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We consider sets of quantum observables corresponding toeutactic stars. Eutactic stars are systems of
vectors which are the lower-dimensional “shadow” image, the orthogonal view, of higher-dimensional ortho-
normal bases. Although these vector systems are not comeasurable, they represent redundant coordinate bases
with remarkable properties. One application is quantum secret sharing.
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The increased experimental feasibility to manipulate
single or few particle quantum states, and the theoretical
concentration on the algebraic properties of the mathematical
models underlying quantum mechanics, have stimulated a
wealth of applications in information and computation theory
[1,2]. In this line of reasoning, we shall consider quantized
systems which are in a coherent superposition of constituent
states in such a way that only the coherent superposition of
these pure states is in a predefined state; whereas one or all
of the constituent states are not. Heuristically speaking, only
the coherently combined states yield the “encoded message,”
the constituents or “shares” do not.

This feature could be compared to “quantum secret shar-
ing” schemes[3–7], as well as to “entangled entanglement”
scenarios[8,9]. There, mostly entangled multipartite system
are investigated. Thus, while the above cases concentrate
mainly on quantum entanglement, in what follows quantum
coherence will be utilized: in the secret-sharing scheme pro-
posed here, one party receives part of a quantum state and
the other party receives the other part. The parts are compo-
nents of a vector lying in subspaces of a higher-dimensional
Hilbert space. While the possible quantum states to be sent
are orthogonal, the parts are not, so that the parties must put
their parts together to decipher the message.

We shall deal with the general case first and consider
examples later. Consider an orthonormal basisE
=he1, . . . ,enj of the n-dimensional real Hilbert spaceRn

[whose origin is ats0, . . . ,0d]. Every point x in Rn has a
coordinate representationxi =kx ueil, i =1, . . . ,n with respect
to the basisE. Hence, any vector from the originv=x has a
representation in terms of the basis vectors given byv
=oi=1

n kv ueilei =voi=1
n fei

Teig, where the matrix notation has
been used, in whichei andv are row vectors and “T” indi-
cates transposition.(k·u ·l and the matrixfei

Teig stand for the
scalar product and the dyadic product of the vectorei with
itself, respectively). Hence,oi=1

n fei
Teig=In, where In is the

n-dimensional identity matrix.
Next, consider more general, redundant, bases consisting

of systems of “well-arranged” linear dependent vectorsF
=hf1, . . . ,fmj with m.n, which are the orthogonal projec-
tions of orthonormal bases ofm- (i.e., higher-than-n-) dimen-

sional Hilbert spaces. Such systems are often referred to as
eutactic stars[10–14]. When properly normed, the sum of
the dyadic products of their vectors yields unity, i.e.,
oi=1

m ff i
Tf ig=In, giving raise to redundant eutactic coordinates

xi8=kx u f il, i =1, . . . ,m.n. Indeed, many properties of opera-
tors and tensors defined with respect to standard orthonormal
bases directly translate into eutactic coordinates[14].

In terms ofm-ary (radix m) measures of quantum infor-
mation based on state partitions[15], k elementarym-state
systems can carryk nits[16–18]. A nit can be encoded by the
one-dimensional subspaces ofRm spanned by some ortho-
normal basis vectorsE8=he1, . . . ,emj. In the quantum logic
approach pioneered by Birkhoff and von Neumann(e.g.,
Refs. [19–22]), every such basis vector corresponds to the
physical proposition that “the system is in a particular one of
m different states.” All the propositions corresponding to or-
thogonal base vectors are comeasurable.

On the contrary, the propositions corresponding to the eu-
tactic star

F = hPe1, . . . ,Pemj

formed by some orthogonal projectionP of E8 is no longer
comeasurablesor it just spans a one dimensional subspaced.
Neither is the eutactic star

F' = hP'e1, . . . ,P'emj

formed by the orthogonal projectionP' of E8. Indeed, the
elements ofF andF' may be considered as “shares” in the
context of quantum secret sharing. Thereby, not all shares
may be equally suitable for cryptographic purposes. This
scenario can be generalized to multiple shares in a straight-
forward way.

Let us consider an example for a two-component two-
share configuration, in which each party obtains one substate
from two possible ones. In particular, consider the two shares
hw ,xj and hy ,zj defined in four-dimensional complex Hil-
bert space by

w = S0,0,−
1

2 Î2
,

1
Î2

D, x =
1

2
S0,0,−

3

2
,− 1D ,
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y =
1

2S 1
Î2

,− 1,0,0D, z =
1

2Î2
S−

1
Î2

,− 1,0,0D .

While hw ,xj and hy ,zj constitute eutactic stars inR2, the
coherent superposition ofw with y, andx with z yield two
orthogonal vectors inR4:

hw + y,x + zj

= H1

2S 1
Î2

,− 1,−
1
Î2

,Î2D,
1

2S−
1

2
,−

1
Î2

,−
3

2
,− 1DJ ,

s2d

which could be used as a bit representation. As can be
readily verified, the shares in Eq.s1d are obtained by apply-
ing the projections P=diags1,1,0,0d and P'

=diags0,0,1,1d to the vectors in Eq.s2d f“diagsa,b, . . .d”
stands for the diagonal matrix witha,b, . . . at thediagonal
entriesg. The comeasurable projection operators corre-
sponding to the vectors in Eq.s2d are given by

fsw + ydTsw + ydg =
1

41
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2
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1
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and

fsx + zdTsx + zdg =
1
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whereas the shares given to the parties are not comeasurate,
i.e., fwTwgfxTxg−fxTxgfwTwgÞ0 and fyTygfzTzg
−fzTzgfyTygÞ0. Only after recombining the shares it is pos-
sible to reconstruct the information, i.e., to decide whether
sw+yd or sx+zd has been communicated. This configuration
demonstrates the protocol, but it is not optimal, as four di-
mensions have been used to represent a single bit. A more
effective coding in base four could utilize the additional two
“quadrit” states s1/2ds1,Î2,−1,0d and s1/2ds3/2,−1/
Î2,1/2,−1d.

A possible experimental realization of an arbitrary
m-dimensional configuration could be a general interferom-
eter with m inputs andm output terminals[23], which are
partitioned according to the orthogonal projections involved.
They should be arranged in such a way that the single input/
output terminals each correspond to one dimension. Con-
sider, for example, the two-component two-share configura-
tion discussed above. The two bit states(2) can be
constructed from the orthogonal pair of vectorse1
=s0,0,0,1d and e2=s1,0,0,0d by subjecting them to four
successive rotations in two-dimensional subspaces ofR4, i.e.,
w+y=R13sp /4dR12sp /4dR14sp /4dR13sp /4de1 and x+z
=R13sp /4dR12sp /4dR14sp /4dR13sp /4de2, where R12, R14,
and R13 represent the usual clockwise rotations in the 1-2,
1-4, and 1-3 planes. The corresponding(lossless) interfero-
metric configuration is depicted in Fig. 1; the boxes standing
for a 50:50 mixing.

The encoding phase depicted in Fig. 1(a) consist of either
inserting a particle into the first or the fourth terminal. For-

FIG. 1. Experimental realiza-
tion of (a) the encoding stage of a
two-component two-share con-
figuration by an array of effec-
tively two-dimensional beam
splitters depicted as boxes. The
decoding stage(b) is just the en-
coding stage(a) in reverse order,
with inverse beam splitters.
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mally, its state undergoes the particular types of mixing
transformations outlined above. Finally, the two upper and
two lower exit terminals are subdivided into the two shares.
The decoding phase depicted in Fig. 1(b) requires both
shares, which are recombined in a reverse interferometric
setup, in which the original states are reconstructed by per-
forming the reverse mixings in reverse order.

Some configurations are not usable for secret sharing. The
“worst case” scenario might be one in which the first share
coincides with a basis vector of the orthonormal basis span-
ning Rm. In this case, the second share just consists of the
remaining base states, making possible the detection of the
original message. Take, for instance, the basis
hs0,0,1d ,s0,1,0d ,s1,0,0dj which, when projected along the
z axis, results in the shareshs0,0,1dj andhs0,1,0d ,s1,0,0dj.
These shares enable the parties to deterministically discrimi-
nate between the first state and the rest(first share), and
between all states(second share).

A simple setup would correspond to a two-dimensional
case, in which a particle would enter one of two input ports.
A successive beam splitter would then scramble the original
signal. In this setup, the two shares would just correspond to
the two output ports of the beam splitter. Even though both
parties would know that the other party would possess a
one-dimensional share, due to phase coherence it would not
be possible in a straightforward manner to reconstruct the
secret message by manufacturing the missing one-
component share.

As has already been pointed out, the proposed scheme
does not necessarily involve entangled multipartite states;
thus the parties are not given particles as shares. Rather, in
the interferometric realization they are given interferometric
channels; and in order to reconstruct the original message, it
is important to keep quantum coherence among all the par-
ties. Thus, in the encrypted stage, that is, before the decod-
ing, no particle detection is allowed, since this would destroy
coherence. The decoding transformation is the coherent com-
bination of the two shares whose channels each correspond,
respectively, to one and only one secret message.

Here we have proposed to look into possibilities to utilize
the higher-dimensional components of the quantum state by
combining two or more states defined in effectively lower-
dimensional subspaces. Only after all parties have put their
parts of the states together are they able to decypher the
message. The “extra dimensions” not used by the “flattened
out” subspaces might be very useful for other purposes as
well. For instance, one might speculate that they could be
exploited for computational purposes such as speedups,
analogously to the introduction of the complex plane for the
solution of certain problems, such as integrals, in the analy-
sis. There, the challenge might be to extend the existing
quantum algorithms to higher dimensions, thereby exploiting
multidimensional connectedness in search spaces and the
like, and at the same time being able to reconstruct the re-
sults in lower dimensions.
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