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Eutactic quantum codes
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We consider sets of quantum observables correspondireytiactic stars Eutactic stars are systems of
vectors which are the lower-dimensional “shadow” image, the orthogonal view, of higher-dimensional ortho-
normal bases. Although these vector systems are not comeasurable, they represent redundant coordinate bases
with remarkable properties. One application is quantum secret sharing.
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The increased experimental feasibility to manipulatesional Hilbert spaces. Such systems are often referred to as
single or few particle quantum states, and the theoreticatutactic stars{10-14. When properly normed, the sum of
concentration on the algebraic properties of the mathematicahe dyadic products of their vectors yields unity, i.e.,

models underlying quantum mechanics, have stimulated 8™ [f,f;]=1,, giving raise to redundant eutactic coordinates

vxiealtr; of[r?ppl!icatic;ns in infprmation r;]mﬁ compgtation thforgxi' =(x|f)),i=1,... m>n. Indeed, many properties of opera-
[1,2). In this line of reasoning, we shall consider quantizedy, s anq tensors defined with respect to standard orthonormal
systems which are in a coherent superposition of Const|tuerp$

states in such a way that only the coherent superposition 0 . .

these pure states is in a predefined state; whereas one or a'!r,\lt?ot:rt;g Sseocjngr?zgzd');:E)tigneasu;e;eor;g#gr‘turf]st'g,rgr

of the constituent states are not. Heuristically speaking, onl P (3], ym

the coherently combined states yield the “encoded messag ,yster_ns can carty nits[16—18. A nit can be encoded by the
the constituents or “shares” do not. one—dlmens_lonal subspaces Bf" spanned by some ortho-

This feature could be compared to “quantum secret shaf?ormal basis vectors’ ={ey, ... e} In the quantum logic
ing” schemeg3-7], as well as to “entangled entanglement” @pproach pioneered by Birkhoff and von Neumang.,
scenariog8,9]. There, mostly entangled multipartite system Refs.[19-22), every such basis vector corresponds to the
are investigated. Thus, while the above cases concentrapdlysical proposition that “the system is in a particular one of
mainly on quantum entanglement, in what follows quantumm different states.” All the propositions corresponding to or-
coherence will be utilized: in the secret-sharing scheme prothogonal base vectors are comeasurable.
posed here, one party receives part of a quantum state and On the contrary, the propositions corresponding to the eu-
the other party receives the other part. The parts are compdactic star
nents of a vector lying in subspaces of a higher-dimensional
Hilbert space. While the possible quantum states to be sent F={Pe Pe,}

. SEIERRE]
are orthogonal, the parts are not, so that the parties must put
their parts together to decipher the message.

We shall deal with the general case first and consideformed by some orthogonal projectiéhof £’ is no longer
examples later. Consider an orthonormal basfs COmeasurabléor it just spans a one dimensional subspace
={e,,... e} of the n-dimensional real Hilbert spac&” Neither is the eutactic star
[whose origin is at(0,...,0]. Every pointx in R" has a
coordinate representatiop=(x|e), i=1, ... n with respect Ft={Pte, ... Ple,}
to the basi<. Hence, any vector from the origin=x has a

representation in terms of the basis vectors givenvby o ,
=" (v|e)e=v=",[eTe], where the matrix notation has formed by the orthogonal prqecnqlﬁ of £. Indeed, .the
elements ofF and 7+ may be considered as “shares” in the

been used, in whicle, andv are row vectors andT” indi- :
context of quantum secret sharing. Thereby, not all shares

cates transpositiorf(-| -y and the matri¥e "g] stand for the _ ; .
scalar product and the dyadic product of the ve&owith may be equally suitable for cryptographic purposes. This
scenario can be generalized to multiple shares in a straight-

. . N T .
itself, respectively. Hence, = [e'e]=1,, wherel, is the forward way.

n-d&mepsmnal_(;denﬂty matrix. | redundant. b isti Let us consider an example for a two-component two-
of Sesxté:](;ng; frer}??arfrfneneeg,? I"rzga?r:jear:aﬁ d;ir?tesggt?ﬁsés Nhare configuration, in which each party obtains one substate
y W 9 ' P N from two possible ones. In particular, consider the two shares

={f,, ... f} with m>n, which are the orthogonal projec- : : 5 - A
tions of orthonormal bases of- (i.e., higher-tham-) dimen- E)Vg}txip?ci{)tl);/z} defined in four-dimensional complex Hil

ases directly translate into eutactic coordindfie§.
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\ / tion of (a) the encoding stage of a

two-component two-share con-
(@ figuration by an array of effec-
tively two-dimensional beam

/ \ . splitters depicted as boxes. The
decoding stagéb) is just the en-
share #2 { Ris(—2) \ Ru(-3) / Ris(=2) \j coding stagga) in reverse order,
‘ Ria(~1) 3 with inverse beam splitters.
share # 1 { \ / 4

()
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While {w,x} and{y,z} constitute eutactic stars iR2, the [(x+2)'(x+2)] =4l 3 3 o 3 | (4)
coherent superposition ¥ with y, andx with z yield two = —= = =
orthogonal vectors iiR*: 4 22 4 2
1 1 3
— —_ — 1
2 V2 2
fwyx+2z} whereas the shares given to the parties are not comeasurate,
1/ 1 L 1 5 /1 1 3 1 ie., [WwlxXx]-[x"x][w'w]#0 and [y'y][z'z]
2\y2' V’E’V : 2 2 2 : -[z"z][y"y]# 0. Only after recombining the shares it is pos-

sible to reconstruct the information, i.e., to decide whether
(w+y) or (x+2) has been communicated. This configuration
demonstrates the protocol, but it is not optimal, as four di-
mensions have been used to represent a single bit. A more
which could be used as a bit representation. As can beffective coding in base four could utilize the additional two
readily verified, the shares in E¢l) are obtained by apply- “quadrit’ states (1/2)(1,v2,-1,0 and (1/2)(3/2,-1/
ing the projections P=diag1,1,0,0 and P* V2,1/2,-D.
=diag0,0,1,1 to the vectors in Eq(2) [“diag(a,b,...)" A possible experimental realization of an arbitrary
stands for the diagonal matrix with,b, ... at thediagonal = m-dimensional configuration could be a general interferom-
entried. The comeasurable projection operators correeter with m inputs andm output terminalg23], which are
sponding to the vectors in E42) are given by partitioned according to the orthogonal projections involved.
They should be arranged in such a way that the single input/
output terminals each correspond to one dimension. Con-
sider, for example, the two-component two-share configura-
tion discussed above. The two bit staté¢d) can be
constructed from the orthogonal pair of vectoes
=(0,0,0,) ande,=(1,0,0,0 by subjecting them to four
-2 successive rotations in two-dimensional subspacé¥ dfe.,
W+y=R13(’7T/4)R12(7T/4)R14(7T/4)R13(7T/4)el and x+z
:R13(7T/4)R12(7T/4)R14(7T/4)R13(7T/4)ez, where RlZ’ R14,
and R, 5 represent the usual clockwise rotations in the 1-2,
1 - \E -1 9 1-4, and 1-3 planes. The correspondithgssles$ interfero-
‘ metric configuration is depicted in Fig. 1; the boxes standing
for a 50:50 mixing.
The encoding phase depicted in Figa)lconsist of either
and inserting a particle into the first or the fourth terminal. For-
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mally, its state undergoes the particular types of mixing As has already been pointed out, the proposed scheme
transformations outlined above. Finally, the two upper antioes not necessarily involve entangled multipartite states;
two lower exit terminals are subdivided into the two sharesthus the parties are not given particles as shares. Rather, in
The decoding phase depicted in Figibjl requires both  the interferometric realization they are given interferometric

shares, which are recombined in a reverse interferometrigyannels: and in order to reconstruct the original message, it

?etup, in which the original states are reconstructed by Pefg i rtant to keep quantum coherence among all the par-
orming the reverse mixings in reverse order.

Some configurations are not usable for secret sharing. Thtées' Thus, n the enc.rypt'ed stage, th.at IS, pefore the decod-
“worst case” scenario might be one in which the first shard"d: N0 particle detecnc_)n is allowed, since this would destroy
coincides with a basis vector of the orthonormal basis sparfzoherence. The decoding transformation is the coherent com-
ning R™. In this case, the second share just consists of th8ination of the two shares whose channels each correspond,
remaining base states, making possible the detection of tH@spectively, to one and only one secret message.
original message. Take, for instance, the basis Here we have proposed to look into possibilities to utilize
{(0,0,1,(0,1,0,(1,0,0} which, when projected along the the higher-dimensional components of the quantum state by
z axis, results in the shar¢®,0,1)} and{(0,1,0,(1,0,0}.  combining two or more states defined in effectively lower-
These shares enable the parties to deterministically discrimdimensional subspaces. Only after all parties have put their
nate between the first state and the r@sst shar¢, and parts of the states together are they able to decypher the
between all stateesecond shaje message. The “extra dimensions” not used by the “flattened

A simple setup would correspond to a two-dimensionalout” subspaces might be very useful for other purposes as
case, in which a particle would enter one of two input portswell. For instance, one might speculate that they could be
A successive beam splitter would then scramble the originaéxploited for computational purposes such as speedups,
signal. In this setup, the two shares would just correspond tanalogously to the introduction of the complex plane for the
the two output ports of the beam splitter. Even though bottsolution of certain problems, such as integrals, in the analy-
parties would know that the other party would possess &is. There, the challenge might be to extend the existing
one-dimensional share, due to phase coherence it would nquiantum algorithms to higher dimensions, thereby exploiting
be possible in a straightforward manner to reconstruct thenultidimensional connectedness in search spaces and the
secret message by manufacturing the missing ondike, and at the same time being able to reconstruct the re-
component share. sults in lower dimensions.
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