬁ 01,0z, .. P Pus -..) formed in Euclidean space. Since

enna and Budapest are 0.1 in each one of the cities alone, aﬁm probabilitiesg, i= 1 n, are assumed to be indepen
o =Ly -ua by -

the joint probability of rainfall in both cities is 0.99. Would ent. every sinale one of their extreme cases 0 1 is feasible
such a proposition appear reasonable? Certainly not, for eve‘h} ’ y sing ’ '
e combined values gb;,p,, ... ,p, of the extreme cases

intuitively it does not make much sense to claim that it rains 201 together with the ioint probabilities: =op.. can
almost never in one of the cities, yet almost always in both o II b . ? ted J fp truth t bf"l_ p!tF;J]’O d1
them. The worrying question remains: which numbers could'S0 D€ Interprete a:s row“s 0 ? ruth tabie, wi an
be considered reasonable and consistent? Surely, the joiﬁ9rrespond|ng tofalse’ and "true,” respectively. Moreover,
probability should not exceed any single probability. This®Y such entry corresponds totao-valued measurealso

certainly appears to be a necessary condition, but is it a suf;-al:ﬁd \ée:)lrl:?etlzgélot_elr_r:]nsez\snur?;rlsslzﬁ;(;rlg?glbe:t?ilirtneglizlt)rgﬁution
ficient one? In the middle of the 19th century Boole, in re-. 9 » any P y

sponse 0 such guere,fomuated a thery of ‘coniions o [SPTESEIAL by some canvex sun over ) e vaued
possible experience[1,2] which dealt with this problem. y '

Boole’s requirements on thgoint) probabilities of logically that is, it corresponds to some point on the face of the clas-

connected events are expressed by certain equations or iﬁ'—cal correlation pqutopé:zconv(K) which is defined by
equalities relating thosgoint) probabilities. the set of all points whose convex sum extends over

Since Bell's investigation§3-5] into bounds on classical all vectors associated with row entries in the truth takle

probabilities, similar inequalities for a particular physical Moren precisely, Eon&der the convex hull coky

setup have been discussed in great number and detail. F{ZZ;\iXi|\i=0,5Z,\;=1} of the set

what follows, the classical bounds are referred to as “Bell-

type inequalities.” Whereas these bounds are interesting if K ={X1,X9, ... Xon}

one wants to inspect the violations of classical probabilities .

by quantum probabilities, the validity of quantum probabili- =H(tpt - tatdy I € {0,340 =1, .. 0

ties and their experimental verification is a completely dif- . .

ferent issue. Here we shall present detailed numerical studiddere: the terms,dy, .. stan_q for arb.|trary producﬁs assocl-

on the bounds of quantum probabilities which, in analogy tofited with the joint propositions which are con5|dered.'Ex—

the classical bounds, are experimentally testable. actly_what terms are considered depends on the particular
physical configuration.

A. Correlation polytopes By the Minkoswki-Weyl representation theorefRRef.

. _ 14], p. 29, every convex polytope has a dugquivalent
In order to establish bounds on quantum probabilities, 'egescription:(i) either as the convex hull of its extreme

us recall that Pitowsky has given_a} geo_metrical interpreta_tiorboint& i.e., vertices(ii) or as the intersection of a finite
of the bounds of classical probabilities in terms of correlatlonnumber of half spaces, each one given by a linear inequality.
polytopes[6-1( [see also Froissafil] and Tsirelsonalso g jinear inequalities, which are obtained from theléetf

spelled _Cirel’som [12’1.3]' . vertices by solving the so-calldwll problem coincide with
Consider an arbitrary number of classical eventsg jole’s conditions of possible experience.

8,8z, ..., Take some(or all of) their probabilities and For particular physical setups, the inequalities can be

identified with Bell-type inequalities which have to be satis-
fied by all classical probability distributions. These condi-
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pletely and exhaustivel§that is, the bounds on probabilities
cannot be enlarged and improyedseneralizations to the
joint distributions of more than two particles are straightfor-
ward. Correlation polytopes have provided a systematic, con-
structive way of finding the entire set of Bell-type inequali-
ties associated with any particular physical configuration
[15,164, although from a computational complexity point of
view [17], the problem remains intractabj@].

FIG. 1. Measurements of spin components corresponding to the
projectionsk; andF;.
B. Quantum probabilities

Just as the Bell-type inequalities represent bounds on the G = (TW(E; @ Fy)],

classical probabilities or expectation values, there exis}yiih EE=E, FjF,=F, W=W, tr(W)=1, and(ulWjuy=0

bounds on quantum probabilities. In what follows we shalli ,j=1,... nforall Juy e H® H. The vertices of classical cor-

concentrate on these quantum plausibility criteria, in particUsqation polytopes  C coincide with points

lar on the bounds characterizing the demarcation line fo[)f Q, if E,F e/{diag0 0,1=diag1 D}, where
’ (R Yty ’ LEEE ] ’

quantum proba_bllltles. - . diag(a,b, ...) stands for the diagonal matrix with diagonal

Although being less restrictive than the classical prob-entriesa b - inthese casesV mav be arbitrary. A proof of
abilities, quantum probabilities do not violate the BeII—typethe con\’/e;dt.y,on can be fomjnd ir¥ Ref[22] Ng.ticep how-
meqqahtles maX|maII){1_8—2q..Tswelson[lZ,lS,Z; as well ever, that geometrical objects derived from expectation val-
as Pitowsky[22] have investigated the analytic aspect of ues need not be, and in fact are not, convex, as an example
bounds on quantum correlations. Analytic bounds can also bgelow Shows ' ' '
_obtalnedwa the minmax principle(Ref. [23], Sec. 99, stat- One could obtain an intuitive picture Qf by imagining it
ing that the boundor norm) of a self-adjoint operator is as an objectin high dimensions created from “soap sur-

equal to the maximum of the absolute values of its eigenvalfa es” which is suspended on the edgeCofand which is

ues. The eigenvectors correspond to pure states associatglown up with air: the original polytope faces which are

with tthese elgeT\{talue?. Thtl.JS’ the PTTTF?X R;'.nﬁ'ple E’._S’Vr tr?enyperplanes get “bulged” or “curved out” such that, instead
quantum correfation unctions what the WIRKOSWKI-VVEYL 7y single plane per face, a continuity of tangent hyper-

representation theorem is for the classical correlations; lanes is necessary to characterizg2i]
Werner and Wolf24], as well as Cabell$25], have consid- P y '

ered maximal violations of correlation inequalities, and have

also enumerated quantum states associated with extreme Il. NUMERICAL STUDIES

points of the convex set of quantum correlation functions.

The maximal violation of the Clauser-Horne-Shimony- In what follows, we shall first consider the parametriza-
Holt (CHSH) inequality involving expectation values of bi- tion of projections and states. The numerically calculated
nary observables is related to Grothendieck’s cong2it expectation values obey the Tsirelson bound, exceeding the
But the demarcation criteria for quantum probabilities arevalues for the classical CHSH inequality. Then, we shall deal
still far less understood than their classical counterparts. In #ith the Clauser-Horne(CH) inequality and a higher-
broader context, Cabello has described a violation of thélimensional example taken from R€f5] in more detail,
CHSH inequality beyond the quantum-mechani¢tirel-  followed by an attempt to depict the convex bo@yitself.
son’s bound by applying selection schemes to particles in a
Greenberger-Horne-Zeilinger stdi&7,28, yet here we only
deal with the usual quantum probabilities of events which are
not subject to selection procedures. Consider a two-spin-1/2 particle configuration, in which

To be more precise, consider the set of all single-particléhe two particles move in opposite directions alongttais
probabilities g, =tW(E;® I)] and tfW(I®F;)], as well as and the spin components are measured inxtzeplane, as
the two-particle joint probabilities;; =t W(E; ® F;)], where depicted in Fig. 1. In such a case, the.sin.gle—particle spin
someE;, F; are projection operators on a Hilbert spatand ~ Observables along correspond to the projectiorts andF;;

W is some state okl ® H. Again, generalizations to the joint i-€-, Ei,Fj=E(6),F(6;) with
distributions of more than two particles are straightforward.

A. Parametrization

i i } 1 1/1+cosf sind
An analog to the CIQ§§|0§I correlation polytapes the set of E()=F(6) = 2[1 +n(0) - o] = = . ,
all quantum probabilities: 2 2\ sin® 1-coséd
(2
Q=1(00, G2 - G Oy - . where o is the vector composed from the Pauli spin matri-
ces.

Any state represented by the operafémust be(i) self-
g =t{W(E; @ )] or tfW( ® F)], (1)  adjointW'=W, (ii) of trace class tW)=1, and(iii ) positive
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semidefinite(u/W]uy=0 (in another notationy™Wu=0) for 4 g T T
all vectorsue H® H. For the state to be pure, it must be a ; ’ ’
projectorW?=W or equivalently, ttW?)=1.
In order to be able to parametri¥® we recall(e.g., Ref.

[23], Sec. 72 that a necessary and sufficient condition for &
positiveness is the representation as the square of some se §
adjoint B, i.e., W=B2Z In n dimensions,B can be param- =
etrized byn? real independent parameters. Finally,can be e
normalized byW/tr(W). Thus, for a two-particle problem ) :
associated witm=4,

: 7 Classwal Bounds -----
R T LSRR 7._/ Singlet state —-—-— ... .
Maximum Values X

_ 1 0 /4 /2 3n/4 n
W= 4 16 0 [rad]
24 2
z bi 225 bj FIG. 2. The quantum hulHcysy as a function of a single pa-
_ _ _ rameter.
by bs+ibg byy+ibyy bis+ibye

b5_ |b6 b2 b7 + IbS b13+ ibl4 1. CHSH case

by —ib;, by—ibg b3 bg +ibyg In a first step, we shall concentrate on the expectation
bis—ibyg byz—ibyy bg—ibyg b, values rather than on probabilities. Consider the CHSH

3) operator CHSlw, B,v,0)=0,0,+ 0RO, 005~ 0,05
giving rise to a sum of expectation values[Wr
for bl,bz, . 'blﬁe R. X CHS"KCY, ,8, Y, 5)] = E(a,y) + E(B, ’y) + E(ﬁ,é) - E(C!,é)

The probability for finding the left particle in the spin-up Here,a, 8 andy, § denote coplanar measurement directions
state along the anglé is given by g=t{WE(6) ®I]}. q; on the left- and right-hand sides of a physical setup accord-
=t{WI® F(#)]} is the probability for finding the particle on ing to Fig. 1, witha=6;, B=6,, and y=6,, 6=0s, respec-
the right-hand side alongy; in the spin-up state.q; tively.
=t{WE(6) ® F(6)]} denotes the joint probability for flnd— The quantum expectation values obey the Tsirelson bound
ing the left as weII as the right particle in the spin-up state[31] |[CHSH«, 8, 7,5)||<2\2 for the configurationa=0,
along 6 and 6;, respectively. The associated expectation val-3=26, y=6, 5=36¢ along O< #< . (The classical CHSH
ues are given byE(e,B)=t{Wo,® axl}, where o, bound from above is 2.The particular parametrization in-
=n(a)-o, and n(a),n(B) are unit vectors pointing in the cludes the well-known measurement directions for obtaining
directions of spin measuremeatand 3, respectively. a maximal violation for the singlet state @&t 7/4 and 37/4.

An analytic expression of the quantum hull for the full range
8. Vilatons of Bel-type inequalties Sec. 90 for the CHSH operaton e, e

We can utilize the parametrizations of measurement op- . _
eratorsE;,F; from Eq. (2) and of states¥V from Eq. (3) to HonsH(6) = £ V2[3 - cog46)] < 212. (4)
find violations of Bell-type inequalities. The general proce-
dure is to choose a particular set of projection operators an
randomly generate arbitrary statéds Having created a cer-
tain number of states, another set of projection operators can
be chosen as measurement operators. A proper parametriza-
tion of the two sets representing samples of measurement Next we study the quantum hull corresponding to the CH
operators and states yields the basis for expressing the maxihequality —-1<CH<O0, with CH=p;3+pP4+Pos—Poz—P1
mal violations which reflect the quantum hull. The choice of-p,. As this inequality is essentially equivalent to the CHSH
projection operators depending continuously on one paraninequality discussed above if the expectation values are ex-
eter corresponds to a smooth variation of the measuremeptessed by probabilitiek82], we could in principle produce
directions. the same plot as in Fig. 2 by the same choice of parametri-

Restriction of the different measurement directions to thezation and a relabeling of the axes.

x-z plane perpendicular to the propagation direction of the Again, the minmax principle yields the analytic expres-
particles(cf. Fig. 1) permits a two-dimensional visualization sion for the hull, i.e.,

of the quantum hull. An extension to more than one param-

eter associated with other measurement directions is straight- 1 3 —co%26)

forwardly implementable. On inspection we find that, despite Hen(6) = E[i AV 1] : (5)

the shortcomings in the visualization, no new insights can be

gained with respect to the model calculations presented herdhus, in terms of probabilities, the upper bound admitted by
Thus, we adhere to these elementary configurations of meguantum mechanics |BICH(6)<(\2 1)/2, corresponding
surements in the-z plane described above. to the Tsirelson bound of\2 in the CHSH case.

Ehe quantum hulHqps along with the singlet state curve,
IS depicted in Fig. 2.

2. CH case
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02 ;«W’M“ o ”wi ---------------------- ] The .th_ree examples depicted ip Figs. 2-4 provide tests of

o el './" gt Y. the validity of quantum mechanics in the usual Bell-type

7 inequality setup. They clearly exhibit a dependence of the
02 e | quantum hull on the measurement directions; i.e., a particular
s 2 Classical Bounds ===+ ---rcrorrerr 4 set of projection operators determines the maximal possible

S, Max‘g'i‘l‘g]e‘{aslgg B i V|olat|_on of a BelI_—type inequality, although the choice of a
: : state is only restricted by fundamental quantum mechanical

------ e requirements.
WMW"" )
ot it Mwi‘f%" ___________________ i C. Quantum correlation polytope

n/2 3n/4 T So far, we have considered certain quantum hulls associ-
6 [rad] ated with the faces of classical correlation polytopes, as well

. ) as bounds on expectation values, but we have not yet de-
FIG. 3. Quantum hulHcy, as a function of a single parametr  picted the convex bodg itself. In what follows, we shall get
a view (albeit, due to the complexity of the contributions to
To explore the quantum hull also for general configura-Q, a not very sharp onef the quantum correlation polytope
tions where the singlet state does not violate the inequalitjor the two particles and two measurement directions per
maximally, we restrict the projection operatoEs,F; by  particle configuration. Note that classically, the correspond-
E1(0), Ex(6)=F4(0), F»(26) to variations of one parametér  ing CH polytope, denoted by(2), is bound by the 2
In Fig. 3 the quantum huMcy of CH obtained by substitut- vertices (0,0,0,0,0,0,0,9 (0,1,0,0,0,0,0,D...,
ing p throughgq is plotted along 6< =< 7. We can observe a (1,1,1,1,1,1,1,1 These vertices are also elements
maximum até=m/2 that does not coincide with the maxi- of the quantum body Q(2) consisting of vectors

mum value reached by the singlet state. (01,02, 03, G4, G13, 3, Gr4- Goa) @CcOrding to Eq(l).
Consider a two-dimensional cut through the quantum
3. Two-particle three-observable case body Q(2) by restricting g;=0,=03=a and g;3=014=04

As a third example, consider a quantum hull associate_b'a'bzconSt’ .e., by takmg. vectors of the form
a,a,a,qs,b,q3,b,b). These restrictions allow for a set of

with the configuration involving two spin-1/2 particles and ) e
three measurement directions. One of the 684 Bell-type inStatesW and corresponding projection operat@sF; [33]

equalities enumerated in Ref15] iS —Prs+Pig+Pret Pas such that six out of eight quantum probabilities have a defi-

+Dos+ Paa+ Pas— Pag< + P1+ P+ Pa+ Ps. The associated quan- nite value and the remaining probabilitigsandq,; can vary
tum operator is given by within the quantum bounds. Numerically, after generating

arbitrary states and arbitrary projection operators, a postse-
_ lection is required for conformity to these restrictions. To
O=-E;®I-E,I-1®9F,-1®F,-E;®@F,+E;®F . 2. )
! 2 ! 2 ST RLTEEERZ 0 find sufficiently many vectors, we specify the constaats
+E;®@F+tE, 9 Fi+E, @ F3+E3@ Fi+E3®@ F) only up to a given tolerance value More precisely, only
(6) states and projection operators yieldupgg,=03=at¢ and
O13=014=024=bz e for somea,c are chosen.
Taking t{WO) with a symmetric choice of measurement _+V8/e01hsav§ setar\lzllﬁ_, b:h3_/8' _anoll_ thetolehrance_ toe ‘
directions E;=F,=E(0), E,=F,=E(6), Es=Fs=E(26) en- - +0-015. ote that this choice implicates the existence o

sures a violation of the inequality for the singlet state atvectors iNQ(2) which are outsideC(2), since the CH in-

_ ; : ; equality is violated foig,3<1/8 andq,=1/2.
ii IEia(:r;’/34[15]. The associated quantum hidp is depicted Figure 5 depicts a projection of the quantum bagk2)

on the plane spanned ly, and g,3 Since the inequalities
constituting the boundary lines have to be modified to ac-
P RRREIK RS count fore, the size ofC(2) is enlarged to the dotted lines
0 JrroRsaee= = - - : s instead of the dashed lines indicating classical inequalities.
’ ’ Due to the nonuniform distribution of generated states, some
regions are only sparsely populated. Nevertheless one can
observe clearly points outside the classical polyt@ig).
We stress the importance of this first glance@(2), since it
constitutes the quantum analogy of the classical correlation
polytopeC(2), which has been the basis of numerous experi-
ments.

_E3® F3.

0.5

" Classical Bound —-
Maximum Values :
Singlet state ---------- E

Ho(0)

[lI. CONCLUSION

Starting from the correlation polytopes which represent
FIG. 4. Quantum hulHg as a function of a single parameigr  the restrictions of classical probabilities, we have used a gen-
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above, Cabello has proposed such measurenji2bfsvith a

03 suitable set of maximally entangled states. These bounds of
04 - guantum correlations have been experimentally tested and
e | verified by Bovinoet al. [29].
03 i 7 Apart from the concrete experiments mentioned above,
£ o i there is a remote possibility of violations of the quantum
] bounds. At the moment, these speculations of stronger-than-
01f ! - quantum correlation$18-2Q appear hypothetical at best,
! since there is no theoretical indication that they may be re-
or violation alized physically(besides postselection scheméghe situa-
01 1 1 L L tion in this respect is clearly different from the classical
03 04 05 06 0.7 038 0.9 1 bounds in Bell-type inequalities. Although Bell’'s inequality
Pa does not compare classical probability theory with a specific
FIG. 5. Cut through the quantum body for a=1/2, b=3/8, theory either, an experimentalist can utilize thesg predictions
£=+0.015. because of the stronger-than-classical correlations of quan-

tum mechanics. For instance, in the CHSH case, the experi-
eral parametrization of quantum states and measurement opienter chooses quantum mechanical setup and preparation
erators to explore the quantum analog. On the basis of therocedures such that the quantum mechanical sum of corre-
fundamental Bell-type inequalities, the quantum bounds havéations violates this bound most strongly. Stated pointedly,
been visualized for specific configurations. We have preBell's inequality tells the experimentalist what to measure,
sented a two-dimensional cut through an eight-dimensionaput there is no empirical evidence supporting any experiment
quantum body clearly exhibiting regions of nonclassicalto trespass and falsify the quantum bounds. Nevertheless, it
probability values. is interesting to know the quantum predictions exactly; not

The quantum bounds predicted in this paper suggest exenly from a principal or hypothetical point of view. Empiri-

perimental tests in at least two possible forms. First, oucal implementations such as the Boviabal. [29] experi-
calculations provide an explicit way to construct quantumment test the fine structure of the quantum limits beyond the
states, which, for the measurement setups associated with tigirelson bound.
orientation of Stern-Gerlach apparatus or polarizing beam
splitters, yieldmaximalviolations of the classical bounds by
guantized systems. This is an extension of Tsirelson’s origi- This research has been supported by the Austrian Science
nal findings[12,13. Based on the parametrization introduced Foundation(FWF), Project No. F1513.
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